【苏科版】八年级数学上册第三章 勾股定理 单元测试卷(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上册第三章勾股定理单元测试
一、选择题(24分)
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A、4
B、8
C、10
D、12
2.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()
A、18cm
B、20cm
C、24cm
D、25cm
3. 在△ABC中,三边长满足b ²-a ²=c ²,则互余的一对角是()
A、∠A与∠B
B、∠C与∠A
C、∠B与∠C
D、∠A、∠B、∠C
4. 一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防
车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()
A、12米
B、13米
C、14米
D、15米
5.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()
A、42
B、32
C、42或32
D、37或33
6. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,
折痕为EF,则△ABE的面积为()
A、3cm²
B、4cm²
C、6cm²
D、12cm²
第6题第8
题第12题
二、填空题(24分)
7. △ABC中,AB=10,BC=16,BC边上的中线AD=6,则AC=
8. 如图所示的图形中,所有的四边形都是正方形,•所有的三角形都是直角三角形,其中最
大的正方形F的边长为8cm,则正方形A、B、C、D的面积的和是cm2.
9.直角三角形的周长为12cm,斜边长为5cm,则直角三角形的面积是.
10.在RT△ABC中,∠ACB=90°,且c+a=9,c-a=4,则b= .
11.在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,则斜边AB= .斜边B上的高
线长为.
12. 如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的、
若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是______.
三、解答题(10+10+10+10+12=52分)
13. 已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,•求图形中阴影部分的面积、
14. 在平静的湖面上,有一枝荷花,高出水面1米、一阵风吹过来,荷花被吹到一边,花朵齐及水面、已知荷花移动的水平距离为2米,问这里的水深多少米?
15. 如图,一张长方形纸片宽AB=8 cm,长BC=10 cm、现将纸片
折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长、
16. 如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC 边上的点,且DE⊥DF.
(1)请说明:DE=DF;
(2)请说明:BE2+CF2=EF2;
(3)若BE=6,CF=8,求△DEF的面积.(直接写结果)
17. 如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上
一点、(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长
参考答案
1.C
2.D
3.B
4.D
5.C .
6.C
7.10
8. 64
9.6cm² 10.6 11. 10 4.8 12.76
13.
14. 如图,设这里水深为xm
在Rt△ABC中,(x+1)2=22+x2
解之得:x=1.5米、15.解:设CE=x则DE=8-x
易知DE=EF AD=AF(折叠度变)
直角△ADF AB=8AF=AD=10
由勾股定理BF=6
CF=10-6=4
在直角△CFE中,
CD=4,CE=x,EF=DE=8-x
由勾股定理: x²+4²=(8-x) ²
x+16=x-16x+64 1
x=3
即EC=3cm
16. (1)连接AD
因为△ABC是等腰直角三角形,且D为斜边BC中点
所以,AD⊥BC
且AD平分∠BAC,AD=BD=CD
所以,∠DAE=∠C=45°
又已知DE⊥DF
所以,∠EDA+∠FDA=90°
而,∠CDF+∠FDA=90°
所以,∠EDA=∠CDF
那么,在△ADE和△CDF中:
∠DAE=∠DCF(∠C)=45°(已证)
DA=DC(已证)
∠EDA=∠CDF(已证)
所以,△ADE≌△CDF
所以,AE=CF,DE=DF.
(2)因为AE=CF,AB=AC
所以AB-AE=AC-CF
即BE=AF
Rt△AEF中,∠A=90度
所以
所以.
(3)△DEF的面积为25 .
17. 证明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,EC=D C、
∵∠ACE=∠DCE﹣∠DCA,∠BCD=∠ACB﹣∠DCA,∠ACB=∠ECD=90°,∴∠ACE=∠BC D、
在△ACE和△BCD中,
∴△ACE≌△BCD(SAS)、
(2)解:又∠BAC=45°
∴∠EAD=∠EAC+∠BAC=90°,
即△EAD是直角三角形,
∴DE===13、。