成都市七年级下册数学期末试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都市七年级下册数学期末试卷(含答案)
一、选择题
1.下列各式从左到右的变形中,是因式分解的是( ).
A .x (a-b )=ax-bx
B .x 2-1+y 2=(x-1)(x+1)+y 2
C .y 2-1=(y+1)(y-1)
D .ax+bx+c=x (a+b )+c
2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )
A .同位角
B .内错角
C .同旁内角
D .对顶角
3.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )
A .1902α-
B .1
902α︒+ C .1
2α D .15402
α︒- 4.a 5可以等于( )
A .(﹣a )2•(﹣a )3
B .(﹣a )•(﹣a )4
C .(﹣a 2)•a 3
D .(﹣a 3)•(﹣a 2)
5.如图所示的四个图形中,∠1和∠2不是同位角的是( )
A .
B .
C .
D . 6.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )
A .ab 2
B .a +b 2
C .a 2b 3
D .a 2+b 3 7.下列方程中,是二元一次方程的是( ) A .x 2+x =1
B .2x ﹣3y =5
C .xy =3
D .3x ﹣y =2z 8.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6
B .3
C .2
D .10 9.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )
A .12
B .12±
C .6
D .6± 10.如图,有以下四个条件:其中不能判定//AB CD 的是( )
①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;
A .①
B .②
C .③
D .④
二、填空题
11.多项式2412xy xyz +的公因式是______.
12.计算:312-⎛⎫ ⎪⎝⎭
= . 13.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.
14.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________. 15.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15
x y ay x y by ⎧--=⎨-+=⎩的解是________.
16.若2a x =,5b x =,那么2a b x +的值是_______ ;
17.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.
18.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____. 19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.
20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.
三、解答题
21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.
22.解方程组:41325
x y x y +=⎧⎨-=⎩. 23.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.
(1)小刚说:可以根据乘方的意义来说明等式成立;
(2)小王说:可以将其转化为两数和的平方来说明等式成立;
(3)小丽说:可以构造图形,通过计算面积来说明等式成立;
24.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.
25.已知a 6=2b =84,且a <0,求|a ﹣b|的值.
26.观察下列等式,并回答有关问题:
3322112234
+=⨯⨯; 333221123344
++=⨯⨯; 33332211234454
+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;
(2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小.
27.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.
(1)求A B 、两组工人各有多少人?
(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?
28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩
它的解是正数. (1)求m 的取值范围;
(2)化简:2|2|m --
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
A. 是整式的乘法,故A 错误;
B. 没把一个多项式转化成几个整式积,故B 错误;
C. 把一个多项式转化成几个整式积,故C 正确;
D. 没把一个多项式转化成几个整式积,故D 错误;
故选C.
2.C
解析:C
【分析】
根据同旁内角的定义可判断.
【详解】
∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内
∴∠1和∠2是同旁内角的关系
故选:C .
【点睛】
本题考查同旁内角的理解,紧抓定义来判断.
3.A
解析:A
【分析】
根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.
【详解】
∵五边形的内角和等于540°,∠A+∠B+∠E=α,
∴∠BCD+∠CDE=540°-α,
∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,
∴∠PDC+∠PCD=1
2
(∠BCD+∠CDE)=270°-
1
2
α,
∴∠P=180°-(270°-1
2
α)=
1
2
α-90°.
故选:A.
【点睛】
此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.
4.D
解析:D
【分析】
根据同底数幂的乘法底数不变指数相加,可得答案.
【详解】
A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;
B、(﹣a)(﹣a)4=(﹣a)5,故B错误;
C、(﹣a2)a3=﹣a5,故C错误;
D、(﹣a3)(﹣a2)=a5,故D正确;
故选:D.
【点睛】
本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.
5.C
解析:C
【分析】
根据同位角的定义,逐一判断选项,即可得到答案.
【详解】
A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;
B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;
C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;
D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.
故选C.
【点睛】
本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.
6.A
解析:A
将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.
【详解】
解:∵4m=a,8n=b,
∴22m+6n=22m×26n
=(22)m•(23)2n
=4m•82n
=4m•(8n)2
=ab2,
故选:A.
【点睛】
本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.
7.B
解析:B
【分析】
根据二元一次方程的定义对各选项逐一判断即可得.
【详解】
解:A.x2+x=1中x2的次数为2,不是二元一次方程;
B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;
C.xy=3中xy的次数为2,不是二元一次方程;
D.3x﹣y=2z中含有3个未知数,不是二元一次方程;
故选:B.
【点睛】
本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.
8.A
解析:A
【分析】
根据三角形三边关系即可确定第三边的范围,进而可得答案.
【详解】
解:设第三边为x,则3<x<9,
纵观各选项,符合条件的整数只有6.
故选:A.
【点睛】
本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.
9.B
解析:B
【解析】
利用完全平方公式的结构特征判断即可确定出a的值.
【详解】
解:∵x2-ax+36是一个完全平方式,
∴a=±12,
故选:B.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
10.B
解析:B
【分析】
根据平行线的判定定理求解,即可求得答案.
【详解】
解:①∵∠B+∠BCD=180°,
∴AB∥CD;
②∵∠1=∠2,
∴AD∥BC;
③∵∠3=∠4,
∴AB∥CD;
④∵∠B=∠5,
∴AB∥CD;
∴不能得到AB∥CD的条件是②.
故选:B.
【点睛】
此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.
二、填空题
11.【分析】
根据公因式的定义即可求解.
【详解】
∵=(y+3z),
∴多项式的公因式是,
故答案为:.
【点睛】
此题主要考查公因式,解题的关键是熟知公因式的定义.
解析:4xy
根据公因式的定义即可求解.
【详解】
∵2412xy xyz +=4xy (y+3z ),
∴多项式2
412xy xyz +的公因式是4xy , 故答案为:4xy .
【点睛】
此题主要考查公因式,解题的关键是熟知公因式的定义.
12.8
【解析】
分析:根据幂的负整数指数运算法则进行计算即可.
解:原式==8.
故答案为8.
点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.
解析:8
【解析】
分析:根据幂的负整数指数运算法则进行计算即可.
解:原式=3
1
12⎛⎫ ⎪⎝⎭
=8. 故答案为8.
点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.
13.4a2bc
【分析】
多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.
【详解】
多项式4a3bc 8a2b2c2的各项公因式是4a2bc .
故答案为:4a2bc
解析:4a 2bc
【分析】
多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.
【详解】
多项式4a3bc+8a2b2c2的各项公因式是4a2bc.
故答案为:4a2bc.
【点睛】
本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式.14.【分析】
设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.
【详解】
设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,
由题意得,,
故答案为:.

解析:
54140 3276 x y
x y
+=


+=

【分析】
设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.
【详解】
设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,
由题意得,
54140 3276
x y
x y
+=


+=


故答案为:
54140 3276 x y
x y
+=


+=

.
【点睛】
此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.
15.【分析】
已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.
【详解】
∵是方程组的解

∴a=5,b=1
将a=5,b=1代入

①×
解析:
9
1 x
y
=⎧

=⎩
【分析】
已知
7
1
x
y
=


=

是方程组
316
215
x ay
x by
-=


+=

的解,将
7
1
x
y
=


=

代入到方程组
316
215
x ay
x by
-=


+=

中可求得
a,b的值,即可得到关于x,y的方程组
()
3216
2(2)15
x y ay
x y by
⎧--=

-+=

,利用加减消元法解方程即
可.【详解】

7
1
x
y
=


=

是方程组
316
215
x ay
x by
-=


+=

的解

2116 1415
a
b
-=⎧

+=⎩
∴a=5,b=1
将a=5,b=1代入
()
3216 2(2)15
x y ay
x y by
⎧--=⎨
-+=


31116 2315
x y
x y
-=


-=



①×2,得6x-22y=32③
②×3,得6x-9y=45④
④-③,得13y=13
解得y=1
将y=1代入①,得3x=27解得x=9
∴方程组的解为
9
1 x
y
=⎧

=⎩
故答案为:
9
1 x
y
=⎧

=⎩
【点睛】
本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.
16.【分析】
可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.
对逆用同底数幂的乘法法则,得(xa)2×xb,
逆用幂的
解析:【分析】
可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.
【详解】
对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,
逆用幂的乘方法则,得(x a )2×x b ,
将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,
故答案为:20.
【点睛】
此题考查同底数幂的乘法,解题关键在于掌握运算法则.
17.【分析】
根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.
【详解】
∵无论取何值,方程都有一个固定的解,
∴a 值可任意取两个值,
解析:41x y =⎧⎨=⎩
【分析】
根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.
【详解】
∵无论a 取何值,方程都有一个固定的解,
∴a 值可任意取两个值,
可取a=0,方程为23110x y +-=,
取a=1,方程为5210x y +-=,
联立两个方程解得4,1x y ==,
将4,1x y ==代入(32)(23)11100a x a y a +----=,得
(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,
所以这个固定解是41x y =⎧⎨=⎩
, 故答案为:41x y =⎧⎨=⎩

此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.
18.4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解析:4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00000094=9.4×10﹣8,
故答案是:9.4×10﹣8.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
19.220°
【分析】
根据三角形的外角的性质以及三角形内角和定理求解即可.
【详解】
解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,
∴∠1+∠2=∠C+∠CED+∠EDC+∠C,
∵∠C+∠CE
解析:220°
【分析】
根据三角形的外角的性质以及三角形内角和定理求解即可.
【详解】
解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,
∴∠1+∠2=∠C+∠CED+∠EDC+∠C,
∵∠C+∠CED+∠EDC=180°,∠C=40°,
∴∠1+∠2=180°+40°=220°,
故答案为:220°.
【点睛】
本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.
20.5
【分析】
设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.
【详解】
解:设正方形A ,B 的边长分别为a ,b .
由图甲得:,
由图乙得:,化简得,
∴,
∵a+b>0,
∴a+b
解析:5
【分析】
设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.
【详解】
解:设正方形A ,B 的边长分别为a ,b .
由图甲得:2
()1a b -=,
由图乙得:22()()12+--=a b a b ,化简得6ab =,
∴22()()412425+=-+=+=a b a b ab ,
∵a +b >0,
∴a +b =5,
故答案为:5.
【点睛】
本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 三、解答题
21.70°
【分析】
由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出
∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.
【详解】
解:∵CD ⊥AB ,EF ⊥AB ,
∴∠CDF =∠EFB =90°,
∴CD ∥EF ,
∴∠DCB =∠1.
∵∠1=∠2,
∴∠DCB =∠2,
∴DG ∥BC ,
∴∠ADG =∠B =45°.
又∵在△ADG 中,∠A =65°,∠ADG =45°,
∴∠AGD =180°﹣∠A ﹣∠ADG =70°
【点睛】
本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.
22.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩
【分析】
直接利用加减消元法解方程组即可.
【详解】
41325x y x y +=⎧⎨-=⎩①②
由+2⨯①②得:7x=11, 解得117
x =
, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩
. 【点睛】
本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.
23.(1)详见解析;(2)详见解析;(3)详见解析
【分析】
(1)利用乘方的意义求解,即可;
(2)将式子变形,利用完全平方公式计算,即可;
(3)化成边长为a+b+c 的正方形,即可得出答案.
【详解】
(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )
=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2
=a 2+b 2+c 2+2ab +2ac +2bc
(2)小王:(a +b +c )2=[(a +b )+c ]2
=(a +b )2+2(a +b )c +c 2
=a 2+b 2+2ab +2ac +2bc +c 2
(3)小丽:如图
【点睛】
本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.
24.50°
【分析】
直接利用平行线的性质,结合角平分线的定义,得出∠CBD =
12∠ABD =40°,进而得出答案.
【详解】
解:∵AC //BD ,∠BAC =100°,
∴∠ABD =180°﹣∠BAC =180°-100°=80°,
∵BC 平分∠ABD ,
∴∠CBD =12
∠ABD =40°, ∵DE ⊥BC ,
∴∠BED =90°,
∴∠EDB =90°﹣∠CBD =90°-40°=50°.
【点睛】
此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD 的度数是解题关键. 25.16
【分析】
根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.
【详解】
解:∵(±4)6=2b =84=212,a <0,
∴a =﹣4,b =12,
∴|a ﹣b|=|﹣4﹣12|=16.
【点睛】
本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.
26.(1)
221(1)4
n n + (2)< 【分析】
(1)根据所给的数据,找出变化规律,即是
14
乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案; (2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.
【详解】
解:(1)根据所给的数据可得:
13+23+33+…+n 3=
14n 2(n+1)2. 故答案为:14
n 2(n+1)2. (2)13+23+33+ (1003)
2211001014⨯⨯ =2
1(100101)2⨯⨯
=25050<25055 所以13+23+33+…+1003=<25055.
【点睛】
此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.
27.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩
【分析】
(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.
【详解】
(1)设A 组工人有x 人、B 组工人有(150−x )人,
根据题意得,70x +50(150−x )=9300,
解得:x =90,150−x =60,
答:A 组工人有90人、B 组工人有60人;
(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;
根据题意得,90a +60(200−a )≥15000,
解得:a ≥100,
答:A 组工人每人每小时至少加工100只口罩.
【点睛】
本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.
28.(1)213
m -
<< (2)m -
【分析】 (1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;
(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.
【详解】
解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩
, 得321x m y m
=+⎧⎨=-⎩ 因为解为正数,则32010m m +>⎧⎨
->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.
【点睛】
本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。

相关文档
最新文档