人教版九年级数学上册一二单元知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上册一二单元知识点总结
21.1 一元二次方程
知识点一一元二次方程的定义
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:
①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式
一般形式:ax2 + bx + c = 0(a ≠ 0).其中,ax2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
知识点三一元二次方程的根
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。
21.2 降次——解一元二次方程
21.2.1 配方法
知识点一直接开平方法解一元二次方程
(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a
-.
(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的
平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程
通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1)把常数项移到等号的右边;⑵方程两边都除以二次项系数;
⑶方程两边都加上一次项系数一半的平方,把左边配成完全平方式;⑷若
等号右边为非负数,直接开平方求出方程的解。
21.2.2 公式法
知识点一公式法解一元二次方程
(1)一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程
的两个根为x=
a
ac
b
b
2
4
2
-
±
-
,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。
(2)一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的过程。
(3)公式法解一元二次方程的具体步骤:
①方程化为一般形式:ax2+bx+c=0(a≠0),一般a化为正值②确定公式中
a,b,c的值,注意符号;
③求出b2-4ac的值;④若b2-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,则方程无实数根。
知识点二一元二次方程根的判别式
式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac. △>0,方程ax2+bx+c=0(a≠0)有两个不相等的实数根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根根的判别式△<0,方程ax2+bx+c=0(a≠0)无实数根
21.2.3 因式分解法
知识点一因式分解法解一元二次方程
(1)把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。(2)因式分解法的详细步骤:
①移项,将所有的项都移到左边,右边化为0;
②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完
全平方公式;
③令每一个因式分别为零,得到一元一次方程;
④解一元一次方程即可得到原方程的解。
知识点二用合适的方法解一元一次方程
21.2.4 一元二次方程的根与系数的关系
若一元二次方程x2+px+q=0的两个根为x1,x2,则有x1+x2=-p,x1x2=q.
若一元二次方程a2x+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=,
a
b
-,x1x2=
a
c
二次函数知识点归纳及相关典型题
第一部分基础知识
1.定义:一般地,如果c
b
a
c
bx
ax
y,
,
(
2+
+
=是常数,)0
≠
a,那么y叫做x的二次函数.
2.二次函数2
ax
y=的性质
(1)抛物线2
ax
y=的顶点是坐标原点,对称轴是y轴.
(2)函数2
ax
y=的图像与a的符号关系.
①当0
>
a时⇔抛物线开口向上⇔顶点为其最低点;
②当0
<
a时⇔抛物线开口向下⇔顶点为其最高点.
(3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2
ax
y=)
(0
≠
a.
3.二次函数c
bx
ax
y+
+
=2的图像是对称轴平行于(包括重合)y轴的抛物线. 4.二次函数c
bx
ax
y+
+
=2用配方法可化成:()k
h
x
a
y+
-
=2的形式,其中a
b
ac
k
a
b
h
4
4
2
2
-
=
-
=,.