部编人教版八年级数学上册《12第十二章 全等三角形【全章】》精品PPT优质课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE 是△AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出 ∠E, ∠ ADE的度数和线段DE,AE 的长度.
1.有公共边
A
B
D
C
A
D B
C
AD
B
C
2.有公共点
D
A
A O
AD
A
E
D
B
C B
O B
CD
E CB
C
总结归纳 1. 有公共边,则公共边为对应边; 2. 有公共角(对顶角),则公共角(对顶角)为对应角; 3.最大边与最大边(最小边与最小边)为对应边;
最大角与最大角(最小角与最小角)为对应角;
4. 对应角的对边为对应边;对应边的对角为对应角.
你能指出上面两 个全等三角形的 对应顶点、对应 边、对应角吗?
思考:把一个三角形平移、旋转、翻折,变换前后的
两个三角形全等吗?
A
M
E
D
A
B
FC
N
A
B
C
A
B
C
B
E
D
D
C
归纳总结
全等变化 一个图形经过平移、翻折、旋转后,位__置_ 变化了,
但_形_状_和_大_小_都没有改变,即平移、翻折、旋 转前后的两个图形_全_等_. 全等三角形的性质
一个正确的结论并证明. 解:结论:EF∥NM
想一想:你还能得出 其他结论吗?
证明: ∵ △EFG≌△NMH,
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.能够 重合 的两个图形叫做全等形.两个三角形 重合时,互相 重合 的顶点叫做对应顶点.记两个 全等三角形时,通常把表示 重合 顶点的字母写 在 相对应 的位置上.
导入新课
观察与思考
下列各组图形的形状与大小有什么特点?
(1)
(2)
(3)
(4)
(5)
讲授新课
一 全等图形的定义及性质 问题1:观察思考:每组中的两个题2:观察思考:每组中的两个图形有什么特点?


归纳总结
全等图形定义: 能够完全重合的两个图形叫做全等图形. 全等形性质: 如果两个图形全等,它们的形状和大小一定都相等.
解:(1)对应边有EF和 NM,FG和MH,EG和NH; 对应角有∠E和∠N, ∠F 和∠M, ∠EGF和∠NHM.
(2)求线段NM及HG的长度;
解:∵ △EFG≌△NMH,
∴NM=EF=2.1cm,
EG=NH=3.3cm.
∴HG=EG –EH=3.3-1.1=2.2(cm).
(3)观察图形中对应线段的数量或位置关系,试提出
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
试一试: 如图,△ABC与△ADC全等,请用数学符号表示出 这两个三角形全等,并写出相等的边和角.
D A
C B
解:△ABC≌△ADC; 相等的边为:AB=AD,AC=AC,BC=DC; 相等的角为:∠BAC=∠DAC,∠B=∠D, ∠ACB=∠ACD.
2.如图,△ABC≌ △ADE,若∠D=∠B, ∠C= ∠AED,则∠DAE= ∠BAC ; D ∠DAB= ∠EAC .
B
A
E
C
3.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( A )
A.6cm B.5cm C.4cm D.无法确定
C
D
O
A
B
4.在上题中,∠CAB的对应角是
解:△BOD与△COE的对应边为: BO与CO,OD与OE,BD与CE; △ADO与△AEO的对应角为: ∠DAO与∠EAO,∠ADO与∠AEO, ∠AOD与∠AOE.
找一找下列全等图形的对应元素?
A
D
A
2 B E CF
A
3 2 14
BE
CF
B
D CF
A
D
1
23
4
B
C
探究归纳
寻找对应边、对应角有什么规律? 请你利用自制的一对全等三角形拼出有公共 顶点或公共边或公共角的图形.试用全等符号表示 它们,分析每个图形,找准对应边、对应角.
全等三角形的对应边相等,对应角相等
全等的表示方法
“全等”用符号“≌”表示,读作“全等于”.
A
F
B
CD
E
△ABC≌△FDE
注意:记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
典例精析
例1:如图,若△BOD≌△COE,∠B=∠C,指出这两 个全等三角形的对应边;若△ADO≌△AEO,指出这两 个三角形的对应角.
解:∵ △ABC≌△AED,(已知)
A
∴∠E= ∠B= 35°,(全等三角形对应角
相等)
BC
D E ∠ADE=∠ACB=180°-25°-35° =120 °, (全等三角形对应角相等)
例2 如图,△ABC≌△DEF,∠A=70°,∠B=50° ,BF=4,EF=7,求∠DEF的度数和CF的长.
解:∵△ABC≌△DEF,∠A=70°, ∠B=50°,BF=4,EF=7, ∴∠DEF=∠B=50°,BC=EF=7, ∴CF=BC-BF=7-4=3.
例3 如图,△EFG≌△NMH,EF=2.1cm, EH=1.1cm,NH=3.3cm. (1)试写出两三角形的对应边、对应角;
部编人教版八年级数学上册 《第十二章 全等三角形【全章】》
精品PPT优质课件
第十二章 全等三角形
12.1 全等三角形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握全等三角形的概念及其基本性情质境引. 入 (重点) 2.能找准全等三角形的对应边,理解全等三角形的 对应角相等.(难点) 3.能进行简单的推理和计算,并解决一些实际问题. (难点)
全等的性质
全等三角形的对应边相等;
全等三角形的对应角相等.
A
D
B
C
E
F
∵△ABC≌△DEF(已知),
∴AB=DE, AC=DF,BC=EF(全等三角形对
应边相等),
∠A=∠D, ∠B=∠E, ∠C=∠F(全等三角形对应角相等).
全等三角形的性质的几何语言
A
F
B
CD
E
∵△ABC≌△FDE ∴A B=F D,A C=F E,B C=D E(全等三角形对应边相等)
下面哪些图形是全等图形?
大小、形状 完全相同
(1)
(2)
(3)
(5)
(6)
(7)
(9)
(10)
(11)
(4) (8) (12)
二 全等三角形的定义及性质
A
D
B
CE
F
像上图一样,把△ABC叠到△DEF上,能够完
全重合的两个三角形,叫作全等三角形.
把两个全等的三角形重叠到 一起时,重合的顶点叫作对 应顶点,重合的边叫作对应 边,重合的角叫作对应角.
相关文档
最新文档