2019年温州市七年级数学下期中试题(附答案)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:【解析】
【分析】
【详解】
解:过B作BD∥a,
∵直线a平移后得到直线b,
∴a∥b,
∴BD∥b,
∴∠4=∠2,∠3=∠1=60°,
∴∠2=∠ABC-∠3=70°,
故答案为:70.
15.30【解析】【分析】先求出∠BOD的大小再根据平行的性质得出同位角∠ECO的大小【详解】∵OF⊥AB∴∠BOF=90°∵∠DOF=60°∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答
16.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算
①∠B+∠BCD=180°②∠1 =∠2③∠3 =∠4④∠B=∠5
A.1B.2C.3D.4
12.我们定义 ,例如: ,若 满足 ,则 的整数解有( )
A.0个B.1个C.2个D.3个
二、填空题
13.学校计划购买 和 两种品牌的足球,已知一个 品牌足球60元,一个 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.
4.A
解析:A
【解析】
【分析】
根据不等式的性质逐个判断即可.
【详解】
解:A、两边都乘 再加 ,不等号的方向不变,故A正确;
B、两边都减 不等号的方向不变,故B错误;
C、两边都乘以 ,不等号的方向改变,故C错误;
D、两边都除以 ,不等号的方向改变,故D错误;
故选:
【点睛】
本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.
A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800
C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8
10.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().
A.x+1B.x2+1C. D.
11.如图,下列能判断AB∥CD的条件有()
D.∠BAD=∠BCD,不能判断AB//CD,故D错误;
故选A.
【点睛】
本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.
6.B
解析:B
【解析】
∵−2<0,3>0,
∴(−2,3)在第二象限,
故选B.
7.D
解析:D
【解析】
试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.
②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?
25.解方程组:
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.
【详解】
A、∵∠1=∠2,
∴AD∥BC(内错角相等,两直线平行);
B、∵∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
C、∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
D、∵∠1=∠2,
∴AB∥CD(同位角相等,两直线平行).
故选D.
【点睛】
本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.
22.计算:
(1)
(2)
23.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为 分( ).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
根据以上信息解答下列问题:
(1)统计表中 的值为;
(2)补全频数分布直方图;
(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评的作品数量是多少?
故选B.
点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.
9.C
解析:C
【解析】
【分析】
根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.
【详解】
解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,
即210x+90(15﹣x)≥1800
故选C.
12.B
解析:B
【解析】
【分析】
先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.
【详解】
解:结合题意可知 可化为 ,
解不等式可得 ,
故x的整数解只有1;
故选:B.
【点睛】
本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.
二、填空题
13.4【解析】【分析】设购买x个A品牌足球y个B品牌足球根据总价=单价×数量即可得出关于xy的二元一次方程结合xy均为正整数即可得出各进货方案此题得解【详解】解:设购买x个A品牌足球y个B品牌足球依题意
18.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.
19.不等式组 有3个整数解,则a的取值范围是_____.
20.一个棱长为8cm的正方体容器装满水,现将这个容器中的水倒入一个高度为 的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm.
2019年温州市七年级数学下期中试题(附答案)
一、选择题
1.如图,已知∠1=∠2,其中能判定AB∥CD的是()
A. B.,到x轴的距离是3,到y轴的距离是2,则点A的坐标是()
A. B. C. D.
3.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
解:设黑色皮块和白色皮块的块数依次为x,y.
则 ,
解得 ,
即黑色皮块和白色皮块的块数依次为12块、20块.
故选D.
8.B
解析:B
【解析】
分析:根据平行线的性质和三角形的外角性质解答即可.
详解:如图,
∵AB∥CD,∠1=45°,
∴∠4=∠1=45°,
∵∠3=80°,
∴∠2=∠3-∠4=80°-45°=35°,
2.A
解析:A
【解析】
【分析】
根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.
【详解】
∵点A在x轴的下方,y轴的右侧,
∴点A的横坐标为正,纵坐标为负,
∵到x轴的距离是3,到y轴的距离是2,
∴点A的横坐标为2,纵坐标为-3,
解析:30
【解析】
【分析】
先求出∠BOD的大小,再根据平行的性质,得出同位角∠ECO的大小.
【详解】
∵OF⊥AB,∴∠BOF=90°
∵∠DOF=60°,∴∠BOD=30°
∵CE∥AB
∴∠ECO=∠BOD=30°
故答案为:30
【点睛】
本题考查平行线的性质,平行线的性质有:同位角相等、内错角相等、同旁内角互补.
5.A
解析:A
【解析】
【分析】
根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.
【详解】
解:A.∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;
B.∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;
C.∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;
三、解答题
21.某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
根据以上图表信息,解答下列问题:
(1)表中的a=,c=;
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有500名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人
14.如图,直线a平移后得到直线b,∠1=60°,∠B=130°,则∠2=________°.
15.如图,直线AB,CD交于点O,OF⊥AB于点O,CE∥AB交CD于点C,∠DOF=60°,则∠ECO等于_________度.
16.若x+1是125的立方根,则x的平方根是_________.
17.将点P向下平移3个单位,向左平移2个单位后得到点Q(3,-1),则点P坐标为______.
【详解】
解:A、1600名学生的体重是总体,故A正确;
B、1600名学生的体重是总体,故B错误;
C、每个学生的体重是个体,故C错误;
D、从中抽取了100名学生的体重是一个样本,故D错误;
故选:A.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
8.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )
A.30°B.35°C.40°D.45°
9.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为( )
24.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.
(2)该地区已经移植这种树苗5万棵.
①估计这种树苗成活___________万棵.
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()
A.16块,16块B.8块,24块
C.20块,12块D.12块,20块
【点睛】
本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.
10.D
解析:D
【解析】
一个自然数的算术平方根是x,则这个自然数是 则它后面一个数的算术平方根是 .
故选D.
11.C
解析:C
【解析】
【分析】
判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.
【详解】
解析:4
【解析】
【分析】
设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.
【详解】
解:设购买x个A品牌足球,y个B品牌足球,
依题意,得:60x+75y=1500,
解得:y=20− x.
∵x,y均为正整数,
①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;
②∠1 =∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;
③∠3 =∠4,内错角相等,可判断AB∥CD;
④∠B=∠5,同位角相等,可判断AB∥CD
故选:C
【点睛】
本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD这两条直线,故是错误的.
∴x是5的倍数,
∴ , , ,
∴共有4种购买方案.
故答案为:4.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
14.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70
A.1600名学生的体重是总体B.1600名学生是总体
C.每个学生是个体D.100名学生是所抽取的一个样本
4.若 ,则下列变形正确的是()
A. B. C. D.
5.如图,下列条件中,能判断AB//CD的是( )
A.∠BAC=∠ACDB.∠1=∠2C.∠3=∠4D.∠BAD=∠BCD
6.在平面直角坐标中,点M(-2,3)在()
故选A.
【点睛】
本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.
3.A
解析:A
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【分析】
【详解】
解:过B作BD∥a,
∵直线a平移后得到直线b,
∴a∥b,
∴BD∥b,
∴∠4=∠2,∠3=∠1=60°,
∴∠2=∠ABC-∠3=70°,
故答案为:70.
15.30【解析】【分析】先求出∠BOD的大小再根据平行的性质得出同位角∠ECO的大小【详解】∵OF⊥AB∴∠BOF=90°∵∠DOF=60°∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答
16.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算
①∠B+∠BCD=180°②∠1 =∠2③∠3 =∠4④∠B=∠5
A.1B.2C.3D.4
12.我们定义 ,例如: ,若 满足 ,则 的整数解有( )
A.0个B.1个C.2个D.3个
二、填空题
13.学校计划购买 和 两种品牌的足球,已知一个 品牌足球60元,一个 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.
4.A
解析:A
【解析】
【分析】
根据不等式的性质逐个判断即可.
【详解】
解:A、两边都乘 再加 ,不等号的方向不变,故A正确;
B、两边都减 不等号的方向不变,故B错误;
C、两边都乘以 ,不等号的方向改变,故C错误;
D、两边都除以 ,不等号的方向改变,故D错误;
故选:
【点睛】
本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.
A.210x+90(15﹣x)≥1.8B.90x+210(15﹣x)≤1800
C.210x+90(15﹣x)≥1800D.90x+210(15﹣x)≤1.8
10.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().
A.x+1B.x2+1C. D.
11.如图,下列能判断AB∥CD的条件有()
D.∠BAD=∠BCD,不能判断AB//CD,故D错误;
故选A.
【点睛】
本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.
6.B
解析:B
【解析】
∵−2<0,3>0,
∴(−2,3)在第二象限,
故选B.
7.D
解析:D
【解析】
试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y块,而黑皮共有边数为5x块,依此列方程组求解即可.
②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?
25.解方程组:
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.
【详解】
A、∵∠1=∠2,
∴AD∥BC(内错角相等,两直线平行);
B、∵∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
C、∠1=∠2,∠1、∠2不是同位角和内错角,
∴不能得出两直线平行;
D、∵∠1=∠2,
∴AB∥CD(同位角相等,两直线平行).
故选D.
【点睛】
本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.
22.计算:
(1)
(2)
23.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为 分( ).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.
根据以上信息解答下列问题:
(1)统计表中 的值为;
(2)补全频数分布直方图;
(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评的作品数量是多少?
故选B.
点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.
9.C
解析:C
【解析】
【分析】
根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.
【详解】
解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,
即210x+90(15﹣x)≥1800
故选C.
12.B
解析:B
【解析】
【分析】
先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.
【详解】
解:结合题意可知 可化为 ,
解不等式可得 ,
故x的整数解只有1;
故选:B.
【点睛】
本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.
二、填空题
13.4【解析】【分析】设购买x个A品牌足球y个B品牌足球根据总价=单价×数量即可得出关于xy的二元一次方程结合xy均为正整数即可得出各进货方案此题得解【详解】解:设购买x个A品牌足球y个B品牌足球依题意
18.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲2件、乙3件、丙4件共需285元钱,那么购甲、乙、丙三种商品各一件共需_________________元钱.
19.不等式组 有3个整数解,则a的取值范围是_____.
20.一个棱长为8cm的正方体容器装满水,现将这个容器中的水倒入一个高度为 的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm.
2019年温州市七年级数学下期中试题(附答案)
一、选择题
1.如图,已知∠1=∠2,其中能判定AB∥CD的是()
A. B.,到x轴的距离是3,到y轴的距离是2,则点A的坐标是()
A. B. C. D.
3.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
解:设黑色皮块和白色皮块的块数依次为x,y.
则 ,
解得 ,
即黑色皮块和白色皮块的块数依次为12块、20块.
故选D.
8.B
解析:B
【解析】
分析:根据平行线的性质和三角形的外角性质解答即可.
详解:如图,
∵AB∥CD,∠1=45°,
∴∠4=∠1=45°,
∵∠3=80°,
∴∠2=∠3-∠4=80°-45°=35°,
2.A
解析:A
【解析】
【分析】
根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.
【详解】
∵点A在x轴的下方,y轴的右侧,
∴点A的横坐标为正,纵坐标为负,
∵到x轴的距离是3,到y轴的距离是2,
∴点A的横坐标为2,纵坐标为-3,
解析:30
【解析】
【分析】
先求出∠BOD的大小,再根据平行的性质,得出同位角∠ECO的大小.
【详解】
∵OF⊥AB,∴∠BOF=90°
∵∠DOF=60°,∴∠BOD=30°
∵CE∥AB
∴∠ECO=∠BOD=30°
故答案为:30
【点睛】
本题考查平行线的性质,平行线的性质有:同位角相等、内错角相等、同旁内角互补.
5.A
解析:A
【解析】
【分析】
根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.
【详解】
解:A.∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;
B.∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;
C.∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;
三、解答题
21.某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:
根据以上图表信息,解答下列问题:
(1)表中的a=,c=;
(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)
(3)若该校九年级共有500名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人
14.如图,直线a平移后得到直线b,∠1=60°,∠B=130°,则∠2=________°.
15.如图,直线AB,CD交于点O,OF⊥AB于点O,CE∥AB交CD于点C,∠DOF=60°,则∠ECO等于_________度.
16.若x+1是125的立方根,则x的平方根是_________.
17.将点P向下平移3个单位,向左平移2个单位后得到点Q(3,-1),则点P坐标为______.
【详解】
解:A、1600名学生的体重是总体,故A正确;
B、1600名学生的体重是总体,故B错误;
C、每个学生的体重是个体,故C错误;
D、从中抽取了100名学生的体重是一个样本,故D错误;
故选:A.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
8.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为( )
A.30°B.35°C.40°D.45°
9.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为( )
24.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:
(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.
(2)该地区已经移植这种树苗5万棵.
①估计这种树苗成活___________万棵.
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()
A.16块,16块B.8块,24块
C.20块,12块D.12块,20块
【点睛】
本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.
10.D
解析:D
【解析】
一个自然数的算术平方根是x,则这个自然数是 则它后面一个数的算术平方根是 .
故选D.
11.C
解析:C
【解析】
【分析】
判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.
【详解】
解析:4
【解析】
【分析】
设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.
【详解】
解:设购买x个A品牌足球,y个B品牌足球,
依题意,得:60x+75y=1500,
解得:y=20− x.
∵x,y均为正整数,
①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;
②∠1 =∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;
③∠3 =∠4,内错角相等,可判断AB∥CD;
④∠B=∠5,同位角相等,可判断AB∥CD
故选:C
【点睛】
本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD这两条直线,故是错误的.
∴x是5的倍数,
∴ , , ,
∴共有4种购买方案.
故答案为:4.
【点睛】
本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
14.【解析】【分析】【详解】解:过B作BD∥a∵直线a平移后得到直线b∴a∥b∴BD∥b∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70
A.1600名学生的体重是总体B.1600名学生是总体
C.每个学生是个体D.100名学生是所抽取的一个样本
4.若 ,则下列变形正确的是()
A. B. C. D.
5.如图,下列条件中,能判断AB//CD的是( )
A.∠BAC=∠ACDB.∠1=∠2C.∠3=∠4D.∠BAD=∠BCD
6.在平面直角坐标中,点M(-2,3)在()
故选A.
【点睛】
本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.
3.A
解析:A
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.