地球物理测井
地球物理测井
地球物理测井发展四个阶段
一、模拟记录阶段 从测井诞生到60年代末,都使用模拟记录测 井仪器,用灵敏度高的检流计测量回路电流得到 探测系统测量端间的电位差变化,反映地层物理 参数(电阻率、声波速度等)随深度的变化,记 录在照相纸或胶片上,模拟记录的特点是采集的 数据量小,传输速率低。使用的主要测井方法有 声速(纵波)测井、感应测井和普通电阻率测井, 配之以井径测井、自然电位测井和自然伽马测井 等。
二、数字测井阶段
自60年代来,测井仪器从模拟记录过渡到数字记录。 这是测井技术发展的要求,测井方法的增多,特别是地 层倾角测量的出现和声波变密度测井都要求高速采集地 下信号,此外,某些测井方法要求在井场作一些校正、 补偿和简单的计算,如中子测井计算中子孔隙度、密度 测井进行脊肋校正等。 数字测井仪器增加了用数字磁带机进行数字记录 ,提高了测量精度,增加了可靠性,且便于将测井资料 输入计算机进行处理,与之相应的测井方法是有深、中 、浅探测的电阻率测井,一般是双感应 — 球形聚焦测井 或双侧向 — 微球聚焦测井,三孔隙度测井,即声速测井 、中子孔隙度测井、补偿密度测井;再加上井径测井、 自然伽马测井和自然电位测井,称为常规的“九条曲线 ”测井。
一般由地层和泥浆之间电化学作用和动电学作用产生的。
1、扩散—吸附电位:
纯砂岩 纯泥岩 -11.6 mV/18 C 59.1 mV /18 C
吸附电位
泥岩 -
+
砂岩
2、过滤电位(一般可忽略): 泥浆柱与地层之间存在压差时,液体发 生过滤作用产生的。
+ 扩散电位
泥岩
+ + + — — — — — + + +
6地球物理测井部分
地球物理测井
二、普通电阻率测井
在井中测量被钻孔穿过的矿、岩层的电阻率,并根据电 阻率的差异,来划分钻孔地质剖面,研究和解决井下的一些 地质问题的测井方法。
普通电阻率测井又称视电阻率测井,它是使用最早、应用 较广的电阻率测井方法 。
1、测量原理
A——供电电极 B——供电回路电极 M、N——测量电极
供电回路
测量回路
电源 B
检流计
A
电极矩
M
o
N
井下介质电阻率的测定
当电极B位于无穷远处时,距供电电极A一定 距离的测量电极M、N两点是的电位差为:
IR 1 1
U MN
UM
UN
4
( AM
) AN
解上式得 : 4 AM AN UMN K UMN
MN
I
I
K是与各电极之间距离有关的系数,称为电极系 系数。A、M、N组成电极系电极之间的距离是固 定的,因此电极系系数K是一个常数。
1)岩矿石的岩性; 2)岩石孔隙中地层水性质; 3)岩石的孔隙度以及孔隙结构; 4)孔隙中流体性质及其含量; 5)岩石中泥质成分(泥质含量影响岩石的导电性)。
1)岩矿石的岩性
岩石是由矿物和孔隙中流体以及胶结物组成,大多数沉积岩,当 其不含导电流体时,由造岩矿物组成的岩石骨架几乎是不导电的。 许多沉积岩之所以能导电,则是因为它们在地下不同程度的具有 一定的孔隙,在其中充填了一定数量的盐水溶液造成的。于是, 电流通过孔隙水流过岩石,岩石因此具有了一定的导电性。
本章主要内容:
(1)普通电阻率测井 (2)侧向测井 (3)电化学测井
石墨、无烟煤等电阻率很低
主要岩矿石电阻率及其变化范围
ρ沉<ρ变<ρ火
地球物理测#(第三章)中子测井
中子测井的优缺点分析
优点
能够测量地层的孔隙度、含油饱 和度等参数,不受地层水矿化度 影响,测量精度较高。
缺点
对地层岩性敏感度较低,不适用 于所有地层,且对放射性同位素 源依赖较大。
03
中子测井的实际应用
油气勘探中的中子测井
确定地层孔隙度
中子测井通过测量地层中热中子的衰 减程度,可以推算出地层的孔隙度, 进而评估油气储量。
智能化和自动化
利用人工智能和机器学习技术,实现中子测井数据的自动解释和异常 检测。
中子测井与其他地球物理方法的结合
与电阻率测井结合
利用中子测井和电阻率测井的互补性,提高对地层性质的识别精 度。
与地震勘探结合
将中子测井与地震勘探数据相结合,提高对地下构造和油气藏的探 测精度。
与磁力勘探结合
利用中子测井与磁力勘探的联合测量,实现对地层和油气藏的全方 位探测。
中子源的选择与使用
放射性同位素源
常用的有镅-241和铯-137等,具有稳定、安全、 寿命长的特点,但需定期更换。
加速器源
能够产生高能中子,适用于深井和复杂地层,但 设备成本和维护成本较高。
混合源
结合同位素源和加速器源的特点,具有较好的综 合性能。
中子探测器的设计与选择
01
02
03
探测器材料
常用有锗、硅等半导体材 料,要求具有高灵敏度、 低噪音和稳定性。
识别油气层
确定地层岩性
中子测井通过测量地层中热中子的速 度和扩散系数,可以推断地层的岩性 和矿物组成,进而评估油气勘探的潜 力。
中子测井能够检测到地层中的油气层, 通过测量地层中氢的含量和分布,判 断油气层的存在和分布情况。
煤田勘探中的中子测井
测井基础概述(全文)
测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
地球物理测井整理版
地球物理测井整理版
地球物理测井,运用物理学的原理和方法,使用专门的仪器设备,沿钻井(钻孔)剖面测量岩石的物性参数,包括电阻率,声波速度,岩石密度,射线俘获及发射能力等参数。
根据这些参数,了解井下地质学信息及资源赋存状态。
工程人员根据对这些信息的研究,发现并评价资源(包括石油、天然气、煤、金属、非金属、地热、地下水等资源)的储量和赋存状态。
在此基础上,制定各种资源的合理有效的开发方案。
也就是说,地球物理测井是包括油气藏、煤、水资源、金属及非金属等各种资源勘探开发极其重要的技术手段。
甚至在城市的市政规划中地基勘测、高速铁路建设及地铁建设中也发挥着重要的作用。
岩石和矿物有不同的物理特性,如导电特性、声波特性、放射性等。
这些特性统称为岩石和矿物的物理性质。
在地球物理勘探中相应地建立了许多种测井方法,如电法测井、声波测井、放射性测井和气测井等。
应用范围
确定井剖面的岩石性质,评价油(气)、水层,发现煤、金属、放射性等矿藏,并确定其埋藏深度及有效厚度;测量计算储量所需要的各种地质参数,如岩性成分、孔隙度、饱和度、渗透率煤田储量计算参数等;确定地层倾角、岩层走向和方位,以及钻孔倾角和方位角,
研究沉积环境等;检查井下技术情况,如检查固井质量和套管破裂情况等;发现和研究地下水源(淡地层水)。
地球物理测#(第三章)核测井GR测井
Wi—为第i个能量窗的计数率 Ai、Bi、Ci—用刻度井得到的第 I能量窗的刻度系数 :统计因子 Th、U、K:表示钍、铀、钾的含量
地球物理测井—放射性测井
自然伽马能谱测井(NGS)
输出的测井曲线:SGR (GR总计数率) THOR钍含量 URAN铀含量 POTA钾含量
地球物理测井—放射性测井 三、NGS曲线应用
自然伽马能谱测井(NGS)
自然伽马能谱测井的地质依据,是U、Th, K在矿物和 岩石中的分布规律与岩石的矿物成分、成岩环境和地下 水活动有关。 一般说来,普通粘土岩中钾和钍含量高,而铀的含量 较低(相对于钾和钍)。据 Belk-nap, W. B. 等人由 200 块不同种类的粘土岩取得的分析数据,粘土岩中放射性
钾系的特征谱:1.46Mev
钍系的特征谱:2.62Mev
铀系的特征谱:1.76Mev
P128
在特征能量峰处的伽马射线的强度最大
地球物理测井—放射性测井
自然伽马能谱测井(NGS)
二、NGS的测井原理
核心部分是:多道分析器。 能够测量分析伽马射线的能谱 将能谱分为五个能级窗 两个低能窗、三个道能窗 W1:0.15-0.5 Mev W2:0.5-1.1Mev W3:1.32-1.575Mev (钾窗) W4:1.65-2.39Mev (铀窗) W5:2.475-2.765Mev(钍窗)
自然伽马测井
砂泥岩剖面(骨架不含放射性矿物)
随着泥质含量的增加, GR值增加。 泥岩-高值;砂岩-低值
GR 泥 岩 砂 岩
碳酸盐岩剖面相同
泥 岩
H
砂 岩
地球物理测井—放射性测井
地球物理测井—放射性测井
给定岩性剖面,请定性的画出GR曲线。 GR 泥灰岩 灰岩 泥岩
地球物理测井
图3.4.1自然电位测井原理线路图3.4.2扩散电动势和扩散-吸附电动势形成机理C l —泥岩中水的矿化度;C 2-砂岩中水的矿化度;C C —泥浆矿化度;E d —扩散电动势;E da —扩散吸附电动势地球物理测井地球物理测井是在钻井进行的各种地球物理方法的总称。
其特点是工作时将激发源或探测器放入井中,或同时将二者放入井中,以缩短它们与探测对象的距离,增大所获得的异常强度。
此外,还可避免或减小地形起伏、覆盖层物性不均匀等因素对观测结果的干扰。
工程、水文及环境地质工作中常用的地球物理测井方法有电测井、核测井、声波测井等。
4.1电测井电测井是以研究岩石导电性、介电性和电化学活动性为基础的一类测井方法。
工程、水文及环境地质中常用的方法有自然电位测井和视电阻率测井。
4.1.1自然电位测井在井孔及其周围,岩层自身的电化学活动性会产生自然电场。
利用自然电场的变化来研究钻孔地质情况的电测井方法,就是自然电位测井。
自然电位测井的原理线路如图3.4.1所示,将测量电极放入井中,另一个测量电极固定在M N 井口附近,然后提升,并在地面上用仪器记录M 极电位相对于极电位(恒定值)的差值,逐M N 点测定就可以得到一条自然电位随深度变化的曲线。
1.井中自然电位的成因及曲线特征在自然电场法中,我们已经知道,自然电场的成因主要有岩石与溶液的氧化还原作用,岩石颗粒对离子的选择吸附作用,及不同浓度溶液间的扩散作用等。
下面我们只讨论与水文测井最密切的扩散电动势和扩散-吸附电动势的形成机理。
为了说明这一过程,我们以夹在厚层泥岩中渗透性好的砂岩为例。
假定砂岩中地层水和泥浆滤液均为氯化钠溶液,但二者的矿化度不同。
砂岩地层中水的矿化度C 2大于泥浆滤液的矿化度C C 。
这时溶解于溶液中的离子(和Na +)将由矿化度大的溶液向矿化-Cl 度小的溶液中扩散。
这种扩散有两种途径:一种是离子的扩散直接产生于地层水与泥浆滤液的接触面处,即离子从砂岩地层直接向井内泥浆扩散;另一种是通过围岩(泥岩)向泥浆中扩散。
地球物理测井
地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。
1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。
2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。
梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。
(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。
(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。
视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。
2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。
但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。
3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。
二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。
微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。
地球物理测井
1.地球物理测井定义:是地球物理学的一个分支, 简称测井。
指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。
2.资料解释步骤:(1)划分储集层,确定岩性; (2)计算储集层参数: 泥值含量、孔隙度、饱和度有效厚度、渗透率等(3)确定油水层(4)其他应用3.地球物理测井的作用:1、划分地层; 2、准确得到地层深度; 3、计算孔隙度、饱和度、渗透率等地层参数; 4、确定油水层; 5、地层对比; 6、工程应用; 7、油层动态监测.4.储集层:石油和天然气储藏在地下具有连通的孔隙、裂缝或孔洞的岩石中。
这些具有连通的孔隙、既能储存油、气、水,又能让油气水在岩石孔隙中流动的岩层称为储集层。
5.描述储油层最基本的参数主要有孔隙度f、渗透率K、含油饱和度So、泥质含量Vsh。
6.储集层必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性7.储集层的厚度:顶底界面的厚度即为储集层的厚度。
8.有效厚度:总厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剩下的厚度。
9.高侵: 侵入带电阻率Ri大于原状地层电阻率Rt低侵: 侵入带电阻率Ri小于原状地层电阻率Rt一般Rmf>Rw时,发生泥浆高侵;Rmf<Rw时,泥浆低侵。
故:水层(Rmf>Rw)经常发生高侵现象,油层(Rmf<Rw)经常发生低侵现象。
10.泥浆滤液:在一定压差下,进入到井壁地层孔隙内的液体。
11.地层水:地层孔隙内的水。
12,矿化度:溶液的盐浓度,常用百万分之一(ppm)表示。
13.离子扩散:当不同浓度的溶液在一起时存在是浓度达到平衡的自然趋势,即高浓度溶液中的离子要向低浓度溶液一方迁移的过程。
14.自然电位:在井中未通电的情况下(自然电场),放在井中的电极M与位于地面的电极N 之间存在的电位差。
地球物理测井方法原理
地球物理测井方法原理
地球物理测井方法是通过在地下钻井孔内采集各种物理测量数据,用于研究地下岩石、水等介质的性质和分布情况。
其原理主要包括以下几种方法:
1. 电测井(电阻率测井):通过测量电阻率的大小来推断岩石和水等介质的性质。
岩石的电阻率与其孔隙度、孔隙液的含水性相关。
2. 密度测井:利用放射性射线经过地下介质时发生的散射和吸收现象,测量射线的衰减情况,来推断介质的密度、孔隙度等参数。
3. 声波测井(声阻抗测井):通过发射声波信号,并测量声波在地下介质中传播的速度和衰减程度,来推断岩石的弹性性质、孔隙度等参数。
4. 中子测井:利用中子与地下介质中核素发生散射和吸收的现象,测量中子流量的变化,来推断介质的孔隙度、含水性等。
5. 磁测井(自然电磁场测井):利用地球自然磁场或人工产生的磁场对地下岩石的磁性进行测量,来推断岩石磁性、含油气性等。
这些测井方法的原理是基于地下介质对电、密度、声波、中子或磁场的响应特性,在测井仪器记录和分析数据后,可以获得地下介质的性质和分布信息,为油气勘
探、水资源管理、地热研究等提供重要依据。
测井 解释
测井解释本文将详细介绍测井解释的四个主要方面:地质分析、地球物理测井、地球化学测井和工程测井。
1.地质分析地质分析是测井解释的基础,主要包括地层对比、地层年龄、地层温度和地层压力等方面的分析。
地层对比主要是根据地层的岩性、电性和声波等特征,对不同地层进行对比和划分。
地层年龄分析主要是利用放射性同位素测定地层的年龄,以确定地层的形成时间和演化过程。
地层温度分析可以通过测量地层的热流或地温梯度来确定地层的温度,进而推断出地层的埋藏深度和岩石热性质。
地层压力分析则是通过测量地层的压力系数或梯度来确定地层的压力状态,以评估地层的稳定性和潜在的工程风险。
2.地球物理测井地球物理测井是通过测量地球物理参数来推断地层特性的方法。
在测井解释中,常用的地球物理测井方法包括电阻率测井、自然电位测井、孔隙度测井和渗透率测井等。
电阻率测井是通过测量地层的电阻率来判断地层的导电性能,进而推断出地层的岩性和孔隙度。
自然电位测井是通过测量地层的自然电位来推断地层的沉积环境和有机质含量。
孔隙度测井是通过测量地层的声波速度和衰减系数等参数,计算出地层的孔隙度,以评估地层的储油气能力。
渗透率测井则是通过测量地层的渗透率来判断地层的流体流动能力和储油气的渗透性。
3.地球化学测井地球化学测井是通过测量地层中的化学成分来推断地层特性的方法。
在测井解释中,常用的地球化学测井方法包括卤素测井、硫化氢测井、二氧化碳测井和氧测井等。
卤素测井是通过测量地层中氯、溴和碘等元素的含量,推断出地层的含盐度和蒸发岩的分布。
硫化氢测井是通过测量地层中硫化氢的含量,判断出地层中有机质的成熟度和储油气能力。
二氧化碳测井是通过测量地层中二氧化碳的含量,推断出地层的碳储存量和地质构造。
氧测井则是通过测量地层中氧的含量,判断出地层的氧化还原环境和有机质的演化程度。
4.工程测井工程测井是通过测量钻孔和井筒的几何参数和物理参数来评估地质钻探工程的施工质量和岩石力学性质的方法。
地球物理测井_名词解释
相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0~1之间。
通常用Kro,Krg,Krw分别表示油,气,水的相对渗透率。
视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极系周围各部分介质的电阻率对测量结果都有贡献,测出的不是岩石的真电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。
周波跳跃:在疏松地层或含气地层中,由于声波能量的急剧衰减,以致接收器接受波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。
康普顿效应:当伽马光子的能量较核外束缚电子的结合能大的多且为中等数值时,它与原子核外轨道电子相互作用时可视为弹性碰撞,能量一部分转交给电子,使电子以与伽马光子的初始运动方向成角的方向射出,形成康普顿电子,而损失了部分能量的伽马光子则朝着与其初始运动成角的方向散射,这种效应称为康普顿效应。
声波时差:声波传播单位距离所用的时间。
绝对渗透率:当岩石孔隙中只有一种流体时,描述流体通过岩石能力的参数。
增阻侵入(泥浆高侵):地层电阻率较低,侵入带电阻率Ri大于原状地层电阻率Rt的现象。
地层压力:又称地层孔隙压力,指作用在岩石孔隙内流体(油,气,水)上的压力。
视地层水电阻率Rwa:是指地层电阻率Rt与其地层因素F的比值,用符号Rwa表示,即Rwa=Rt/F。
含油气孔隙度Sh:岩石含油气体积占有效孔隙体积的百分数,用Sh表示,且Sw+Sh=1。
有效孔隙度:是指具有储集性质的有效孔隙体积占岩石体积的百分数。
缝洞孔隙度:是指有效缝洞体积占岩石体积的百分数。
储集层有效厚度:是指在目前经济技术条件下,能够产出工业性油气流的储集层实际厚度,即符合油气层标准的储集层厚度扣出不符合标准的夹层(如泥岩或致密层)剩下的地层厚度。
裂隙孔隙度:单位体积岩石中裂缝体积所占的百分数。
残余油饱和度Sor:当前开发技术,经济条件下无法开采出的油气占有效孔隙体积的百分数。
测井
测井(well logging)也叫地球物理测井或石油测井,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、测井)之一。
石油钻井时,在钻到设计井深深度后都必须进行测井,又称完井电测,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
在油田勘探与开发过程中,测井是确定和评价油、气层的重要手段之一,也是解决一系列地质问题的重要手段。
它能直接为石油地质和工程技术人员提供各项资料和数据。
测井技术起源于20世纪20年代,在油井第一次测量地层电阻率获得成功。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
测井方法众多。
电、声、放射性是三种基本方法。
特殊方法(如电缆地层测试、地层倾角测井、成像测井、核磁共振测井),其他形式如随钻测井。
各种测井方法基本上是间接地、有条件地反映岩层地质特性的某一侧面。
要全面认识地下地质面貌,发现和评价油气层,需要综合使用多种测井方法,并重视钻井、录井第一性资料。
世界测井技术的运用发展根据地质和地球物理条件,合理地选用综合测井方法,可以详细研究钻孔地质剖面、探测有用矿产、详细提供计算储量所必需的数据,如油层的有效厚度、孔隙度、含油气饱和度和渗透率等,以及研究钻孔技术情况等任务。
此外,井中磁测、井中激发激化、井中无线电波透视和重力测井等方法还可以发现和研究钻孔附近的盲矿体。
测井方法在石油、煤、金属与非金属矿产及水文地质、工程地质的钻孔中,都得到广泛的应用。
特别在油气田、煤田及水文地质勘探工作中,已成为不可缺少的勘探方法之一。
应用测井方法可以减少钻井取心工作量,提高勘探速度,降低勘探成本。
在油田有时把测井称为矿场地球物理勘探、油矿地球物理或地球物理测井。
测井作为勘探与开发油气田的重要方法技术,至今已近80年的历史。
地球物理测井全书要点总结
1,地球物理测井定义☆:是地球物理学的一个分支, 简称测井(Well logging)。
指在勘探和开采石油、天然气等地下矿藏的过程中,利用物理学的基本原理,采用先进的仪器设备,探测井壁介质的物理特性参数(电/声/放射性质),评价储集层的岩性、物性(孔隙性、渗透性)、电性、含油性(四性关系)。
采油前后,测井工作分为两部分☆:1、裸眼井测井(open hole ) 也称勘探井测井,在钻井之后,采油之前。
目的:寻找石油在地层中埋藏深度。
俗称找油层。
2、套管井测井(cased hole)也称生产测井(production log),在采油时进行。
目的:石油开采过程中,地层中的剩余油开采。
2, 采集-测井方法分类(裸眼井)按照物理响应特征分为☆:1、电测井方法:自然电位测井普通电阻率测井、侧向测井感应测井、电磁波测井2、放射性测井:自然伽马测井密度测井、中子测井、中子寿命测井3、声波测井:声波速度测井声波幅度测井、声波全波测井4、其它测井:生产测井地层倾角测井、气测井、特殊测井3,地球物理测井的作用主要有以下几点☆:1、划分地层;2、准确得到地层深度;3、计算孔隙度、饱和度、渗透率等地层参数;4、确定油水层;5、地层对比;6、工程应用;7、油层动态监测.储集层:凡具有一定的连通孔隙,能使液体储存,并在其中渗滤的岩层,称为储集层。
描述储油层最基本的参数主要有孔隙度φ、渗透率K、含油饱和度So、泥质含量Vsh必须具备两个条件☆:孔隙性(孔隙、洞穴、裂缝),渗透性(孔隙连通成渗滤通道).按岩性:碎屑岩储集层(砂岩)、碳酸岩储集层(白云岩、石灰岩)、特殊岩性储集层。
按孔隙空间结构:孔隙型储集层、裂缝型储集层和洞穴型储集层碎屑岩储集层特点:孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。
碳酸岩储集层特点,1,储集空间复杂:a,有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等,b,次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等)2,物性变化大:横向纵向都变化大碳酸盐储集层分类:孔隙型裂缝型洞穴型复合型好的储层应该是孔隙型或复合型岩石孔隙度: 单位体积内岩石孔隙空间占岩石总体积的百分数(%),反映岩石孔隙发育程度含水饱和度(Sw):含水孔隙体积占总孔隙体积的百分数含油(气)饱和度:含油(气)孔隙体积占总孔隙体积的百分数当孔隙中只含油和水时:Sw+So=1当孔隙中含油气水三相时: Sw+So+Sg=1束缚水饱和度Swb:不能被油气取代的地层水叫束缚水。
地球物理测井方法与原理
地球物理测井方法与原理地球物理测井是一种对地下储层进行测量、分析和评价的方法。
通过测井工具的下井进行物理量的测定,可以获取地下储层的岩性、地层厚度、孔隙度、渗透率等信息,对油气田勘探开发及油层工程有着重要的意义。
本文将介绍地球物理测井的基本原理和常用方法。
一、测井原理地球物理测井的基本原理是利用测井工具发射相应的能量,将能量通过地层传播后,接收到的反射波或散射波作为信息来获取地下储层的特性。
根据测井工具使用的能量类型和测量的物理量,可将地球物理测井方法分为以下几类。
1. 电测井方法电测井方法是利用测井仪器对地层中的电阻率进行测量,以反映岩层的含油、含水性质。
常用的电测井方法有直流电阻率测井、交流电阻率测井和自然电位测井等。
2. 声测井方法声测井方法是利用声波在地下储层中的传播特性,推断出地层的弹性参数和岩性。
主要包括测井声波、声波速度测井、声阻抗测井和共振测井等。
3. 密度测井方法密度测井方法是通过测量地下储层中的密度,来推断岩层的孔隙度、饱和度等。
常见的密度测井方法有伽马射线测井、中子测井和密度测井等。
4. 核磁共振测井方法核磁共振测井方法是利用核磁共振现象对地下储层进行测量,推断岩层的孔隙度、饱和度和渗透率。
核磁共振测井方法在近年来逐渐兴起,具有高分辨率、无辐射等优点。
二、常用测井方法1. 伽马射线测井伽马射线测井是通过测量地下储层中伽马射线的强度,来判断岩石的密度和放射性元素的含量。
根据伽马射线的特性,可以获得地层的层位、岩性和饱和度等信息。
2. 电阻率测井电阻率测井是通过测量地层中的电阻率,来判断岩石的导电性质和饱和度。
不同的岩石具有不同的电阻率特性,通过电阻率测井可以判断地层的岩性变化和油气的分布情况。
3. 声波速度测井声波速度测井是通过测量地层中声波的传播速度,来判断岩石的弹性参数和孔隙度。
声波在不同岩石中的传播速度不同,通过声波速度测井可以获得地层的岩性、渗透率和孔隙度等信息。
4. 中子测井中子测井是通过测量地层中中子的散射和吸收情况,来推断岩石的孔隙度和饱和度。
地球物理测井
地球物理测井第一节:概述地球物理测井的分类:分为电法测井和非电法测井两种。
1、电法测井:a:视电阻率、b:微电极、c:自然电位、d:微球型聚焦、e:感应测井。
2、非电法测井:a:声速测井、b:自然伽玛测井、c:中子测井、d:密度测井,e:井径、f:井斜、g:井温、h:地层倾角(HDT)、I:地层压力(RFT)、j:垂直地震测井(VSP)第二节:电法测井一、视电阻率曲线:测井时将电极系放入井下,在上提过程中测量记录一条△Vmn(电位差)随井深变化的曲线,称为视电阻率曲线。
梯度电极系:成对电极间的距离小于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
电位电极系:成对电极间的距离大于不成对电极到靠近它的一个成对电极间的距离的电极系称为梯度电极系。
底部梯度电极系在高阻层测井曲线的形状特点如下:(1)对着高阻层视电阻率升高,但曲线不对称于地层中点,高阻层顶界面、底界面分别在极小值、极大值的1/2mn处。
(2)对于厚层、地层中部附近曲线出现平直或变化平缓,随地层减薄平直段缩短直至消失,该处视电阻率值接近地层真电阻率。
(3)对于薄层,在高阻层底界面以下一个电极处,在视电阻率曲线上出现一个“假极大”,极小也比原层上移。
视电阻率曲线的应用:1、划分岩层界面:利用底部梯度电极系视电阻率曲线划分岩层界面的原理是高阻层顶界面(底界面)位于视电阻率曲线极小值(极大值以下1/2MN处。
2、判断岩性:在砂泥岩剖面中,当地层水含盐浓度不是很大时,砂岩电阻率大于泥岩的电阻率,粉砂岩泥质砂岩、砂质泥岩介于它们之间。
但视电阻率曲线无法区分灰岩和拉拉扯扯云岩,它们的电阻都非常大。
3、地层对比和定性判断油水层:对于同一储层,如果0.45m底部梯度幅度高于4m底部梯度梯度测井曲线幅度该层可能为水层,反之则为水层。
二:微电极测井微电极测井:利用特制的短电极系帖附井壁,测量井壁附近的岩层电阻率的一种测井方法叫微电极测井。
微电极测井曲线的应用:1、详细划分地层:地层界面一般在曲线的转折点或半幅点2、划分渗透层,判断岩性:微电极曲线在渗层上显示正幅度差,数值中等,地层渗透率越好,二者的幅度差越大,因此可以根据微电极曲线的幅度差判断地层的渗透性好坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测井配合录井资料能解决的问题主要有:
详细划分岩层,准确地确定岩层深度和厚度;
定量或半定量估计油层的孔隙度、渗透率和含油 气饱和度; 进行地层对比,研究构造和地层沉积问题等; 在油田开发中,提供油层动态的部分资料; 研究井下技术情况,如井斜,井径、井温及固井 质量等。
一、电阻率测井
确定岩性。视电阻率曲线上幅度大的岩层,如油 层、气层、致密砂岩层等,在感应曲线上恰恰是 低幅度值;而低电阻率层,如泥岩层反而是高幅 度值。 判断油水层,划分油水界面。感应测井曲线对地 层电导率反映极为灵敏,水层电导率明显高于油 层;在油水界面附近,由于电阻率急剧变化,电 导率同样表现出急剧变化,在感应曲线上表现是 明显的。
测井技术发展史
自1927年法国斯伦贝谢兄弟成功地进行 了世界上第一口电阻率测井以来,可以将测 井技术的发展史分为四个阶段。 自1927年至60年代末称为模拟测井阶段: 使用的主要测井方法是声速(纵波)测井、 感应测井和普通电阻率测井,配之以井径、 自然电位和自然伽马等测量。数据采用照相 纸或胶片纪录,其特点是采集的数据量小, 传输速率低。
测井技术发展史
70年代末发展了数控测井:以计算机为中 心的遥控、遥测系统,各种下井仪作为计算机 的外件,通过电缆遥控系统实现数据的交换和 控制。新的测井方法不断出现,如电磁波传播 测井、自然伽马能谱测井、碳氧比能谱测井、 岩性密度测井、长源距声波测井等,提取了更 多的有用信息,扩大了测井的应用领域,提高 了用测井资料评价油(气)层、解决地质问题 的能力。
测井技术发展史
60-70年代可称为数字测井阶段:借助计算机 采用数字磁带机进行数字记录,提高了测量精度, 增加了可靠性,提高了数据处理速度。测井方法 和数据处理方法有了很大发展,三孔隙度测井 (声波、密度、中子),深、中、浅三电阻率测 井,再加上井径测量,自然伽马测井和自然电位 测井,称之为常规的“九条曲线”测井。用这些 测井资料可以较好地分层、识别岩性、求取孔隙 度、计算地层电阻率,计算含油(气)饱和度, 从而评价油(气)储层,此外,地层倾角测井的 投产,提高了测井的地质应用能力。
B.确定岩层界面
微电极曲线的探测范围小,纵向分辨能力较强, 划分薄互层组和薄夹层比较可靠。
在井内如有井壁坍塌形成的大洞穴或石灰岩溶洞 时,极板悬空,所测视电阻率接近钻井液电阻率 值,这就是井径扩大了。 冲洗带电阻率Rxo是一个重要的参数。将微电极 曲线的数值经泥饼校正后,可以求出准确的RxO 和泥饼厚度。
图2 普通电阻率测井测量原理图 (a)电位电极系 (b)梯度电极系
(2)视电阻率
实际测井中,电极系所测的电阻率与井内钻井液、
渗透层的侵入,上下围岩的电阻率都有关系,各
部分介质对测量结果的贡献大小很难用简单的方
法计算出来,测量的岩层电阻率是各种影响的综
合反映,这个电阻率称为视电阻率。
图3 梯度电极系和电位电极系实际测井曲线
中子测井是一种划分岩石成分与测量地层孔隙
度的有效方法。中子测井资料主要用来确定地
层的孔隙度,也可用来划分岩性及含气层。当 地层水矿化度很高时,油层的测井读数高于水 层,当地层孔隙中流体以含氢为主时,中子测 井读数和孔隙中流体体积相对应,即中子测井
读数等于孔隙度。
补偿中子和中子伽马测井
•基本原理 中子源快中子地层介质热中子 补偿中子测井:测量地层对中子的减速能力,测 量结果主要反映地层的含氢量。 中子伽马测井:测量热中子被俘获而放出中子伽 马射线的强度。
2.中子测井
中子测井使用“中子源“发射一定能量的中 子流,中子穿过泥浆进入地层,其能量逐渐衰减, 最后减速为热中子。岩石对中子减速能力,主要 取决于岩石中氢的含量。热中子被岩石的原子核 俘获,便放出伽马射线。岩石对中子俘获能力主 要取决岩层中氯的含量。选择不同的探测器,记 录俘获的热中子的方法叫做中子—中子测井;记 录俘获后放出的次生伽马射线的方法叫做中子伽 马测井。
岩层有各种地球物理特性,相应地出现了各种
各样的地球物理测井方法。主要可分成电法测 井,非电法测井和其它测井三种。
电法测井:包括普通电极系测井、微电极测井, 侧向测井、感应测井及自然电位测井。
非电法测井:包括声波测井和放射性测井。 此外,还有井径、井斜、地层倾角以及用于油 气开采中的生产测井等。
三侧向有深、浅三侧向之分,由于它们各 电极长短不同,聚焦的能力不同,探测的
径向范围也不一样。深的屏蔽电极长,回
路电极距离远,迫使主电流束流人地层很
远才能回到回路电极B;而浅三侧向两个屏
蔽电极短,则探测的范围较短。
储集层侵入特性示意图
(2)三侧向测井曲线的应用
三侧向测井实质上是视电阻率测井的一种,
图5 深浅三侧向曲线在油水层的显示
3.微电极测井
(1)微电极测井原理
为了达到测量冲洗带电阻率的目的,设计了一个很小的电 极距,微电极系是在主体上装2~3个弹簧片作为下井时的 扶正器。
图6 微电极系
1一主体;2一弹簧片;3一绝缘极板;4一电缆
(2)曲线特点
微电位的探测深度为8~10cm,微梯度探测深度 4~6cm,,因此微电位所测的视电阻率主要反应渗透 层井中洗带电阻率。而微梯度测量的结果主要受泥饼 影响。通常采用重迭法将微电位与微梯度两条测井曲 线绘制一张图中,当微电位曲线幅度“大于微梯度曲 线幅度时,称正幅度差,小于时称负幅度差”。渗透 层井段基本都有幅度差,幅度差的大小与RmC/Rxo (泥饼/冲洗带)值以及泥饼的厚度有关。幅度的高低 与岩性有关。非渗透层无幅度差,砂泥岩剖面中泥岩 数值低,且无幅度差。
第三讲 地球物理测井
中国石油华北技师学院
崔树清
在石油勘探和开发中.认识和掌握地下地质
情况目前所使用的方法主要有两种:一种是通过
钻井取芯、井壁取芯及地质录井方法.对岩样进
行直接地观察、描述、分析和鉴定,确定岩层的
地质性质;二是通过对岩层的地球物理性质即电 学性质、声学性质、热学性质及放射性等方面的 研究,间接地确定岩层的地质性质。后者就是地 球物理测井所担负的任务。
两者均属于孔隙度测井系列。
补偿中子和中子伽马测井的应用
1、确定储集层孔隙度。 2、划分岩性。 3、判断气层。
4、套管井中子伽马推
移测井寻找气层。
中子伽马推移测井气层识别图
安66井
中子伽马 推移法
Rt=7.9-6.2Ω·m,Ac=380-325μs/m NG1=0.89-0.82,NG2=1.11-1.02
两种电极系: 电位电极系 梯度电极系 电极距
电极距越长,探测范围越大。
0.5
N M 2.25
B
2.5电极距
2.25
A 0.5 A
测量电极
供电电极 测量电极
M
供电电极
2.5米梯度
0.5米 电位
电极系的三个电极之间,如果成对电极之间的距离(MN或 AB)较大,即MN>AM或AB>AM。就叫做电位电极系。 电极系的三个电极之间,如果成对电极之间的距离(MN或 AB)最小,即AM>MN或MA>AB,叫做梯度电极系。
1、电极系附近的地层电阻率和层厚
是主要影响因素;
2、不同的电极系,测量的曲线数值 和形状不同; 3、泥浆电阻率、井径、围岩电阻率 及其厚度影响数值, 4、高阻邻层的屏蔽影响。
减值屏蔽、增值屏蔽
减值屏蔽
•应用
1.标准电极系与自然电位和井径曲线组合为标准测井,用
于绘制综合录井图、划分地层剖面和地层对比。多数地
20
21 20-22合试日产油60.9吨, 气43130方 22
3.声波测井
声波测井是记录单位距离声波传播的时间,即纵波速度的 倒数,单位为μs/m. 声波测井仪的声系部分使用两个发生器交替发出声脉冲, 而在相应的两对接受器中交替测量声波时差,由地面仪器 加以平均,输出一条声波时差曲线。
•曲线特点
常用系列:2.5米和4米底部 梯度电极,0.4米电位电极。 1、高阻层梯度曲线
高阻层处:视电阻率增大, 曲线不对称。 底界面附近:底部梯度曲线 出现极大值。
2、高阻层电位曲线
高阻层处:视电阻率增大,曲 线对称于层的中部。 层界面附近:曲线有拐点。
梯度曲线
电位曲线
•影响因素
测量的视电阻率是电极系附近各种介质导电性的综合反映:
区选用2.5米梯度电极系作为标准电极系。盐水泥浆井中 采用电极距较长的梯度电极系。 2.用于划分地层界面。 3.用长电极梯度曲线(如4米梯度)定性分析储层含油性。 4.短电极的电位曲线用于跟踪井壁取心。
2.侧向测井
普通电阻率测井在盐水钻井液或高阻薄层剖面
测井时,由于泥浆和围岩的分流作用,使得普通 电阻率测井获得的视电阻率远小于地层真电阻率, 同时由于砂岩的泥质含量增加,形成不少的中阻地 层,使得视电阻率曲线复杂。为此设计了使电流侧
向进入地层的侧向测井。这种方法是聚焦测井的
一种。
(1)三侧向测井基本原理
为使主电流侧向流入地层,三侧向电极系在主电极A0的上下方安置两 个屏蔽电极A1,A2,并通以与主电流同极性的屏蔽电流,通过井下 仪器电路的自动调节,保持两个屏蔽电极与主电极电位相等,完成对 主电流的聚焦作用。 其电流线分布图4所示。
(3)微电极测井资料的应用
A.划分岩性及确定渗透层 有无幅度差将渗透层和非渗透层区分开;根据幅度大 小和幅度差的大小地划分岩性。 含油气砂岩和含水砂岩都有明显的幅度差。含水砂岩的幅 度略低于含油砂岩的数值,含油性越好,这种差异越明显。 如果岩层泥质含量增多,幅度值和幅度差将变小。 泥岩。微电极曲线幅度低,没有幅度差或有很小的正、负 不规则的幅度差,曲线呈直线状。 致密砂岩或钙质砂岩。微电极曲线幅度特别高,常呈锯齿 状或刺刀状,有幅度感不等的正或负的幅度差。 生物灰岩。微电极幅度很高、正幅度差大。 粉砂岩。幅度值较低,有较小的正幅度差。