gmm估计方法stata

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

gmm估计方法stata
GMM 估计方法是一种参数估计方法,它是广义矩估计法的一种特殊
形式。

GMM 估计方法通过构造题目中的未知参数的样本矩来估计参数,这种方法可以通过软件 Stata 实现。

在 Stata 中进行 GMM 估计方法,首先需要使用 gmm 命令进行设置。

gmm 命令的基本设置格式如下:
gmm depvar (instrum:list varlist) [, option]
其中,depvar 是被解释变量,instrum 是工具变量,option 表示其
他设置选项。

GMM 估计方法的两个重要参数是工具变量和矩阵权重
矩阵。

在Stata 中,可以使用ivregress 命令来生成工具变量。

同时,Stata 还提供了弱工具变量下的优化算法,用户可以通过 ivreg2 命令
进行设置。

在进行 GMM 估计方法之前,需要先确定样本矩的形式,并确定权重
矩阵的构造方式。

对于 GMM 估计方法的权重矩阵,可以使用被广泛
引用的认可的经验记述变量或等权重矩阵来构建。

根据样本数据的特征,选择一种合适的矩阵会产生更精确的估计结果。

在实际应用中,GMM 估计方法可以用于计算模型的峰值位置、变化
趋势及其他未知参数。

这种方法在金融学、计量经济学、卫生经济学、国际贸易和宏观经济政策等领域得到广泛应用。

在 Stata 中,通过对gmm 命令中 option 等参数进行设置,可以轻松完成 GMM 估计方法的计算。

总之,GMM 估计方法是一种重要的参数估计方法,Stata 软件的GMM 模块提供了实现该方法的便利性。

无论是在学术研究还是实践
应用中,这种方法都拥有广泛应用前景。

相关文档
最新文档