信号完整性相关概念介绍
第9章-信号完整性分析
Page 14
6.Impedance(最大/最小阻抗)
最大/最小阻抗用于定义所允许电阻的最大和最小值。
7.Signal Top Value(高电平信号的最小电压值)
高电平信号的最小电压值用于定义信号在高电平状态所允许的最小电 压值。
图9-14 快捷菜单
Page 13 清华大学出版社 2015-7-10
13条信号完整性分析规则: 1.Signal Stimulus(激励信号)
激励信号是在信号完整性分析中使用的激励信号的特性。
2.Overshoot-Falling Edge(信号超调的下降边沿)
信号超调的下降边沿用于定义信号下降沿允许的最大超调值。
Page 4 清华大学出版社 2015-7-10
差的信号完整性并不是某一单一因素造成的,而是由板 级设计中多种因素共同作用引起的。大致可以归结为以 下几个方面: 系统和器件频率的上升;一般认为,当系统和器件频率 大于等于50MHz时,信号完整性问题就会越来越突出。 元器件和PCB的参数; 元器件在PCB上的布局; 高速信号的布线。
10. Flight Time-Falling Edge(下降沿的最大延迟时间)
下降沿的最大延迟时间用于定义信号下降沿的最大允许延迟时间。
11. Slope-Rising Edge(上升沿斜率)
上升沿斜率用于定义上升沿从阈值电压VT到高电平VIH的最大延迟 时间。
12. Slope-Falling Edge(下降沿斜率)
Page 3Байду номын сангаас
SI基础知识概要
两个重要的推论:
信号上升边时间减小,即通常所指电压或电流变化率增大( dI/dt或dV/dt增大) 阻抗连续性是造成信号完整性问题的重要因素
4
产生原因及影响
产生原因
电磁感应
影响
时序 噪声 电磁干扰(EMI)
5
产品发展趋势
在早期的电子产品中,不存在信号完整性问题
早期的电子产品时钟频率低 一般情况下,时钟频率越高,上升变越快
13
工具
仿真工具
HSPICE Sigrity
量测工具
VNA TDR 阻抗测试仪
14
一些基本概念(1) 一些基本概念(
过冲
15
一些基本概念(2) 一些基本概念(
非单调性
16
一些基本概念(3) 一些基本概念(
码间串扰ቤተ መጻሕፍቲ ባይዱ
17
一些基本概念(4) 一些基本概念(
噪声裕量
18
一些基本概念(5) 一些基本概念(
阻抗匹配:又叫端接
19
一些基本概念(6) 一些基本概念(
趋肤效应
20
一些基本概念(7) 一些基本概念(
损耗角:用以描述非理想板材的损耗功率,其正切值为 复介电常数的虚步与实部比值
21
诚信﹒尊重﹒追求卓越
7
反射
8
串扰
9
PI
10
EMI
11
解决方案——思路 解决方案——思路 ——
反射:
阻抗连续 严格管控板厂工艺
串扰
切断传播路径,即降低互容和互感
PI
降低电源传播路径的阻抗值
EMI
切断传播路径 消除辐射源
12
解决方案——设计方法 解决方案——设计方法 ——
信号完整性分析
添加标题
添加标题
添加标题
添加标题
信号完整性分析在高速数字系统中 的应用
信号完整性分析在数字信号处理系 统中的应用
高速数字接口设计
应用场景:高速数字接口设计是信号完整性分析的重要应用场景之一
设计目标:保证信号传输的稳定性和可靠性
设计挑战:高速数字接口设计面临着信号传输速度、信号完整性、信号干扰等问题
建立信号完整 性分析的数学 模型
验证模型的准 确性和可靠性
优化模型,提 高分析结果的 准确性和可靠 性
仿真分析
仿真模型搭建:根 据实际电路搭建仿 真模型
仿真参数设置:设 置仿真参数,如频 率、阻抗等
仿真结果分析:分 析仿真结果,如信 号质量、时延等
仿真优化:根据仿 真结果进行优化, 如调整电路参数、 增加滤波器等
结果解读与优化建议
结果解读:根据分析结果,判断信号的完整性 优化建议:针对分析结果,提出针对性的优化方案 实施方案:根据优化建议,制定实施计划并执行 效果评估:对优化后的信号进行再次分析,评估优化效果
信号完整性分析的 应用场景
高速数字系统设计
信号完整性分析在数字电路设计中 的应用
信号完整性分析在数字通信系统中 的应用
信号完整性分析的 流程
确定分析目标
确定信号完整性分析的目标, 如提高信号传输质量、降低信 号干扰等
确定分析的范围,如系统级、 模块级、芯片级等
确定分析的指标,如信号传输 延迟、信号抖动、信号失真等
确定分析的方法,如仿真分析、 实验验证等
建立模型
确定信号完整 性分析的目标 和需求
收集和分析信 号完整性相关 的数据
添加副标题
信号完整性分析
汇报人:
信号完整性含义表
1
Characteristic impedance
2 3 4 5
Insertion loss Return loss NEXT FEXT S parameter SDD21 S parameter SDD11 S parameter SDD22 S parameter SCC11 S parameter SCC22 Delay Intra-pair Skew Inter-pair Shew differential impedance common mode impedance Eye-pattern (data rate) Eye-pattern (pattern ) Eye-pattern (voltage) SDR DDR QDR
HS product test item
Item Test item Remark
特性阻抗:又称“特征阻抗”,它不是直流电阻,属于长线传输中的概念。在高频范围内,信 号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建 立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一 个电流I,而如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大 小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。信号在传输的过程中,如果传输路径 上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。影响特性阻抗的因素有: 介电常数、介质厚度、线宽、铜箔厚度。 在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,它表示为该元件或器件 插入前负载上所接收到的功率与插入后同一负载上所接收到的功率以分贝为单位的比值。 又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。 电缆链路中一对线与另一对线之间的因信号耦合效应而产生的串扰。 从链路近端某一个线对发送的信号经过该电路衰减,在链路远端干扰相邻其他接受线对的串扰 信号,即在链路远端经链路衰减了的串扰。 差分插入损耗 差分回波损耗 差分回波损耗 共模回波损耗 共模回波损耗 是指帧从网络上一个端口进入到从另一个端口出去,所花费的时间。 是指输入差分信号下,同一对线内两导体之间Singel-end delay的差值。 是指两对线之间信号传输的延迟差。 差分对是指一对存在耦合的传输线,采用两条信号线让差分信号以差分对载体进行传输,差 分信号感受到的阻抗即差分阻抗,电压与电流的比。 共模信号是两信号线电压的平均值,根据阻抗的基本定义,共模信号受到的阻抗是每条信号 线特性阻抗的并联。 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼 ”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。单位时间内在信道上传输的信 息量(比特数)称为数据速率。
《信号完整性培训》课件
信号完整性仿真软件介绍
仿真软件的种类与功能
单击添加标题
信号完整性仿真软件:用于 模拟信号在电路中的传输和 干扰情况,评估信号完整性
单击添加标题
功能:提供信号完整性分析、 优化和验证功能,帮助设计 者优化电路设计,提高信号
传输质量
单击添加标题
仿真软件种类:包括 Cadence、Mentor、
Synopsys等
信号完整性的评估通常包括 信号的幅度、相位、抖动、
噪声等方面的测量。
信号完整性对于电子系统的 性能和可靠性至关重要。
信号完整性的重要性
确保信号传输的准确性和可靠性
降低电磁干扰和噪声
添加标题
添加标题
提高系统稳定性和性能
添加标题
添加标题
提高产品竞争力和品牌价值
信号完整性的影响因素
信号频率:频率 越高,信号完整 性越差
信号串扰的影响:信号串扰会导致信号 误码率增加、信号传输质量下降等问题
信号反射与串扰的解决方法:通过优化 信号传输路径、增加信号隔离度、使用 屏蔽材料等方式进行解决
信号的时序与抖动
时序:信号在时间上的顺序和规律 抖动:信号在传输过程中的不稳定性 抖动类型:随机抖动、确定性抖动、数据相关抖动 抖动影响:可能导致信号失真、传输错误、系统不稳定等
信号幅度:幅度 越大,信号完整 性越差
信号传输路径: 路径越长,信号 完整性越差
信号传输介质:介 质的阻抗、容抗、 感抗等参数会影响 信号完整性
信号完整性的基础理论
信号的传输方式
串行传输:数据按 顺序传输,速度快, 但容易受到干扰
并行传输:数据同 时传输,速度快, 但需要更多的硬件 资源
模拟传输:数据以 模拟信号的形式传 输,抗干扰能力强 ,但传输距离有限
信号完整性复习
第一章概论狭义的信号完整性(SI),是指信号电压(电流)完美的波形形状及质量。
广义的信号完整性(SI),指在高速产品中,由互连线引起的所有信号电压电平和电流不正常现象,包括:噪声、干扰和时序等。
由于物理互连造成的干扰和噪声,使得连线上信号的波形外观变差,出现非正常形状的变形,称为信号完整性被破坏。
信号完整性问题是物理互连在高速情况下的直接结果。
信号完整性强调信号在电路中产生正确响应的能力。
信号无失真:信号经过一个系统后,各个参数被等比例地放大或缩小。
高速的含义:(严格地,高频不一定高速,低频也不一定低速)当系统中的数字信号的上升边小于1ns或时钟频率超过100MHz时,我们称之为高速运行。
物理互连的电阻、电容、电感和传输线效应影响了系统性能。
作者Eric将后果归结为四类SI问题:反射(reflection);串扰(crosstalk);电源噪声(同步开关SSN、地弹、轨道塌陷);电磁干扰(EMI)。
反射(reflection)是指传输线上有回波。
信号功率(电压和电流)的一部分经传输线上传输到负载端,但是有一部分被反射回来形成振铃(ringing),振铃就是反复出现过冲和下冲。
(过冲是指第一个峰值或谷值超过设定电压;下冲类似)。
振铃现象实际上是由阻抗突变产生的反射引起的。
减小阻抗突变问题的方法就是让整个网络中的信号所感受的阻抗保持不变当信号从驱动源输出时,构成信号的电流和电压将互连线看做一个阻抗网络。
当信号沿网络传播时,它不断感受到互连线引起的瞬态阻抗变化。
如果信号感受到的阻抗保持不变,则信号就保持不失真。
一旦阻抗发生变化,信号就会在变化处产生反射,并在通过互连线的剩余部分时发生失真。
如果阻抗改变的程度足够大,失真就会导致错误的触发。
串扰crosstalk)是指两个不同的电性能网络之间的相互作用。
通常,每一个网络既产生串扰,也会被干扰。
电源噪声主要指同步开关噪声(SSN)。
地弹是返回路径中两点之间的电压,它是由于回路中电流变化而产生的。
SI基础概念
什么是信号完整性信号完整性(Signal Integrity):就是指电路系统中信号的质量,如果在要求的时间内,信号能不失真地从源端传送到接收端,我们就称该信号是完整的。
信号具有良好的信号完整性是指当在需要的时候,具有所必需达到的电压电平数值。
差的信号完整性不是由某一单一因素导致的,而是板级设计中多种因素共同引起的。
主要的信号完整性问题包括反射、振荡、地弹、串扰等。
信号完整性的一些基本概念传输线(Transmission Line):由两个具有一定长度的导体组成回路的连接线,我们称之为传输线,有时也被称为延迟线。
集总电路(Lumped circuit):在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。
分布式系统(Distributed System):实际的电路情况是各种参数分布于电路所在空间的各处,当这种分散性造成的信号延迟时间与信号本身的变化时间相比已不能忽略的时侯,整个信号通道是带有电阻、电容、电感的复杂网络,这就是一个典型的分布参数系统。
上升/下降时间(Rise/Fall Time):信号从低电平跳变为高电平所需要的时间,通常是量度上升/下降沿在10%-90%电压幅值之间的持续时间,记为Tr。
截止频率(Knee Frequency):这是表征数字电路中集中了大部分能量的频率范围(0.5/Tr),记为Fknee,一般认为超过这个频率的能量对数字信号的传输没有任何影响。
特征阻抗(Characteristic Impedance):交流信号在传输线上传播中的每一步遇到不变的瞬间阻抗就被称为特征阻抗,也称为浪涌阻抗,记为Z0。
可以通过传输线上输入电压对输入电流的比率值(V/I)来表示。
传输延迟(Propagation delay):指信号在传输线上的传播延时,与线长和信号传播速度有关,记为tPD。
《信号完整性培训》课件
解决方法
通过在传输线的末端添加 终端电阻来匹配阻抗,消 除反射。
信号串扰
信号串扰定义
当信号在传输线中传播时 ,会受到相邻信号线的干 扰,产生串扰。
串扰产生的影响
串扰会导致信号质量下降 、误码率增加,严重时会 导致通信失败。
解决方法
通过合理布线、增加线间 距、使用屏蔽线等措施来 减小串扰。
信号时序
加强信号完整性测试和测量技 术的研究,提高测试精度和效
率。
探索新的信号完整性设计方法 和优化技术,提高设计效率和
可靠性。
加强信号完整性与其他领域的 交叉研究,如通信、控制、人 工智能等,开拓新的应用领域
。
THANKS
感谢观看
02
它涉及到信号在电路中传输时所 受到的各种影响,如噪声、干扰 、衰减、延迟等。
信号完整性的重要性
保证电路的正常工作
信号完整性的好坏直接影响到电路的 正常工作,如果信号在传输过程中出 现失真或畸变,可能会导致电路工作 异常或出现故障。
提高系统性能
降低系统成本
避免因信号问题导致的系统故障和维 修成本,从而降低整个系统的成本。
合理选择传输线
根据信号类型和传输速率,选择合适的传输 线类型和规格。
使用适当的端接方式
根据传输线的类型和长度,选择合适的端接 方式,如串联端接、并联端接等。
优化布线策略
通过合理的布线,减少信号延迟和反射,提 高信号质量。
抑制电磁干扰
通过增加屏蔽、使用滤波器等手段,降低电 磁干扰对信号的影响。
设计实例分享
示波器和逻辑分析仪
用于捕获和观察信号波形,分析信号的时序和幅度。
网络分析仪和频谱分析仪
用于测量信号的频率响应和传输特性。
高速数字电路设计中的信号完整性分析
高速数字电路设计中的信号完整性分析在高速数字电路设计中,信号完整性分析是非常重要的一环。
信号完整性分析旨在确保信号在电路中能够准确、稳定地传输,从而避免信号失真或干扰,保证电路的性能和可靠性。
首先,我们需要了解信号完整性分析的基本概念。
信号完整性是指在一个电路中,信号从发送端到接收端能够保持原有的形态和正确的数值。
在高速数字电路设计中,信号往往受到许多因素的影响,如传输线特性、阻抗、反射、串扰等,这些因素都有可能导致信号失真。
因此,对信号完整性的分析和优化至关重要。
在进行信号完整性分析时,我们需要首先考虑传输线的特性。
传输线的特性包括传输速度、阻抗匹配、传输延迟等,这些特性直接影响信号传输的稳定性和速度。
通过对传输线的建模和仿真分析,可以帮助我们了解传输线对信号的影响,从而优化电路设计。
另外,阻抗匹配也是信号完整性分析中的重要内容。
当信号源和负载的阻抗不匹配时,会导致信号的反射和衰减,从而降低信号的质量和稳定性。
因此,在设计电路时,需要确保信号源和负载的阻抗能够有效匹配,以减少信号的失真和干扰。
此外,信号完整性分析还需要考虑信号的传输延迟和时序关系。
在高速数字电路中,信号传输的延迟会对数据的同步和稳定性产生影响。
通过时序分析和延迟优化,可以更好地控制信号的传输速度和有效减少时序误差。
最后,在进行信号完整性分析时,还需要考虑信号的功耗和信噪比。
功耗会影响电路的工作效率和稳定性,信噪比则会影响信号和噪声的比值,从而影响信号的准确性和清晰度。
因此,在设计电路时,需要综合考虑功耗和信噪比等因素,以实现信号的高质量传输。
总的来说,信号完整性分析是保证高速数字电路性能和可靠性的重要步骤。
通过对传输线特性、阻抗匹配、传输延迟、功耗和信噪比等方面的分析和优化,可以更好地保证信号在电路中的准确传输,避免信号失真和干扰,从而提高电路的性能和可靠性。
希望以上内容对您有所帮助。
信号完整性分析基础
• SI的重要性
随着高频数字电路的不断发展,SI问题变得越 来越引人注目,数字电路的频率越高,出现SI 问题的可能性就越大,对设计工程师来说,他 的挑战也就越大。
SI简介 • SI的内容
信号完整性它包含两方面的内容,一是独立信 号的质量,另一个是时序。我们在电子设计的 过程中不得不考虑两个问题:信号有没有按时 到达目的地?信号达到目的地后它的质量如何? 所以我们做信号完整性分析的目的就是确认高 频数字传输的可靠性。
负占空比的定义及测试方法
负占空比是指信号的低电平保持时间占真个周期时间的比例
高电平保持时间的定义及测试方法
高电平保持时间是指信号从低到高跳变完成后信号持续的时间
低电平保持时间的定义及测试方法
低电平保持时间是指信号从高到低跳变完成后信号持续的时间
周期的定义及测试方法
周期是指有固定周期信号连续完成逻辑0和逻辑1跳变所需时间
SI简介 • 理想逻辑电压波形
在数字系统中,信号以逻辑‘0’或者‘1’的方 式从一个器件传输到另外一个器件,信号到底是 ‘0’还是‘1’一般来说它们都是有一个参考电 平的。在接收端的输入门里面,如果信号的电压 超过高电平参考电压Vih,则该信号被识别为高逻 辑;如果信号的电压低于低电平的参考电压Vil, 则该信号就被识别为低逻辑。我们下面这个图就 是一个理想的信号。
信号产生基本原理
晶振符号和等效电路
信号产生基本原理
谐振频率
从石英晶体谐振器的等效电路可知,它有两个谐振频率, 即(1)当L、C、R支路发生串联谐振时,它的等效阻抗 最小(等于R)。串联揩振频率用fs表示,石英晶体对于 串联揩振频率fs呈纯阻性,(2)当频率高于fs时L、C、R 支路呈感性,可与电容C。发生并联谐振,其并联频用fd 表示。根据石英晶体的等效电路,可定性画出它的抗— 频率特性曲线如上图所示。可见当频率低于串联谐振频 率fs或者频率高于并联揩振频率fd时,石英晶体呈容性。 仅在fs<f<fd极窄的范围内,石英晶体呈感性。
于博士的信号完整性讲解
信号完整性研究:什么是信号完整性?时间:2009-03-11 20:18来源:sig007 作者:于博士点击: 132次如果你发现,以前低速时代积累的设计经验现在似乎都不灵了,同样的设计,以前没问题,可是现在却无法工作,那么恭喜你,你碰到了硬件设计中最核心的问题:信号完整性。
早一天遇到,对你来说是好事。
在过去的低速时代,电平跳变时信号上升时间较长,通常几个ns。
器件间的互连线不至于影响电路的功能,没必要关心信号完整性问题。
但在今天的高速时代,随着IC输出开关速度的提高,很多都在皮秒级,不管信号周期如何,几乎所有设计都遇到了信号完整性问题。
另外,对低功耗追求使得内核电压越来越低,1.2v内核电压已经很常见了。
因此系统能容忍的噪声余量越来越小,这也使得信号完整性问题更加突出。
广义上讲,信号完整性是指在电路设计中互连线引起的所有问题,它主要研究互连线的电气特性参数与数字信号的电压电流波形相互作用后,如何影响到产品性能的问题。
主要表现在对时序的影响、信号振铃、信号反射、近端串扰、远端串扰、开关噪声、非单调性、地弹、电源反弹、衰减、容性负载、电磁辐射、电磁干扰等。
信号完整性问题的根源在于信号上升时间的减小。
即使布线拓扑结构没有变化,如果采用了信号上升时间很小的IC芯片,现有设计也将处于临界状态或者停止工作。
下面谈谈几种常见的信号完整性问题。
反射:图1显示了信号反射引起的波形畸变。
看起来就像振铃,拿出你制作的电路板,测一测各种信号,比如时钟输出或是高速数据线输出,看看是不是存在这种波形。
如果有,那么你该对信号完整性问题有个感性的认识了,对,这就是一种信号完整性问题。
<!--[if !vml]-->很多硬件工程师都会在时钟输出信号上串接一个小电阻,至于为什么,他们中很多人都说不清楚,他们会说,很多成熟设计上都有,照着做的。
或许你知道,可是确实很多人说不清这个小小电阻的作用,包括很多有了三四年经验的硬件工程师,很惊讶么?可这确实是事实,我碰到过很多。
信号完整性中几个重要概念的介绍_中为电子科技工作室
和信号完整性有关的几个概念作者:eco 邮箱: zhongweidianzikeji@日期:2013-09-29随着科技的发展,各种各样的IC被各种各样的公司设计而出,有的是新设计,有的是老东西新改进。
过去的芯片,电平跳变时间(信号上升时间或者信号下降时间)较长,在那个时代我们并不需要考虑信号完整性这个东西。
而如今不同了,不仅仅芯片的封装体积变小了(寄生参数大大减小了),更重要的是芯片的电平跳变时间变短了。
除此之外,还有芯片的工作电压5V、3.3V、2.5V、1.8V、1.2V,电平越小虽然实现了低功耗,但是抗干扰能力也就越差了。
综合上述,于是信号完整性就出来作怪了。
说了那么多,其实我也不知道什么叫做信号完整性signal integrity,我只知道它的几种主要表现:时序错乱、信号反射(正反射和负反射)、信号振铃、地弹、串扰(前向串扰和后向串扰)、电磁辐射和电磁干扰等。
接下来具体说说上述几个概念。
1、时序错乱时序错乱主要出现在高速、高频电路中,这里请注意高速和高频是两个完全不同的概念。
我们举个例子来说明时序错乱的问题,如图1,假设A线B线分别代表2条道路(这就是我们的信号走线哦),B路的总长是A路的两倍,在起始端有4辆车(这就是我们的信号),A线车编号为A1、A2,B线车编号为B1、B2。
首先A1和B1车从起始端出发,两车以同样的速度分别沿着各自线路前进,假设一分钟后A1车到达终点端,可想而知B1车刚走过B道路的一半,与此同时A2车和B2车以同样的速度从起始端出发,并在各自的路线上前进,当B1车走到终点端时,同时A2车也到了终点端,B2车在B线的中点。
这就出现了一个错误,本打算A1车和B1车在终点端相遇,到最后却是A2车和B1车相遇。
在我们电路中这就产生了时序错误。
你也许问是否可以让A1车等等B1车呢,这也不就解决了一个相遇(时序)问题嘛,可是后来的A2车不愿意呀(女朋友还等着约会呢),A2车的不愿意就映射到我们的高速、高频电路上了,如果愿意那就是低速、低频电路。
信号完整性
信号的传输速度取决于电场合磁场建立
因素 线宽 介质厚度 介电常数 绿油厚度 铜箔厚度
趋势 线宽越大,阻抗越小 介质越厚,阻抗越大 值越大,阻抗越小
越厚,阻抗越小 越厚,阻抗越小
原因 电流越分散,电感越小;电容越大(电力线越集中在介质中)
互感减小,电感就增大;间距增大,电容减小 单位长度电容越大,对电感没有影响
如果末端负载开路,则末端的瞬态阻抗为无穷大 ,此时反射系数值为1,在末路端将产生一
个和入射波大小相等、极性相同,向源端传播的返回波。在这种情况下,反射点处电压翻倍
(2)负载端短路
如果传输线的末端与返回路径短路,则末端阻抗为0,此时反射系数为-1,传输系数为0,在
末端将产生一个和入射波大小相等、极性相反,流向返回路径的信号。反射点处电压为0
Lloop=La - Lab+ Lb - Lab = La + Lb - 2Lab 影响回路电感大小的最重要一项就是两支路的互感,互感越大回路电感越小。因此,想要减 小回路电感,就需要让信号路径和返回路径越靠近。
趋肤效应:高频电流流过导体时,电流会趋向导体表面分布。高频时,导体的阻抗主要由回 路电感产生的感抗大小决定,导体中的电流回沿回路阻抗即电感最小路径重新分布。
微带线返回电流分布示意图
带状线返回电流分布示意图
1.7 有损传输线及其模型
实际上传输线中的信号都是有损耗的,并不能都传送到末端。传输线的损耗和以下一些因素
信号完整性基础培训课件(PPT 54页)
LL='8000mil'
d(m7,m8) 0.3528
V(Vl) NexximTransient
400.00
接收上升时间为
0.173ns
Circuit1 ANSOFT
Curve Info V(Vl)
NexximTransient
0.20 m1
200.00 m1
MY1: 97.7000
0.00
0.00
0.00
1.00
2.00
3.00
4.00
5.00
Time [ns]
0.00
1.00
2.00
3.00
1. 信号完整性基础知识
瞬态阻抗 信号在传输线的传播实际上是信号路径与返回路径之间的电容在不停地充电!
信号在导线上传播时,电流I是一个常量:
I Q t C xV CL x xvV CLvV v
ZV IC L V vV C 1 L vC 8L3r
瞬态阻抗 信号的速度 信号的电压
用阻抗描述信号完整性:
任何阻抗突变都会引起电压信号的反射和失真,这使信号质量会出现问题。 信号的串扰是由两条相邻信号线条(包括其返回路径)之间的电场和磁场的耦合引起的, 信号线间的互
耦电容和互耦电感产生的阻抗决定了耦合电流的值。 电源轨道塌陷实际上与电流分布系统(PDS)的阻抗有关。系统中必然流动着一定的电流 量以供给所有的芯片,并且由于在电源和地之间存在着阻抗,所以当芯片电流切换时,就会 形成压降。这个压降意味着电流轨道和地轨道从正常值下塌陷。 最大的EMI根源是流经外部电缆的共模电流,此地平面上返回路径的阻抗越大,电压降即 地弹就越大,
4.00
5.00
Time [ns]
信号完整性分析--信号反射
信号完整性:信号反射信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。
对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。
如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB 转角,接插件),信号都会发生反射。
那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射 电压和原传输信号电压的比值。
反射系数定义为:ρ= 1212Z Z Z Z +-。
其中:Z 1为变化前的阻 抗,Z 2为变化后的阻抗。
假设PCB 线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系 数为:ρ=3150********=+-,信号有1/3被反射回源端。
如果传输信号的电压是3.3V 电压,反射电压就是1.1V 。
纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。
阻抗增加有限值:反射电压上面的例子已经计算过了。
这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V 电压,另一部分是在反射电压1.1V ,那么反射点处的电压为二者之和,即4.4V 。
阻抗减小有限值:仍按上面的例子,PCB 线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射 系数为 ρ=50305030+-=-0.25,反射电压为 3.3*(-0.25)V= -0.825V 。
此时反射点电压为3.3V+(-0.825V )=2.475V 。
开路:开路相当于阻抗无穷大,反射系数按公式计算为1。
即反射电压3.3V 。
反射点处电压为6.6V 。
可见,在这种极端情况下,反射点处电压翻倍了。
短路:短路时阻抗为0,电压一定为0。
信号完整性分析
信号完整性分析信号完整性分析是一项重要的工程学领域,它涉及到信号传输的可靠性和准确性。
在信息传递的过程中,信号会受到各种干扰和衰减,因此确保信号的完整性对于正确地接收和解读信息至关重要。
本文将介绍信号完整性分析的基本概念、方法和应用。
信号完整性分析是一种通过模拟和仿真来评估信号传输过程中所遇到的问题和挑战的方法。
在进行信号完整性分析时,通常需要考虑传输线路的特性、干扰源、噪声和电磁兼容性等因素。
通过对这些因素进行建模和分析,可以预测信号的衰减、失真和延迟,进而优化信号传输系统的设计。
信号完整性分析的基本方法之一是建立传输线路的数学模型。
传输线路可以是电线、导线、电缆或光纤等,而其特性包括传输速度、电阻、电感和电容等。
通过将这些特性纳入传输线路模型,可以计算得到信号在传输过程中的衰减和失真情况。
另一种常用的信号完整性分析方法是时域和频域分析。
时域分析关注信号在时间轴上的变化情况,可用于研究信号的波形、幅度和时延等特性。
频域分析将信号转换为频率域,利用傅里叶变换等工具可以获取信号的频谱分布和频率响应等信息。
通过时域和频域分析,可以全面了解信号的特性,从而优化信号传输系统的设计和调整。
信号完整性分析在通信、电子、计算机和电路设计等领域都有广泛的应用。
在高速传输系统中,如高速网络、数据中心和处理器之间的连接,信号完整性分析能够帮助设计人员解决信号衰减、串扰和时钟抖动等问题,确保高频信号的准确传输。
在电子设备设计中,信号完整性分析可以评估电路板布局和信号线路的设计,提前发现信号干扰和时延问题,并进行相应的优化。
随着智能电子产品的发展和应用场景的增多,对于信号完整性分析的需求也越来越高。
例如,手机和平板电脑等移动设备需要在有限的传输资源下实现高速数据传输,而车载电子系统需要能够稳定传输大量的音视频数据。
在这些应用中,信号完整性分析为保证数据传输的稳定性和准确性提供了必要的技术支持。
总之,信号完整性分析在现代通信和电子领域中具有重要的地位和作用。
《信号完整性揭秘:于博士SI设计手记》随笔
《信号完整性揭秘:于博士SI设计手记》读书随笔目录一、内容综述 (1)1.1 书籍简介 (2)1.2 作者介绍 (2)二、信号完整性概述 (3)2.1 信号完整性的定义 (5)2.2 信号完整性在电子系统中的重要性 (6)三、信号完整性分析方法 (7)3.1 仿真分析 (8)3.2 实测分析 (9)四、于博士SI设计手记 (10)4.1 设计流程与关键点 (12)4.2 常见问题的解决策略 (14)五、信号完整性实践经验分享 (15)5.1 电源完整性设计 (16)5.2 时序完整性设计 (17)六、总结与展望 (18)一、内容综述《信号完整性揭秘:于博士SI设计手记》主要围绕信号完整性(Signal Integrity)设计这一主题展开。
这本书是于博士多年在信号完整性设计领域的经验总结,详细阐述了信号完整性设计的基本原理、实际应用和面临的挑战。
阅读这本书的过程中,我深受启发,对于信号完整性的理解有了更深入的认识。
书中首先介绍了信号完整性的基本概念和重要性,在现代电子系统中,信号完整性是保证系统性能稳定的关键因素之一。
随着电子设备的日益复杂和集成度的不断提高,信号完整性问题变得越来越突出。
于博士通过生动的语言和丰富的实例,解释了信号完整性的基本原理和相关的技术术语。
书中详细介绍了信号完整性设计的流程和要点,于博士从电路设计、布局布线、元件选择等方面入手,详细阐述了如何在实际设计中应用信号完整性原理。
他还介绍了信号完整性的测试和分析方法,以及如何识别和解决信号完整性问题。
这些内容对于从事电子系统设计工作的工程师来说,具有重要的指导意义。
书中还涉及了一些高级话题,如高速电路的信号完整性设计挑战、新技术在信号完整性领域的应用等。
这些内容为读者提供了更广阔的视野,有助于了解信号完整性领域的最新进展和发展趋势。
《信号完整性揭秘:于博士SI设计手记》是一本深入浅出、内容丰富的书籍。
通过阅读这本书,我不仅了解了信号完整性的基本原理和实际应用,还学到了很多实用的设计方法和技巧。
硬件测试中的信号完整性与时序分析
硬件测试中的信号完整性与时序分析硬件测试在现代电子领域中起着至关重要的作用。
其中,信号完整性与时序分析是硬件测试过程中的两个关键方面。
本文将深入探讨信号完整性与时序分析的概念、重要性以及测试方法,以帮助读者更好地理解和应用于实际项目中。
一、信号完整性信号完整性指的是电子系统中信号的传输过程中是否能够保持其原始质量、准确性和稳定性。
在高速数字电路设计和通信系统中,信号完整性是确保信号正确、可靠地传输的关键因素。
信号完整性问题可能导致信号失真、时序错误、干扰噪声等问题,从而降低系统性能甚至引发系统故障。
为了确保信号完整性,硬件测试中常常采用以下几种方法:1. 眼图测量:眼图可以直观地展示信号的质量和稳定性。
通过该方法,测试人员可以判断信号的抖动情况、噪声水平和时钟同步等问题。
2. 波形分析:利用示波器等测试仪器,测试人员可以对信号的电压、频率、上升沿和下降沿等参数进行精确测量,并与标准波形进行比较,以评估信号质量。
3. 串扰分析:在高密度布线的电子系统中,邻近信号线之间可能会发生串扰现象,影响信号完整性。
通过串扰分析,测试人员可以发现并修复潜在的信号干扰问题。
4. 电磁兼容性(EMC)测试:在电子设备中,电磁辐射和电磁感应可能会对信号完整性产生不利影响。
EMC测试可以评估设备在电磁环境下的安全性和干扰抗性。
二、时序分析时序分析是硬件测试中另一个重要的方面,它涉及到信号在电路中传输的时间和顺序。
在高速数字系统和通信领域中,准确地控制和分析信号的时序关系至关重要,任何时序错误都可能导致系统失效。
在时序分析中,常用的测试方法有:1. 时钟信号分析:时钟信号是数字系统中的同步基准,对于时序分析至关重要。
通过测量时钟信号的频率、占空比和抖动等参数,可以评估系统的时序稳定性。
2. 延迟分析:在数字电路中,各个逻辑门的延迟可能存在差异,从而导致时序错误。
通过测量电路中各个节点的延迟情况,可以发现潜在的时序问题并进行优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20、高频电路的定义
在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。
2、时域定义
当信号线的传输延迟(propagation delay)大于1/4信号上升时间(rise time)的时候,该信号线就应视为传输线。
22、什么是微带线和带状线
1.微带线
参考平面(reference plane)只有一个。有些朋友认为微带线就是位于PCB表层的传输线。这种看法不全面。设想一种情形:一个多层板的第一和第二层都是信号层,而第三层为地平面,那么在第一和第二层上的传输线都叫微带线。位于第二层的微带线也叫做掩埋式微带线(embedded microstrip)。微带线的阻抗与它的线宽、频率和它到参考平面的垂直距离有关。
F=1/(Tr*л),Tr为上升/下降延时时间,当F>100MH他(Tr<3.183ns)时就应该按照高频电路进行考虑,下列情况必须按照高频规则进行设计:
l 系统钟超过50Hz
l 采用了上升/下降时间少于5ns的器件
l 数字/模拟混合电路
高频电路是取决于信号的上升沿和下降沿,而不是信号的频率,但是不是Tr>100MHz时才考虑高频规则进行设计,还要看传输介质而定。通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
15、什么是静态线(quiescent line)?
在当前的时钟周期内它不出现切换。另外也被称为“stuck-at”线或static线。串扰(crosstalk)能够引起一个静态线在时钟周期内出现切换。
16、什么是假时钟(false clocking)?
假时钟是指时钟越过阀值(threshold)无意识的改变了状态(有时在VIL或VIH之间)。通常由过分的下冲(undershoot)或串扰(crostalk)引起。
18、什么是IC 的高低电平切换门限?
IC 的高低电平切换门限指的是信号从一个状态向另一个状态转换所需的电压值。当发生阻尼现象时,信号电平可能会超过IC 输入脚的切换门限,从而将IC 输入信号变为不确定状态,这会导致时钟出错或数据的错误接收。
19、什么是地电平面反弹噪声和回流噪声?
在电路中有大的电流涌动时会引起地平面反弹噪声(简称为地弹),如大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。负载电容的增大、负载电阻的减小、地电感的增大、同时开关器件数目的增加均会导致地弹的增大。
反射(reflection)就是在传输线(transmission line)上回波(echo)。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射(reflected)了。如果负载和线具有相同的(impedance),发射(Reflections)就不会发生了。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。
8、什么是过冲(overshoot)?
过冲(Overshoot)就是第一个峰值或谷值超过设定电压――对于上升沿是指最高电压而对于下降沿是指最低电压。下冲(Undershoot)是指下一个谷值或峰值。过分的过冲(overshoot)能够引起保护二级管工作,导致过早地失效。
9、什么是下冲(undershoot)(ringback)?
4、在时域(time domain)和频域(frequency domain)之间又什么不同?
时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域(frequency domain)是一个波形的频谱分析议的观察,它通常用于波形与频谱分析议的观察、它通常用于波形与FCC和其他EMI控制限制之间的比较。(有一个比喻,它就象收音机――你在时域(time domain)中听见,但是你要找到你喜欢的电台是在频域(frequency domain)内。)
问题 可能原因 解决方法 其他解决方法
过大的上冲 终端阻抗不匹配 终端端接 使用上升时间缓慢的驱动源
直流电压电平不好 线上负载过大 以交流负载替换直流负载 在接收端端接,重新布线或检查地平面
过大的串扰 线间耦合过大 使用上升时间缓慢的发送驱动器 使用能提供更大驱动电流的驱动源
时延太大 传输线距离太长 替换或重新布线, 检查串行端接头 使用阻抗匹配的驱动源, 变更布线策略
11、什么是设置时间(settling time)?
设置时间(settling time)就是对于一个振荡的信号稳定到指定的最终值所需的时间。
12、什么是管脚到管脚(pin-to-pin)的延时(delay)
管脚到管脚(pin-to-pin)的延时(delay)是指在驱动器状态的改变到接收器状态的改变之间的时间。这些改变通常发生在给定电压的50%,最小延时发生在当输出第一个越过给定的阀值(threshold),最大延时发生在当输出最后一个越过电压阀值(threshold),测量所有这些情况。
5、什么是传输线(transmission line)?
传输线(transmission line)是一个网络(导线),并且它的电流返回的地和电源。电路板上的导线具有电阻、电容和电感等电气特性。在高频电路设计中,电路板线路上的电容和电感会使导线等效于一条传输线。传输线是所有导体及其接地回路的总和。
13、什么是偏差(skew)?
信号的偏移(skew)是对于同一个网络到达不同的接收器端之间的时间偏差。偏移(skew)还被用于在逻辑门上时钟和数据达到的时间偏差。
14、什么是斜率(slew rate)?
Slew rate就是边沿斜率(-个信号的电压有关的时间改变的比率)。I/O的技术规范(如PCI)状态在两个电压之间,这就是斜率(slew rate),它是可以测量的。
21、什么是长线
高速系统中的长线(Electrically Long Trace)定义
可以从频域和时域两个角度来定义:
1、频域定义
当线的物理长度和相应频率的波长具有可比性的时候(一般的说法是大于1/20波长),这样的trace就叫做Electrically Long Trace,或者transmission line(传输线)。
过冲(Overshoot)是第二个峰值或谷值超过设定电压――对于上升沿过度地谷值或对于下降沿太大地峰值。过分地下冲(undershoot)能够引起假的时钟或数据错误(误操作)。
10、什么是振荡(ringing)?
振荡(ringing)就是在反复出现过冲(overshoots)和下冲(undershoots)。信号的振铃(ringing)和环绕振荡(rounding)由线上过度的电感和电容引起,振铃属于欠阻尼状态而环绕振荡属于过阻尼状态。信号完整性问题通常发生在周期信号中,如时钟等,振荡和环绕振荡同反射一样也是由多种因素引起的,振荡可以通过适当的端接予以减小,但是不可能完全消除。
17、什么是IBIS?
IBIS 是描述一个输入/输出(I/O)的EIA/ANSI标准。它包括DC(V/I)特性曲线,也包括瞬态(transient)(V/T)特性曲线 curves as tables of points。HyperLynx的网页(Web site)上有连接到IBIS的主页,另外还有许多供应商的IBIS模型网页。
1、什么是信号完整性(Singnal Integrity)?
信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法:
3、什么是电磁兼容(EMI)?
电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。
振荡 阻抗不匹配 在发送端串接阻尼电阻
2、什么是串扰(crosstalk)?
串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为 Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。