2011—2017年新课标全国卷1理科数学分类汇编——8.立体几何
2011年—2017年新课标全国1卷理科数学题型分类汇编(含答案)
2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)说明:2017 年高考中,安徽、湖北、福建、湖南、山西、河北、江西、广东、河南等9 个省份选择使用新课标全国Ⅰ卷.2017 年,除了保留北京、天津、上海、江苏、浙江实行自主命题外(山东省语文、数学卷最后一年使用),大陆其他省区全部使用全国卷.研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.正所谓知己知彼,才能百战不殆,为了方便老师和同学们备考2018 年高考,本人认真研究近7 年新课标高考全国Ⅰ卷理科数学和高考数学考试说明,将2011 年—2017 年新课标全国Ⅰ卷进行了分类整理.2011 年—2017 年新课标高考全国Ⅰ卷理科数学分类汇编1.集合与常用逻辑用语 (2)2.函数与导数 (3)3.三角函数、解三角形 (7)4.平面向量 (10)5.数列 (11)6.不等式、推理与证明 (13)7.立体几何 (14)8.解析几何 (18)9.统计、概率分布列、计数原理 (23)10.复数及其运算 (30)11.程序框图 (31)12.坐标系与参数方程 (33)13.不等式选讲 (36)1.集合与常用逻辑用语一、选择题【2017,1】已知集合A ={x x <1},B ={x 3x <1},则()A.A B = {x | x <0}B.A B =R C.A B = {x | x >1}D.A B=∅【2016,1】设集合A = {x x2 - 4x + 3 <0},B = {x 2x - 3 > 0} ,则A B =()A.(-3,-3)2B.(-3,3)2C.(1,3)2D.(3,3)2【2015,3】设命题p :∃n∈N,n2 > 2n ,则⌝p 为()A.∀n ∈N ,n2 >2n B.∃n∈N,n2 ≤2n C.∀n ∈N ,n2 ≤2n D.∃n∈N ,n2 =2n【2014,1】已知集合A={ x | x2 - 2x - 3 ≥ 0 },B= {x -2 ≤x < 2},则A ⋂B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【2013,1】已知集合A={x|x2-2x>0},B={x|-x<,则( )A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )| x∈A,y ∈A ,x -y ∈A },则B 中包含元素的个数为()A.3 B.6 C.8 D.102.函数与导数一、选择题【2017,5】函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1 ,则满足-1 ≤f (x - 2) ≤1的x 的取值范围是()A.[-2, 2]B.[-1,1]C.[0, 4] D.[1, 3]【2017,11】设x, y, z 为正数,且2x = 3y = 5z ,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【2016,7】函数y =2x2 -e x 在[-2,2] 的图像大致为()A.B.C.D.【2016,8】若a >b >1,0 <c <1,则()A.a c <b c B.ab c <ba c C.a logb c <b logac D.logac <logbc【2015,12】设函数f (x) = e x (2x -1) -ax +a ,其中a <1,若存在唯一的整数x ,使得f (x ) < 0 ,00则a 的取值范围是()A.⎡-3,1⎫B.⎡-3,3 ⎫C.⎡3,3 ⎫D.⎡3,1⎫ ⎣⎢2e⎪ ⎢2e 4 ⎪ ⎢2e 4 ⎪ ⎢2e ⎪⎭⎣ ⎭ ⎣⎭⎣ ⎭【2014,3】设函数f (x) ,g(x) 的定义域都为R,且f (x) 是奇函数,g(x) 是偶函数,则下列结论正确的是()A .f (x) g(x) 是偶函数B .| f (x) | g(x) 是奇函数C .f (x) | g(x) |是奇函数D .| f (x) g(x) |是奇函数【2014,11】已知函数f (x) = ax3 - 3x2 +1 ,若f (x) 存在唯一的零点x ,且x >0,则a 的取值范围为0 0A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)⎧-x2 + 2x,x ≤ 0,【2013,11】已知函数f(x)=⎨⎩ln( x+1),x > 0.若|f(x)|≥ax,则a 的取值范围是( ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,10】已知函数f ( x) =1,则y =f (x) 的图像大致为()A.B.D.【2012,12】设点P 在曲线y =1e x 上,点Q 在曲线y = ln(2x) 上,则| PQ |的最小值为()2A.1- ln 2B- ln 2)C.1+ ln 2D+ ln 2)【2011,12】函数y =1x -1的图像与函数y =2s in πx(-2 ≤x ≤ 4) 的图像所有交点的横坐标之和等于()A.2 B.4 C.6 D.8【2011,2】下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y =x3B.y = x +1C.y =-x2 +1D.y = 2-x【2011,9】由曲线y =,直线y =x - 2 及y 轴所围成的图形的面积为()A.103二、填空题B.4 C.163D.6【2017,16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D、E、F 为圆O 上的点,△DBC,△ECA,△F AB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△F AB,使得D,E,F 重合,得到三棱锥.当△ABC.的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【2015,13】若函数f(x)=x ln(x a=【2013,16】若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2 对称,则f(x)的最大值为.三、解答题【2017,12】已知函数f (x)=ae2 x +(a -2)e x -x .(1)讨论f ( x) 的单调性;(2)若f ( x) 有两个零点,求a 的取值范围.【2016,12】已知函数f (x) = (x -2)e x +a(x -1)2 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x1 , x2 是f (x) 的两个零点,证明:x1 +x2 < 2 .【2015,12】已知函数f ( x) =x3 +ax +1,g(x) =-l n x .4(Ⅰ)当a 为何值时,x 轴为曲线y =f (x) 的切线;(Ⅱ)用min{m, n} 表示m, n 中的最小值,设函数h(x) = min{ f (x), g(x)} (x > 0 ),讨论h(x) 零点的个数.【2014,21】设函数f ( x0 =ae x ln x +be x-1,曲线y =f (x) 在点(1,f (1) 处的切线为y =e(x -1) + 2 .(Ⅰ) x求a,b;(Ⅱ)证明:f (x) >1.【2013,21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P 处有相同的切线y=4x+2.(1)求a,b,c,d 的值;(2)若x≥-2 时,f(x)≤kg(x),求k 的取值范围.【2012,21】已知函数f (x) 满足f (x) =f '(1)e x-1 -f (0)x+1x2 .2(1)求f (x) 的解析式及单调区间;(2)若f (x) ≥1x2 +ax +b ,求(a +1)b 的最大值.2【2011,21】已知函数f (x) =a ln x+b,曲线y =f (x) 在点(1, f (1)) 处的切线方程为x +2y- 3 = 0 .x +1x(Ⅰ)求a 、b 的值;(Ⅱ)如果当x > 0 ,且x ≠1时,f (x) > ln x+k,求k 的取值范围.x -1 x3.三角函数、解三角形一、选择题2π 【2017,9】已知曲线 C 1:y =cos x ,C 2:y =sin (2x +3),则下面结正确的是( )πA .把 C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 6得到曲线C 2 个单位长度,πB .把C 1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12得到曲线C 2个单位长度,1 C .把 C 1 上各点的横坐标缩短到原来的 2得到曲线C 2π 倍,纵坐标不变,再把得到的曲线向右平移 6个单位长度,1D .把 C 1 上各点的横坐标缩短到原来的 2π倍,纵坐标不变,再把得到的曲线向左平移 12个单位长度,得到曲线 C 2【2016,12】已知函数 f ( x ) = sin(ωx + ϕ )(ω > 0, ϕ≤ π , x = - π为 f ( x ) 的零点, x = π 为244y = f (x ) 图像的对称轴,且 f ( x ) 在 ( π 18 , 5π单调,则ω 的最大值为()36A .11B .9C .7D .5【2015,8】函数 f ( x ) = cos(ω x + ϕ) 的部分图象如图所示,则 f ( x ) 的单调递减区间为()A . (k π - 1 , k π + 3), k ∈ ZB . (2k π - 1 , 2k π + 3), k ∈ Z4 4 4 4 C . (k - 1 , k + 3k ∈ ZD . (2k - 1 , 2k + 3), k ∈ Z4 4【2015,2】 sin 20 cos10- cos160 sin10 4 4= ( )A .BC . - 12D . 12【2014,6】如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线OA ,终边为射线 OP ,过点 P 作直线OA 的垂线,垂足为 M ,将点 M 到直线OP 的距离表示为 x 的函数 f ( x ) ,则y= f ( x ) 在[0, π ]上的图像大致为()【2014,8】设α ∈ (0, π ) , β ∈ (0, π) ,且 tan α =1 + sin β,则()2A . 3α - β = π2 2B . 2α - β = π2cos βC . 3α + β = π 2D . 2α + β = π2【2012,9】已知ω > 0 ,函数 f ( x ) = sin(ω x + π ) 在( π,π )上单调递减,则ω 的取值范围是()4 2A .[ 1 , 5 ]B .[ 1 , 3 ]C .(0, 1 ]D .(0,2]2 4 2 4 2【2011,5】已知角θ 的顶点与原点重合,始边与 x 轴的正半轴重合,终边在直线 y = 2x 上,则 cos 2θ =A . - 45B . - 35C . 35D . 45【2011,11】设函数 f ( x ) = sin(ω x + ϕ ) + cos(ω x + ϕ)(ω > 0, ϕ且 f (-x ) = f (x ) ,则( )< π 的最小正周期为π , 2A . f ( x ) 在 ⎛ 0, π ⎫单调递减 B . f ( x ) 在 ⎛ π ,3π ⎫单调递减2 ⎪ 4 4 ⎪⎝ ⎭⎝ ⎭C . f ( x ) 在 ⎛ 0, π ⎫单调递增 D . f ( x ) 在 ⎛ π ,3π ⎫单调递增2 ⎪ 4 4 ⎝ ⎭⎝ ⎭二、填空题【2015,16】在平面四边形 ABCD 中,∠A = ∠B = ∠C = 75 ,BC = 2 ,则 AB 的取值范围是.【2014,16】已知 a , b , c 分别为 ∆ABC 的三个内角 A , B , C 的对边, a =2,且 (2 + b )(sin A - sin B ) = (c - b ) sin C ,则 ∆ABC 面积的最大值为.【2013,15】设当 x =θ 时,函数 f (x )=sin x -2cos x 取得最大值,则 cos θ=.【2011,16】在 ABC 中, B = 60 , AC =AB + 2BC 的最大值为 .三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为 a ,b ,c ,已知△ABC 的面积为 a 23sin A(1)求 sin B sin C ;(2)若 6cos B cos C =1,a =3,求△ABC 的周长【2016,17】∆ABC 的内角A, B,C的对边分别为a,b, c ,已知2c os C(a cos B +b cos A) =c .(Ⅰ)求C ;(Ⅱ)若c = 7 ,∆ABC 的面积为3 3,求∆ABC 的周长.2【2013,17】如图,在△ABC 中,∠ABC=90°,AB=BC=1,P 为△ABC 内一点,∠BPC=90°.(1)若PB=1,求P A;(2)若∠APB=150°,求tan∠PBA.2【2012,17】已知a ,b ,c 分别为△ABC 三个内角A,B,C 的对边,a cos C +s in C -b -c = 0 .(1)求A;(2)若a = 2 ,△ABC 的面积为 b ,c .⎭⎝ ⎦4.平面向量一、选择题【2015,7】设 D 为 ∆ABC 所在平面内一点 BC = 3CD ,则()A . AD = - 1 AB + 4AC3 3 C . AD =4 AB + 1AC3 3B . AD = 1 AB - 4AC3 3 D . AD =4 AB - 1AC3 3【2011,10】已知 a 与 b 均为单位向量,其夹角为θ ,有下列四个命题P : a + b > 1 ⇔ θ ∈ ⎡0, 2π ⎫P : a + b > 1 ⇔ θ ∈ ⎛ 2π ,π ⎤1 ⎢⎣ 3 ⎪⎭ 2 3⎥ ⎝ ⎦⎡ π ⎫⎛ π ⎤P 3 : a - b > 1 ⇔ θ ∈ ⎢⎣0, 3 ⎪P 4 : a - b > 1 ⇔ θ ∈ 3 ,π ⎥其中的真命题是()A . P 1 , P 4B . P 1 , P 3C . P 2 , P 3D . P 2 , P 4二、填空题【2017,13】已知向量 a ,b 的夹角为 60°,|a |=2, | b |=1,则| a +2 b |=.【2016,13】设向量 a = (m ,1) ,b = (1,2) ,且| a + b |2= | a |2+ | b |2,则 m =.【2014,15】已知 A ,B ,C 是圆 O 上的三点,若 AO = 1( A B + AC ) ,则 AB 与 AC 的夹角为 . 2【2013,13】已知两个单位向量 a ,b 的夹角为 60°,c =t a +(1-t )b .若 b ·c =0,则 t =.【2012,13】已知向量 a , b 夹角为 45°,且| a |= 1,| 2a - b |= 10 ,则| b |=.n 2 15.数列一、选择题【2017,4】记S n 为等差数列{a n } 的前 n 项和.若 a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为( )A .1B .2C .4D .8【2017,12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们 推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2, 1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110【2016,3】已知等差数列{a n } 前 9 项的和为 27 , a 10 = 8 ,则 a 100 = ( )A .100B . 99C .98D .97 【2013,7】设等差数列{a n }的前 n 项和为 S n ,若 S m -1=-2,S m =0,S m +1=3,则 m =( ).A .3B .4C .5D .6 【2013,12】设△A n B n C n 的三边长分别为 a n ,b n ,c n ,△A n B n C n 的面积为 S n ,n =1,2,3,….c + a b + a 若 b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1= nn,c n +1=2nn,则( ).2A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列2 1【2013,14】若数列{a n }的前 n 项和 S n =a n 3+ ,则{a n }的通项公式是 a n = .3 【2012,5】已知{ a n }为等比数列, a4 + a 7 = 2 , a 5a 6 = -8 ,则 a 1 + a 10 = ()A .7B .5C .-5D .-7二、填空题【2016,15】设等比数列{a n } 满足 a 1 + a 3 = 10 , a 2 + a 4 = 5 ,则 a 1a 2a n 的最大值为.【2012,16】数列{ a n }满足 a n +1 + (-1) a n = 2n -1 ,则{ a n }的前 60 项和为 .三、解答题【2015,17】 S n 为数列{a n } 的前 n 项和.已知 a n >0, a+ 2a n = 4S n + 3 . n(Ⅰ)求{a n } 的通项公式;(Ⅱ)设 b n =,求数列{b n } 的前n 项和. a n a n +12【2014,17】已知数列{ a n }的前 n 项和为 S n , a 1 =1, a n ≠ 0 , a n a n +1 = λS n -1,其中 λ 为常数.(Ⅰ)证明: a n +2 - a n = λ ;(Ⅱ)是否存在 λ ,使得{ a n }为等差数列?并说明理由.【2011,17】等比数列{a n } 的各项均为正数,且 2a 1 + 3a 2 = 1, a 3 = 9a 2 a 6 .(Ⅰ)求数列{a n } 的通项公式;(Ⅱ)设 ⎧ 1 ⎫ b n = log 3 a 1 + log 3 a 2 + ...... + log 3 a n , 求数列 ⎨ ⎬ 的前n 项和. ⎩ b n ⎭⎩⎨⎩⎪ ⎨ x ≥ 06.不等式、推理与证明一、选择题⎧ x + y ≥ 1 【2014,9)】不等式组 ⎨⎩ x - 2 y ≤ 4的解集记为D .有下面四个命题: p 1 : ∀(x , y ) ∈ D , x + 2 y ≥ -2 ;p 2 : ∃(x , y ) ∈ D , x + 2 y ≥ 2 ; P 3 : ∀(x , y ) ∈ D , x + 2 y ≤ 3 ; p 4 : ∃(x , y ) ∈ D , x + 2 y ≤ -1 .其中真命题是()A . p 2 , P 3B . p 1 , p 4C . p 1 , p 2D . p 1 , P 3二、填空题⎧ x + 2 y ≤ 1⎪【2017,14】设 x ,y 满足约束条件 ⎨2x + y ≥ -1,则z = 3x - 2 y 的最小值为 .⎪ x - y ≤ 0 【2016,16】某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg , 乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时.生产一件 产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则 在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 元.⎧ x -1 ≥ 0【2015,15】若 x ,y 满足约束条件 ⎪x - y ≤ 0 ⎪ x + y - 4 ≤ 0,则 y 的最大值为 .x【2014,14】甲、乙、丙三位同学被问到是否去过 A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过 B 城市; 乙说:我没去过 C 城市; 丙说:我们三人去过同一个城市.由此可判断乙去过的城市为.⎧ x - y ≥ -1⎪x + y ≤ 3【2012,14】设 x , y 满足约束条件 ⎪ ⎪⎩ y ≥ 0,则 z = x - 2 y 的取值范围为 .⎧3 ≤ 2x + y ≤ 9,【2011,13】若变量 x , y 满足约束条件 ⎨⎩6 ≤ x - y ≤ 9,则 z = x + 2 y 的最小值为 .7.立体几何一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为( ) A .10B .12C .14D .16【2016,11】平面α 过正方体 ABCD - A 1 B 1C 1 D 1 的顶点 A ,α // 平面CB 1 D 1 ,α 平面 ABCD= m ,α 平面 ABB 1 A 1 = n ,则 m , n 所成角的正弦值为3A .B .2 3 1 C .D .2233【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直 的半径.若该几何体的体积是28π,则它的表面积是( )3A .17πB .18πC . 20πD . 28π【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下 问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思 为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的 弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估算出堆放的米约有( )A .14 斛B .22 斛C .36 斛D .66 斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为 r )组成一个几何体,该几何体三视图中的正视 图和俯视图如图所示. 若该几何体的表面积为16 + 20π ,则 r =()A .1B .2C .4D .8【2015 年,11 题】【2014 年,12 题】 【2013 年,6 题】【2014,12】如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图,则该多面体的个 条棱中,最长的棱的长度为()A . 6 2B . 4 2C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高 8 cm ,将一个球放在容器口,再向 容器内注水,当球面恰好接触水面时测得水深为 6 cm ,如果不计容器的厚度,则球的体积为( )A .500π cm 3B .866π cm 3C .1372π cm 3D .2048π cm 33333【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013 年,8】【2012 年,7】【2011 年,6】【2012,7】如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为 ( )A .6B .9C .12D .15 【2012,11】已知三棱锥 S -ABC 的所有顶点都在球 O 的球面上,△ABC 是边长为 1 的正三角形,SC 为球O 的直径,且 SC =2,则此棱锥的体积为( )A6B C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题【2011,15】已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB = 6, BC =则棱锥O - ABCD 的体积为.三、解答题【2017,18】如图,在四棱锥 P-ABCD 中,AB//CD ,且 ∠BAP = ∠CDP = 90(1)证明:平面P AB ⊥平面 P AD ;(2)若P A =PD =AB =DC , ∠APD = 90 ,求二面角 A -PB -C 的余弦值.o 【2016,18】如图,在以 A , B , C , D , E , F 为顶点的五面体中,面 ABEF 为正方形,AF = 2FD , ∠AFD = 90︒ ,C且二面角 D - AF - E 与二面角 C - BE - F 都是 60︒ .DEB(Ⅰ)证明:平面 ABEF ⊥ 平面 EFDC ; (Ⅱ)求二面角 E - BC - A 的余弦值.【2015,18】如图,四边形 ABCD 为菱形,∠ABC = 120A,E , F是平面 ABCD 同一侧的两点,BE ⊥平面 ABCD ,DF ⊥平面ABCD , BE = 2DF , AE ⊥ EC .(I )证明:平面 AEC ⊥平面 AFC ;(II )求直线 AE 与直线 CF 所成角的余弦值.【2014,19】如图三棱柱 ABC - A 1B 1C 1 中,侧面 BB 1C 1C 为菱形, AB ⊥ B 1C .(Ⅰ) 证明: AC = AB 1 ;(Ⅱ)若 AC ⊥ AB 1 , ∠CBB 1 = 60 ,AB=BC ,求二面角A - A 1B 1 -C 1 的余弦值.【2013,18】如图,三棱柱ABC-A1B1C1 中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C 所成角的正弦值.1AA1,D 是棱AA1 的中点,DC1⊥BD.【2012,19】如图,直三棱柱ABC-A1B1C1 中,AC=BC=2(1)证明:DC1⊥BC;(2)求二面角A1-BD-C1 的大小.B1AB【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C 的余弦值.C2 2 2 2 2 22 28.解析几何一、选择题【2017,10】已知F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点,直线 l 2 与C 交于D 、E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10【2016,10】以抛物线 C 的顶点为圆心的圆交 C 于 A , B 两点,交 C 的准线于 D , E 两点,已知 AB = 4 2 ,DE = 2 5 ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程x 2 m 2+ ny 2- 3m 2 - n= 1 表示双曲线,且该双曲线两焦点间的距离为 4 ,则 n 的 取值范围是( )A . (-1,3)B . (-1, 3)C . (0,3)D . (0, 3)x 2 【2015,5】已知 M ( x 0 , y 0 ) 是双曲线 C : 2- y 2= 1上的一点,F 1 , F 2 是 C 的两个焦点,若 MF 1 ⋅ MF 2 < 0 ,则 y 0 的取值范围是()A . (- , )B . (-, )C . (-,D . (-,3 36 63 33 3【2014,4】已知 F 是双曲线 C :x 2 - my 2 = 3m (m > 0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为A B .3C .D . 3m【2014,10】已知抛物线 C : y 2= 8x 的焦点为 F ,准线为 l , P 是l 上一点,Q 是直线 PF 与C 的一个 交点,若 FP = 4FQ ,则| QF | =()A . 72B . 5222C .3D .2x y 【2013,4】已知双曲线 C : - a 2 b 2 =1 (a >0,b >0)的离心率为 ,则 C 的渐近线方程为( ).2A .y = ± 1 x 4B .y = ± 1 x 3 2 2C .y = ± 1 x 2D .y =±x x y 【2013,10】已知椭圆E : + a 2 b 2=1 (a >b >0)的右焦点为 F (3,0),过点 F 的直线交 E 于 A ,B 两点.若 AB 的中点坐标为(1,-1),则 E 的方程为()A . x + y =1B . x + y =1C . x + y =1D . x + y =145 3636 2727 1818 9x 2 y 2 3a【2012,4】设 F 1 、 F 2 是椭圆 E : a 2 + b 2 ( a > b > 0 )的左、右焦点,P 为直线 x = 上一点,2∆F 2 PF 1 是底角为 30°的等腰三角形,则 E 的离心率为()A . 12B . 23C . 34D . 45【2012,8】等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y 2= 16x 的准线交于 A ,B 两点,| AB |=,则 C 的实轴长为( )A B .C .4 D .8【2011,7】设直线 L 过双曲线 C 的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A ,B 两点, AB 为C 的实轴长的 2 倍,则 C 的离心率为( )A B C .2 D .3二、填空题【2017,15】已知双曲线 C : x 2y 2-= 1 (a >0,b >0)的右顶点为 A ,以 A 为圆心,b 为半径作圆 A ,圆 A a 2 b 2与双曲线 C 的一条渐近线交于 M 、N 两点.若∠MAN =60°,则 C 的离心率为 .x 2 【2015,14】一个圆经过椭圆 y 2+ = 1的三个顶点,且圆心在 x 轴的正半轴上,则该圆的标准方程为 .16 4【2011,14】在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F 1 , F 2 在 x 轴上,离心率为 .过2F 1 的直线 L 交 C 于 A , B 两点,且 ABF 2 的周长为 16,那么 C 的方程为.三、解答题【2017,20】已知椭圆 C : x 2 y 2 + =1(a >b >0),四点 P (1,1),P (0,1),P (–1 ),P (1, ) a 2 b 2 1 2 3 42 2中恰有三点在椭圆C 上.(1)求 C 的方程;(2)设直线 l 不经过 P 2 点且与 C 相交于 A ,B 两点.若直线 P 2A 与直线 P 2B 的斜率 的和为–1,证明:l 过定点.【2016,20】设圆x2 +y2 + 2x -15 = 0 的圆心为A ,直线l 过点B(1,0) 且与x 轴不重合,l 交圆A 于C, D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EA +EB 为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C1 ,直线l 交C1 于M , N 两点,过B 且与l 垂直的直线与圆A 交于P,Q两点,求四边形MPNQ 面积的取值范围.x2【2015,20】在直角坐标系xOy 中,曲线C :y =与直线l :y =kx +a (a > 0 )交于M , N 两点.4(Ⅰ)当k = 0 时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.x 2 y 2 【2014,20】已知点 A (0,-2),椭圆 E : + a 2 b 2直线 AF 的斜率为, O 为坐标原点.3= 1(a > b > 0) 的离心率为, F 是椭圆的焦点,(Ⅰ)求 E 的方程;(Ⅱ)设过点 A 的直线l 与 E 相交于 P , Q 两点,当 ∆OPQ 的面积最大时,求l 的方程.【2013,20】已知圆 M :(x +1)2+y 2=1,圆 N :(x -1)2+y 2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆 心 P 的轨迹为曲线 C .(1)求 C 的方程;(2)l 是与圆 P ,圆 M 都相切的一条直线,l 与曲线 C 交于 A ,B 两点,当圆 P 的半径 最长时,求|AB |.【2012,20】设抛物线C:x2 =2py(p > 0 )的焦点为F,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B,D 两点.(1)若∠BFD=90°,△ABD 的面积为4 2 ,求p 的值及圆F 的方程;(2)若A,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3 上,M 点满足MB / /OA ,MA⋅AB =MB ⋅BA ,M 点的轨迹为曲线C.(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.59.统计、概率分布列、计数原理一、选择题【2017,2】如图,正方形 ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部 分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()1 π 1 π A .B .C .D .4824【2017,6】(1 + 1+ x )6 展开式中 x 2 的系数为( ) x 2A .15B .20C .30D .35【2016,4】某公司的班车在 7 : 30 ,8 : 00 ,8 : 30 发车,小明在 7 : 50 至8 : 30 之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过 10 分钟的概率是( )A .1 B .1C .2 D .3 3234【2015,10】 (x 2 + x + y )5 的展开式中, x 5 y 2 的系数为()A .10B .20C .30D .60【2015,4】投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次投篮投中的概率为 0.6, 且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 【2014,5】4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活 动的概率( )A . 18 B . 38 C . 58 D . 78【2013,3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事 先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在 下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样 【2013,9】设 m 为正整数, ( x + y )2m 展开式的二项式系数的最大值为 a , (x + y )2m +1展开式的二项式系 数的最大值为 b .若 13a =7b ,则 m =( )A .5B .6C .7D .8 【2012,2】将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有( )A .12 种B .10 种C .9 种D .8 种【2011,8】 ⎛ x + a ⎫ ⎛2x - 1 ⎫的展开式中各项系数的和为 2,则该展开式中常数项为( ) x ⎪ x ⎪ ⎝ ⎭ ⎝⎭ A . -40B . -20C .20D .40【2011,4】有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A . 13二、填空题B . 12C . 23D . 34【2016,14】 (2x +x )5 的展开式中, x 3 的系数是 .(用数字填写答案)【2014,13】 (x - y )(x + y )8 的展开式中 x 2 y 7 的系数为 .(用数字填写答案)【2012,15】某一部件由三个电子元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作.设三个 电子元件的使用寿命(单位:小时)均服从正态分布 N (1000,502),且各个元件元件1元件2元件3 能否正常工作相互独立,那么该部件的使用寿命超过 1000 小时的概率为 . 三、解答题【2017,19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件, 并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从 正态分布N (μ,σ2). (1)假设生产状态正常,记X 表示一天内抽取的 16 个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P (X ≥1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的 生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16 个零件的尺寸:1 16经计算得 x = ∑ x i = 9.97 ,s ==≈ 0.212 ,其中 x i 为抽取 16 i =1的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为 μ 的估计值 μˆ ,用样本标准差 s 作为 σ 的估计值σˆ ,利用估计值判断是否需对当 天的生产过程进行检查?剔除(μˆ - 3σˆ , μˆ + 3σˆ ) 之外的数据,用剩下的数据估计 μ 和 σ(精确到 0.01). 附:若随机变量Z 服从正态分布 N (μ,σ2),则 P (μ–3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592≈ 0.09 .【2016,19】某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求P( X ≤n) ≥ 0.5 ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n = 19 与n = 20 之中选其一,应选用哪个?8【2015,19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售 量 y (单位:t )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费 x i 和年销售量 y i (i = 1, 2, , 8 )数据作了初步处理,得到下面的散点图及一些统计量的值.1 8表中 w i =, w =∑ wii =1(Ⅰ)根据散点图判断, y = a + bx 与 y = c + y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及数据,建立 y 关于 x 的回归方程;(III )已知这种产品的年利润 z 与 x , y 的关系为 z = 0.2 y - x ,根据(Ⅱ)的结果回答下列问题:(i )年宣传费 x =49 时,年销售量及年利润的预报值是多少?(ii )年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据 (u 1 , v 1 ), (u 2 , v 2 ), , (u n , v n ) ,其回归直线 v = α + β u 的斜率和截距的最小二乘估计n∑ (ui- u )(v i - v )分别为 β = i =1n,α = v - β u .∑i =1(u i- u )2【2014,18)】从某企业的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500 件产品质量指标值的样本平均数x 和样本方差s 2 (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,δ2 ) ,其中μ近似为样本平均数x ,δ2 近似为样本方差s 2 .(i)利用该正态分布,求P(187.8 <Z < 212.2) ;(ii)某用户从该企业购买了100 件这种产品,记X 表示这100 件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .12.2.若Z ~N(μ,δ2 ) ,则P(μ-δ<Z <μ+δ) =0.6826,P(μ- 2δ<Z <μ+ 2δ) =0.9544.【2013,19】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4 件作检验,这4 件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4 件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1 件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质2品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100 元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.【2012,18】某花店每天以每枝5 元的价格从农场购进若干枝玫瑰花,然后以每枝10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16 枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n N )的函数解析式;(2)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:以100 天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16 枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16 枝或17 枝玫瑰花,你认为应购进16 枝还是17 枝?请说明理由.⎨ ⎩ 【2011,19】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或 等于 102 的产品为优质品,现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产 品,并测量了每件产品的质量指标值,得到下面试验结果: A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用 A 配方,B 配方生产的产品的优质品率;⎧-2, t < 94(Ⅱ)已知用 B 配方生成的一件产品的利润 y(单位:元)与其质量指标值 t 的关系式为y = ⎪2, 94 ≤ t < 102 ⎪4, t ≥ 102从用 B 配方生产的产品中任取一件,其利润记为 X (单位:元),求 X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)10.复数及其运算一、选择题【2017,3】设有下面四个命题1p 1 : 若复数 z 满足 ∈ R ,则 z ∈ R ; p 2 : 若复数 z 满足 z 2 ∈ R ,则z ∈ R ; z p 3 : 若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ; p 4 : 若复数 z ∈ R ,则 z ∈R . 其中的真命题为( )A . p 1 , p 3B . p 1 , p 4C . p 2 , p 3D . p 2 , p 4【2016,2】设 (1 + i )x = 1 + yi ,其中 x , y 是实数,则 x + yi = ( )A .1B . 2C . 3D . 2【2015,1】设复数 z 满足1 + z= i ,则| z | =( ) 1 - zA .1B C .D .2(1 + i )3【2014,2】(1 - i )2=( )A .1 + iB .1 - iC . -1+ iD .-1- i 【2013,2】若复数 z 满足(3-4i)z =|4+3i|,则 z 的虚部为().A .-4B . - 45C .4D . 45【2012,3】下面是关于复数 z = 22 -1 + i的四个命题:p 1 :| z |= 2 ; p 2 : z = 2i ; p 3 : z 的共轭复数为1 + i ; p 4 : z 的虚部为 -1.其中的真命题为( )A . p 2 , p 3B . p 1 , p 2C . p 2 , p 4D . p 3 , p 4【2011,1】复数2 + i的共轭复数是( ) 1 - 2iA . - 3 i5B . 3 iC . -i5D .i11.程序框图一、选择题【2017,8】右面程序框图是为了求出满足3n - 2n >1000 的最小偶数n,那么在两个空白框中,可以分别填入A.A+1 B.A>1000 和n=n+2C.A ≤1000 和n=n+1 D.A ≤1000 和n=n+2【2017,8】【2016,9】【2015,9】【2016,9】执行右面的程序框图,如果输入的x = 0 ,y =1,n =1,则输出x, y 的值满足()A.y =2x B.y =3x C.y =4x D.y =5x【2015,9】执行右面的程序框图,如果输入的t =0.01,则输出的n =()A.5 B.6 C.7 D.8【2014,7】执行下图的程序框图,若输入的a,b, k 分别为1,2,3,则输出的M =()A .203B .165C .72D .158【2013,5】执行下面的程序框图,如果输入的t∈[-1,3],则输出的s 属于( ).A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]【2012,6】如果执行右边和程序框图,输入正整数N (N ≥ 2 )和实数a1 ,a2 ,…,a N ,输出A,B,则()A.A +B 为a1 ,a2 ,…,a N 的和B.A +B为a ,a ,…,a 的算术平均数2 1 2 NC.A 和B 分别是a1 ,a2 ,…,a N 中最大的数和最小的数D.A 和B 分别是a1 ,a2 ,…,a N 中最小的数和最大的数【2013,5】【2012,6】【2011,3】【2011,3】执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A.120 B.720 C.1440 D.5040⎩12.坐标系与参数方程一、解答题⎧ x = 3cos θ ,【2017,22】(选修 4-4,坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 的参数方程为 ⎨(θ ⎩ y = sin θ ,⎧ x = a + 4t ,为参数),直线 l 的参数方程为 ⎨ y = 1 - t , ( t 为参数).(1)若 a = -1 ,求 C 与 l 的交点坐标;(2)若 C 上的点到 l 的距离的最大值为a .⎧x = a cos t ,【2016,23】(选修 4-4:坐标系与参数方程)在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ⎨⎩ y = 1 + a sin t ,(t 为参数, a > 0) .在以坐标原点为极点, x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ = 4 c os θ .(Ⅰ)说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(Ⅱ)直线 C 3 的极坐标方程为θ = α 0 ,其中α 0 满足 tan α 0 = 2 ,若曲线 C 1 与 C 2 的公共点都在C 3 上, 求 a .。
9.解析几何——2011—2017年新课标全国卷理科数学分类真题解析(含答案)
=6.
椭圆的性质,容易排除点 P1(1,1)不在椭圆上,从而求出椭圆方程;(2)利用直线与椭圆 优解 依题意,抛物线 C:y2=8x 的焦点 F(2,0),准线 x=-2,因为 M 是 C 上一点,FM 的延
的方程得出根与系数的关系,从而使问题得解,在解题中要注意斜率不存在的情形.
长线交 y 轴于点 N,M 为 FN 的中点,则点 M 的横坐标为 1,所以|FN|=2|MF|=2[1-(-2)]=6.
第 1页 共 28页 ◎ 第 2页 共 28页
……○…………内…………○…………装…………○…………订…………○…………线…………○……… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
……○…………外…………○…………装…………○…………订…………○…………线…………○………
9-2
的斜率为 k,则 l1:y=k(x-1),l2:y=- (x-1),由
消去 y 得 k2x2-(2k2+4)x+k2=0,
(2)设直线 P2A 与直线 P2B 的斜率分别为 k1,k2. 如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,得 A,B 的坐标分别为(t,
),(t,- ).
的距离 d=
,因为∠MAN=60°,圆的半径为 b,所以 b·sin 60°= ,即
,所
2018 课标Ⅱ卷(全国甲卷)
以 e=
.
2018 课标Ⅲ卷(全国丙卷)
20.已知椭圆 C: + =1(a>b>0),四点 P1(1,1),P2(0,1),P3(-1, ),P4(1, )中恰有三点在
2017 课标Ⅰ卷(全国乙卷) 10.已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,l2,直线 l1 与 C 交
2011-2017全国1卷分类汇编 解析几何
2011-2017全国卷分类汇编——解析几何【2011年全国】(21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【2012年全国】(20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点。
(Ⅰ)若90BFD ∠=,ABD ∆的面积为求p 的值及圆F 的方程;(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。
【2013年全国】(20)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.【2014年全国】20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2015年全国】(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。
2011年—2017年新课标全国卷(1卷、2卷、3卷)理科数学试题分类汇编——12.解析几何
2011年—2017年新课标全国卷理科数学试题分类汇编12.解析几何一、选择题(2017·新课标Ⅰ,10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10(2017·新课标Ⅱ,9)若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BC D(2017·新课标Ⅲ,5)已知双曲线C :()2222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ). A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= (2017·新课标Ⅲ,10)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ).A .3B .3C .3D .13(2016·新课标Ⅰ,5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0((2016·新课标Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8(2016·新课标Ⅱ,4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-C D .2(2016·新课标Ⅱ,11)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )AB .32CD .2(2016·新课标Ⅲ,11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE 的中点,则C 的离心率为A.13B. 12C. 23D. 34(2015·新课标Ⅰ,5)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )(A )( (B )( (C )( (D )( (2015·新课标Ⅱ,7)过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A .B .8C .D .10(2015·新课标Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2CD (2014·新课标Ⅰ,4)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3 C D .3m(2014·新课标Ⅰ,10)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2 (2014·新课标Ⅱ,10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( )A BC .6332D .94(2013·新课标Ⅰ,4)已知双曲线C :2222=1x y a b-(a >0,b >0),则C 的渐近线方程为( )A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013·新课标Ⅰ,10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + (2013·新课标Ⅱ,11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( )A.24y x =或28y x =B.22y x =或28y x =C.24y x =或216y x =D.22y x =或216y x = (2013·新课标Ⅱ,12)已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2-C.1(1]3D.11[,)32(2012·新课标Ⅰ,4)设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34D .45(2012·新课标Ⅰ,8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =C 的实轴长为( )AB .C .4D .8(2012·新课标Ⅱ,4)设F 1,F 2是椭圆E : 12222=+by a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( )A.21B.32 C.43 D.54 (2012·新课标Ⅱ,8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( )A.2B. 22C. 4D. 8 (2011·新课标Ⅰ,7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A (B (C )2 (D )3(2011·新课标Ⅱ,7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )二、填空题(2017·新课标Ⅰ,15)已知双曲线C :22221x y a b -=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________. (2017·新课标Ⅱ,16)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .(2016·新课标Ⅲ,16)已知直线l :30mx y m ++与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,若AB =||CD =__________.(2015·新课标Ⅰ,14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014·新课标Ⅱ,6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.(2011·新课标Ⅰ、Ⅱ,14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 . 三、解答题(2017·新课标Ⅰ,20)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2017·新课标Ⅱ,20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(2016·新课标Ⅰ,20)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.(2016·新课标Ⅱ,20)已知椭圆E:2213x yt+=的焦点在x轴上,A是E的左顶点,斜率为k (k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.(2016·新课标Ⅲ,20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.(2015·新课标Ⅰ,20)在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.(2015·新课标Ⅱ,20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.(2014·新课标Ⅰ,20)已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.(2014·新课标Ⅱ,20)设F 1,F 2分别是椭圆()222210y x a b +=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b . .(2013·新课标Ⅰ,20)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.(2013·新课标Ⅱ,20)平面直角坐标系xOy中,过椭圆2222:1(0)x yM a ba b+=>>右焦点F的直线x y+交M于,A B两点,P为AB的中点,且OP的斜率为1 2 .(Ⅰ)求M的方程;(Ⅱ),C D为M上的两点,若四边形ACBD的对角线CD AB⊥,求四边形ACBD面积的最大值.(2012·新课标Ⅰ、Ⅱ,20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.(2011·新课标Ⅰ、Ⅱ,20)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.2011年—2017年新课标全国卷理科数学试题分类汇编12.解析几何一、选择题(2017·新课标Ⅰ,10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 【答案】A 解析:设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴, 易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴,同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-,又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ; 【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知: 2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ; (2017·新课标Ⅱ,9)若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2 BCD【答案】A 解析:解法一:根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可=2e=. 解法二:设渐进线的方程为y kx=∴=23k=;由于渐近线的斜率与离心率关系为221k e=-,解得2e=.(2017·新课标Ⅲ,5)已知双曲线C:()2222:10,0x yC a ba b-=>>的一条渐近线方程为2y x=,且与椭圆221123x y+=有公共焦点,则C的方程为().A.221810x y-=B.22145x y-=C.22154x y-=D.22143x y-=【答案】B 解析:因为双曲线的一条渐近线方程为y x=,则ba=又因为椭圆221123x y+=与双曲线有公共焦点,易知3c=,则2229a b c+==②由①②解得2,a b==C的方程为22145x y-=.故选B.(2017·新课标Ⅲ,10)已知椭圆()2222:10x yC a ba b+=>>的左、右顶点分别为1A,2A,且以线段12A A 为直径的圆与直线20bx ay ab-+=相切,则C的离心率为().ABCD.13【答案】A 解析:因为以12A A为直径为圆与直线20bx ay ab-+=相切,所以圆心到直线距离d等于半径,所以d a==,又因为0,0a b>>,则上式可化简为223a b=因为222b a c=-,可得()2223a a c=-,即2223ca=,所以cea==故选A.(2016·新课标Ⅰ,5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【答案】A 解析:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .(2016·新课标Ⅰ,10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8【答案】B 解析:以开口向右的抛物线为例来解答,其他开口同理 设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,A x,2p D ⎛- ⎝,点(0,A x 在抛物线22y px =上,∴082px =……①;点2p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B .(2016·新课标Ⅱ,4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-CD .2【答案】A 解析:圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A .(2016·新课标Ⅱ,11)已知F 1,F 2是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) AB .32CD .2【答案】A 解析:离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---. 故选A .F(2016·新课标Ⅲ,11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE 的中点,则C 的离心率为A. 13B. 12C. 23D. 34【答案】A 解析:易得,2ON OB a MF MF AF a cMF BF a c OE ON AO a-=====+ 12a a c a c a c a a c --∴=⋅=++, 13c e a ∴==(2015·新课标Ⅰ,5)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是(A)(33-(B)(,)66- (C)(33- (D)(33- 【答案】A 解析:从120MF MF ⋅<入手考虑,120MF MF ⋅=可得到以12FF 为直径的圆与C 的交点1234,,,M M M M (不妨设12,M M 在左支上,34,M M 在右支上),此时1112M F M F ⊥,1112M F M F -=-12F F =112111201211||22M F F S M F M F y F F ∆=⋅=⋅解得0||y =,则M 在双曲线的12M M 或34M M 上运动,0y∈(33-,故选(A ).(2015·新课标Ⅱ,7)过三点A (1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N 两点,则MN =( )A.B .8C.D .10【答案】C 解析:由已知得,,所以k AB k CB =-1,所以AB ⊥CB ,即△ABC 为直角三角形,其外接圆圆心为(1, -2),半径为5,所以外接圆方程为(x -1)2+(y +2)2=25,令x =0,得,所以,故选C.(2015·新课标Ⅱ,11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) AB .2CD【答案】D 解析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,|AB |=|BM |,∠ABM =120º,过点M 作MN ⊥x 轴,垂足为N ,在Rt △BMN 中,|BN |=a,||MN =,故点M的坐标为(2)M a ,代入双曲线方程得a 2 = b 2 = c 2 -a 2,即c 2 = 2a 2,所以e = D.(2014·新课标Ⅰ,4)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )AB .3 CD .3m【答案】A 解析:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C的一条渐近线的距离d =A. .(2014·新课标Ⅰ,10)已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2 【答案】C 解析:过Q 作QM ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM ==.(2014·新课标Ⅱ,10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( ) ABC .6332D .94【答案】D 解析:∵3(,0)4F ,∴设直线AB 的方程为3)34y x =-,代入抛物线方程得:22190216x x -+=,设11(,)A x y 、22(,)B x y ,∴12212x x +=,12916x x ⋅=,由弦长公式得||12AB ==,由点到直线的距离公式得:O 到直线AB 的距离00|38d -==,∴13912284OABS ∆=⨯⨯=.【另解】直线AB的方程3)4y x =-代入抛物线方程得:2490y --=,∴12y y +=1294y y ⋅=-,∴139244OAB S ∆=⨯=.(2013·新课标Ⅰ,4)已知双曲线C :2222=1x y a b -(a >0,b >0)则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【答案】C 解析:∵c e a ==,∴22222254c a b e a a +===,∴a 2=4b 2,1=2b a ±. ∴渐近线方程为12b y x x a =±±.(2013·新课标Ⅰ,10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【答案】D 解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D.(2013·新课标Ⅱ,11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( )A.24y x =或28y x =B.22y x =或28y x =C.24y x =或216y x =D.22y x =或216y x = 【答案】C 解析:设点M 的坐标为(x 0,y 0),由抛物线的定义,得|MF |=x 0+2p =5,则x 0=5-2p.又点F 的坐标为(,0)2p ,所以以MF 为直径的圆的方程为220525()()224y x y -+-=.将x =0,y =2代入得2002404y y -+=,所以y 0=4.由20y =2px 0,得162(5)2pp =-,解之得p =2,或p =8.所以C 的方程为y 2=4x 或y 2=16x . 故选C.(2013·新课标Ⅱ,12)已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A.(0,1)B.1(1)2-C.1(1]3D.11[,)32【答案】B 解析:由题意知b ∈(0, 1),当直线过点(-1, 0)时,要将△ABC 分割为面积相等的两部分,直线必须过点11(,)22,此时有-a +b =0且1122a b +=,解得13b =;当a =1时,直线y =ax +b 平行于直线AC ,要将△ABC 分割为面积相等的两部分,可求此时的1b =.(2012·新课标Ⅰ,4)设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【答案】C 解析:如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==, 260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2aF Q c =-, 所以32a c c -=,解得34c a =,因此34c e a ==,故选择C .(2012·新课标Ⅰ,8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =C 的实轴长为( )AB .C .4D .8【答案】C 解析:设等轴双曲线C 的方程为22221x y a a-=,即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-,联立方程2224x y a x ⎧-=⎨=-⎩,解得2216y a =-,因为||AB =所以222||(2||)448AB y y ===,从而212y =,所以21612a -=,24a =,2a =,因此C 的实轴长为24a =,故选择C .(2012·新课标Ⅱ,4)设F 1,F 2是椭圆E : 12222=+by a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( )A.21B.32 C.43 D.54 【答案】C 解析:由题意可得,21F PF △是底角为30º的等腰三角形可得212PF F F =,即32()22ac c -=,所以34c e a ==. (2012·新课标Ⅱ,8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( )A.2B. 22C. 4D. 8【答案】C 解析:抛物线的准线方程是x =4,所以点A (-在222x y a -=上,将点A 代入得24a =,所以实轴长为24a =.(2011·新课标Ⅰ,7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )(A (B (C )2 (D )3【答案】B 解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B (2011·新课标Ⅱ,7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .3【答案】B 解析:通径|AB |=222b a a=得2222222b a a c a =⇒-=,故选B.二、填空题(2017·新课标Ⅰ,15)已知双曲线C :22221x y a b -=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【答案】3解析:如图,OA a =,AN AM b ==,∵60MAN ∠=︒,∴AP =,OP =,(法二)如上图可知(,0)A a到渐进线0bx ay -=的距离为abd AP c===,1,60,cos cos302ab AP AMN a c AN AM b AMN AN b c e∠==∠=∴=====又,3e ∴=; (法三)如图在等边三角形AMN ∆中,,AP FH b == 由OAPOFH ∆∆知23a a e c bc =⇒==;(法四)如图,由等面积法可得,在三角形OAN 中,1322ab c c b e a =⇒==; (法五)因为,AM b OA a ==且渐进线bxy a=可得三角形OAN 为 双曲线三角线(即三边分别为,,a b c ),有几何意义易得30MAP MOA ∠=∠=tan b MOA e a ∴∠====;(2017·新课标Ⅱ,16)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【答案】6 解析:∵ 点M 为线段NF 的中点,∴ 1M x =,∴ 23M MF x =+=,∴ 26NF MF ==.(2016·新课标Ⅲ,16)已知直线l:30mx y m ++与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D两点,若AB =||CD =__________. 【答案】3 解析:如图所示,作AE BD ⊥于E ,作OF A B ⊥于F,3AB OA OF ==∴=,3=,m ∴= ∴直线l 的倾斜角为30°,3CD AE ∴=== (2015·新课标Ⅰ,14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=解析:由椭圆的性质可知,圆只能经过短轴顶点和右顶点三个点(0,2),(0,2),(4,0)-;(方法一)设圆的半径为r ,则有222(4)2r r -+=,可得52r =,故所求圆的标准方程为22325()24x y -+=.(方法二)设圆的标准方程为222()(0)x a y r a -+=>,代入点(0,2),(4,0),解方程组可得35,22a r ==半径为r ,故所求圆的标准方程为22325()24x y -+=. (方法三)设圆的一般方程为220x y Dx Ey F ++++=,代入点(0,2),(0,2),(4,0)-,解方程组可得3,0,4D E F =-==-,化为标准方程为22325()24x y -+=. (2014·新课标Ⅱ,6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.【答案】[1,1]- 解析:由图可知点M 所在直线1y =与圆O 相切,又1ON =,由正弦定理得sin sin ON OM OMN ONM =∠∠sin OMONM=∠, 即OM ONM =∠,∵0ONM π≤∠≤,∴OM ≤,即≤011x -≤≤.【另解】过OA ⊥MN ,垂足为A ,因为在Rt △OMA 中,|OA|≤1,∠OMN =45º,所以||||s i nO A O M =o|1OM ≤,解得||OM M (x 0, 1),所以||OM =解得011x -≤≤,故0x 的取值范围是[1,1]-.(2011·新课标Ⅰ、Ⅱ,14)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 . 【答案】221168x y ∴+= 解析:由2416c a a ⎧=⎪⎨⎪=⎩得a=4.c=从而b=8,221168x y ∴+=为所求. 三、解答题(2017·新课标Ⅰ,20)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.解析:(1)根据椭圆对称性,必过3P 、4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点,将()23011P P ⎛- ⎝⎭,,代入椭圆方程得:222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =, ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,, 联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=, 122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠,21b k ⇒=--,此时64k ∆=-, 存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--,当2x =时,1y =-,所以l 过定点()21-,.(2017·新课标Ⅱ,20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 解析:(1)解法一:相关点法求轨迹:设()00,M x y ,()0,0N x ,(),P x y ,则:(),N P xx y =-,()00,NM y =.又2NP NM =,所以:())00,0,x x y y -=,则:00,x x y ==.又()00,M x y 在椭圆C 上,所以:220012x y +=,所以:222x y +=.解法二: 椭圆C 的参数方程为:sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数).设),sin Mθθ,),0Nθ,(),P x y ,则:(),NP x y θ=,()0,sin NM θ=.又2NP NM =,所以:()),0,sin x y θθ=,则:,x y θθ==.则:222x y +=.(Ⅱ)解法一:设)Pθθ,()13,Q y -,()1,0F -,则()2OP θθ=,()13,OQ y =-,()13,y PQ θθ=-,()1,PF θθ=-.又1OP PQ ⋅=,所以:)()22113,y 2cos sin 2sin 1θθθθθθθθ⋅-=---=即:1sin 3θθ=-.那么:()()11,3,y 3sin 0PF OQ θθθθ⋅=-⋅-=+-=. 所以:PF OQ ⊥. 即过P 垂直于OQ 的直线l 过椭圆C 的左焦点F .解法二:设()11,P x y ,()23,Q y -,()1,0F -,则()11,OP x y =,()23,OQ y =-,()1213,PQ x y y =---,()111,PF x y =---.又1OP PQ ⋅=,所以:()()221112111121,3,31x y x y y x x y y y ⋅---=--+-=.又()11,P x y 在222x y +=上,所以:11233x y y -=-.||MMN y y=-又()()1121121,3,330PF OQ x y y x y y⋅=---⋅-=+-=.所以:PF OQ⊥,即过P垂直于OQ的直线l过椭圆C的左焦点F.(2016·新课标Ⅰ,20)设圆015222=-++xyx的圆心为A,直线l过点)0,1(B且与x轴不重合,l交圆A于DC,两点,过B作AC的平行线交AD于点E.(Ⅰ)证明EBEA+为定值,并写出点E的轨迹方程;(Ⅱ)设点E点,求四边形MPNQ解析:⑴圆A整理为(xBE ACQ∥,则C=∠EBD D∴=∠∠,则⑵221:143x yC+=;设l联立1l C与椭圆:221143x myx y=+⎧⎪⎨+=⎪⎩(23m圆心A到PQ距离d=所以||PQ==()2212111||||2234MPNQmS MN PQm+⎡∴=⋅=⋅==⎣+(2016·新课标Ⅱ,20)已知椭圆E:2213x yt+=的焦点在x轴上,A是E的左顶点,斜率为k (k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.解析:⑴当4t=时,椭圆E的方程为22143x y+=,A点坐标为()20-,,则直线AM的方程为()2y k x=+.联立()221432x yy k x⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k+++-=,解得2x=-或228634kxk-=-+,则222861223434k AM k k -=+=++,因为AM AN ⊥,所以2121341AN k =⎛⎫+⋅- ⎪⎝⎭1243k k =+,因为AM AN =,0k >,所以212124343k k k++,整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =.所以AMN △的面积为2211122234AM ⎫=⎪+⎭14449=. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=,解得x =或x =,所以AM ==,所以3A N k k=+,因为2A M A N =,所以23k k =+,整理得23632k k t k -=-.因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-,2k <.(2016·新课标Ⅲ,20)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解析:(1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且22111(,),(,),(,),(,),(,)222222a b a b A a B b P a Q b R +---. 记过,A B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=. .....3分 由于F 在线段AB 上,故10ab +=. 记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k aa a a ab ---=====-=+-.所以FQ AR ∥. ......5分法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 及AP ∥BQ ,得∠AFP +∠BFQ =90°,∴∠PFQ =90°,∵R 是PQ 的中点,∴RF =RP =RQ ,∴△P AR ≌△F AR ,∴∠P AR =∠F AR ,∠PRA =∠FRA , ∵∠BQF +∠BFQ =180°﹣∠QBF =∠P AF =2∠P AR ,∴∠FQB =∠P AR ,∴∠PRA =∠PQF ,∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x ,则1111,2222ABF PQF a b S b a FD b a x S ∆∆-=-=--=. 由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y . 当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1yx a b x =≠+-. 而a by +=,所以21(1)y x x =-≠. 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分(2015·新课标Ⅰ,20)在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解析:(Ⅰ)当0k =时,点)M a和()N a -,2xy '=,故x =方程为y a x -=-0y a --=;同理,x =-y a x -=+0y a ++=.(Ⅱ)在y 轴上存在点P ,使得当k 变动时,总有OPM OPN ∠=∠.证明如下: 设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k . 直线l 与曲线C 的方程联立可得2440x kx a --=,则12124,4x x k x x a +==-.1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==,当b a =-时,120k k +=,则直线,PM PN 的倾斜角互补,故OPM OPN ∠=∠,即(0,)P a -符合题意.(2015·新课标Ⅱ,20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.解析:(Ⅰ)设直线1122:(0,0),(,),(,),(,)M M l y kx b k b A x y B x y M x y =+≠≠,将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +-==+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-,所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形,因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0,3k k >≠,由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,由22299y x k x y m ⎧=-⎪⎨⎪+=⎩,得2222981P k m x k =+,即P x =(,)3m m 的坐标代入l 的方程得(3)3m k b -=,因此2(3)3(9)M k k m x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =,于是2(3)23(9)k k m k -=⨯+,解得1244k k ==,因为0,3,1,2i i k k i >≠=,所以当l的斜率为44+OAPB 为平行四边形.(2014·新课标Ⅰ,20)已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>F 是椭圆的焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解析:(Ⅰ) 设(),0F c,由条件知2c =,得c =又c a =, 所以,2221b a c =-= ,故E 的方程2214x y +=. ……….6分(Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1,22814k x k±=+,从而212143kPQ x -=-=,又点O 到直线PQ 的距离d =,所以∆OPQ 的面积21214OPQS d PQ k ∆==+ , t =,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t=,2k =±等号成立,且满足0∆>,所以当∆OPQ 的面积最大时,l 的方程为:22y x =- 或22y x =--. …………………………12分 (2014·新课标Ⅱ,20)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .解析:(Ⅰ)由题意得:1(,0)F c -,2(,)b M c a ,∵MN 的斜率为34,∴2324b ac =,又222a b c =+,解得12c e a ==或2-(舍),故直线MN 的斜率为34时,C 的离心率为12.(Ⅱ)由题意知,点M 在第一象限,1(,0)F c -,2(,)b M c a ,∴直线MN 的斜率为:22b ac ,则MN :222b y x ac =+;∵1(,0)F c -在直线MN 上,∴20()22b c ac=⨯-+,得24b a =…①,∵15MN F N =,∴114MF F N =,且21(2,)b MF c a=--, ∴21(,)24c b F N a =--,∴23(,)24c b N a --,又∵23(,)24c b N a --在椭圆C 上,∴4222291641b c a a b+=……②,联立①、②解得:7a =,b =(2013·新课标Ⅰ,20)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 解析:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R . (1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2, 所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=4±当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.(2013·新课标Ⅱ,20)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.解析:(Ⅰ)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则221122=1x y a b +,222222=1x y a b +,2121=1y y x x ---,由此可得2212122121=1b x x y y a y y x x (+)-=-(+)-.因为x 1+x 2=2x 0,y 1+y 2=2y 0,0012y x =,所以a 2=2b 2. 又由题意知,M 的右焦点为0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为22=163x y +.(Ⅱ)由220,1,63x y x y ⎧+-=⎪⎨+=⎪⎩解析得x y ⎧=⎪⎪⎨⎪=⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此|AB |=3.由题意可设直线CD 的方程为(y x n n =+<<,设C (x 3,y 3),D (x 4,y 4).由22,163y x n x y =+⎧⎪⎨+=⎪⎩得3x 2+4nx +2n 2-6=0.于是x 3,4.因为直线CD 的斜率为1,所以|CD |43|x x -=由已知,四边形ACBD的面积1||||2S CD AB =⋅=当n =0时,S.所以四边形ACBD(2012·新课标Ⅰ、Ⅱ,20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.解析:(Ⅰ) 由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =. 点A 到准线l的距离d FB FD ===.由ABD S =△得,11222BD d p ⨯⨯=⨯=, 2p ∴=. 圆F 的方程为22(1)8x y +-=.(Ⅱ) 由对称性,不妨设点(,)A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90oADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得A x .直线m的斜率为AF k ==.直线m 的方程为0x -=. 由py x 22= 得22x y p =,x y p '=.由x y p '==得, x p =.故直线n 与抛物线C的切点坐标为)6p ,直线n的方程为0x -=. 所以坐标原点到m ,n3=. (2011·新课标Ⅰ、Ⅱ,20)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.解析:(Ⅰ)设M (x , y ),由已知得B (x , -3),A (0, -1). 所以,1)(MA x y -=--u u u r , (03)MB y =--,u u u r,(,2)B x A =-u u u r .。
2011-2017年新课标全国卷1理科数学分类汇编 解析几何
2011-2017年新课标全国卷1理科数学分类汇编 解析几何一、选择题【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(B .(C .(D .( 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72B .52C .3D .2【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y +【2012,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3 二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .三、解答题【2017,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–12 ),P 4(12)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【2016,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【2015,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【2014,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2013,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r ,MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.9.解析几何(解析版)一、选择题【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴,易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴,同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-, 又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ;【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知: 2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ; 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,A x,2p D ⎛- ⎝,点(0,A x 在抛物线22y px =上,∴082px =……①;点2p D ⎛- ⎝在圆222x y r +=上,F∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =,焦点到准线的距离为4p =.故选B .【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【解析】222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(B .(C .(33-D .( 解析:从120MF MF ⋅<入手考虑,120MF MF ⋅=可得到以12FF 为直径的圆与C 的交点1234,,,M M M M (不妨设12,M M 在左支上,34,M M 在右支上),此时1112M F M F ⊥,1112M F M F -=-12F F =112111201211||22M F F S M F M F y F F ∆=⋅=⋅解得0||y =,则M 在双曲线的12M M 或34M M 上运动,0y ∈(,故选A .. 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d =A.【2013,4】已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x解析:选C ,∵2c e a ==,∴22222254c a b e a a +===,∴a 2=4b 2,1=2b a ±,∴渐近线方程为12b y x x a =±±.【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 解析:选D ,设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2012,4】设1F 、2F 是椭圆E :2222x y a b+(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .45【解析】如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==,260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2aF Q c =-, 所以32a c c -=,解得34c a =,因此34c e a ==,故选择C .【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B两点,||AB =,则C 的实轴长为( )AB.C .4D .8【解析】设等轴双曲线C 的方程为22221x y a a-=,即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-,联立方程2224x y a x ⎧-=⎨=-⎩,解得2216y a =-,因为||AB =,所以222||(2||)448AB y y ===,从而212y =, 所以21612a -=,24a =,2a =,因此C 的实轴长为24a =,故选择C .【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )ABC .2D .3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B 二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.(15)【解析】如图,OA a =,AN AM b ==, ∵60MAN ∠=︒,∴AP =,OP =,∴tan AP OP θ==又∵tan b a θ=,∴b a =,解得223a b =,∴221113b e a =++ 【法二】如上图可知(,0)A a 到渐进线0bx ay -=的距离为abd AP c===, 1,60,cos cos302ab AP AMN a c AN AM b AMNAN b c e∠==∠=∴=====又,e ∴= 【法三】如图在等边三角形AMN ∆中,,AP FH b== 由OAPOFH ∆∆知2a a e c b c =⇒==;【法四】如图,由等面积法可得,在三角形OAN 中,132223ab c c b e a =⇒==;【法五】因为,AM b OA a ==且渐进线bxy a=可得三角形OAN 为 双曲线三角线(即三边分别为,,a b c ),有几何意义易得30MAP MOA ∠=∠=tan 33b MOA e a ∴∠====;【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 解析:由椭圆的性质可知,圆只能经过短轴顶点和右顶点三个点(0,2),(0,2),(4,0)-; (方法一)设圆的半径为r ,则有222(4)2r r -+=,可得52r =,故所求圆的标准方程为22325()24x y -+=.(方法二)设圆的标准方程为222()(0)x a y r a -+=>,代入点(0,2),(4,0),解方程组可得35,22a r ==半径为r ,故所求圆的标准方程为22325()24x y -+=. (方法三)设圆的一般方程为220x y Dx Ey F ++++=,代入点(0,2),(0,2),(4,0)-,解方程组可得3,0,4D E F =-==-,化为标准方程为22325()24x y -+=. 【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2【解析】选C ,过Q 作QM ⊥直线L 于M ,∵4FP FQ = ∴34PQPF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过1F 的直线L 交C 于,A B 两点,且2ABF V 的周长为16,那么C 的方程为 .解析:由2416c a a ⎧=⎪⎨⎪=⎩得a=4.c=从而b=8,221168x y ∴+=为所求. 三、解答题【2017,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1)中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点,将()23011P P ⎛- ⎝⎭,,代入椭圆方程得:222113141b a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =, ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,, 联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=, 122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 22228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠,21b k ⇒=--,此时64k ∆=-,|||M N MN y y =-存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--,当2x =时,1y =-,所以l过定点()21-,.【2016,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ【解析】:⑴ 圆A 整理为(1x +BE AC Q ∥,则C =∠∠EBD D ∴=∠∠,则EB =⑵ 221:143x y C +=;设:l x 联立l 与椭圆圆心A 到所以||PQ =()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+ 【2015,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)当0k =时,点)M a 和()N a -,2xy '=,故x =线方程为y a x --0y a --=;同理,x =-y a x -=+0y a ++=.(Ⅱ)在y 轴上存在点P ,使得当k 变动时,总有OPM OPN ∠=∠.证明如下: 设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k . 直线l 与曲线C 的方程联立可得2440x kx a --=,则12124,4x x k x x a +==-.1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==,当b a =-时,120k k +=,则直线,PM PN 的倾斜角互补,故OPM OPN ∠=∠,即(0,)P a -符合题意.【2014,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>的离心率为2,F 是椭圆的焦点,直线AF,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c,由条件知2c =c =又c a =, 所以,2221b a c =-= ,故E 的方程2214x y +=. …….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,1,2x =从而212143k PQ x -=-=,又点O 到直线PQ 的距离d =,所以∆OPQ的面积12OPQS d PQ ∆== t =,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,k =0∆>,所以当∆OPQ 的面积最大时,l的方程为:22y x =-或22y x =--. ……12分 【2013,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=4±. 当k=4时,将4y x =22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±. 所以|AB |2118|7x x -=.当k =时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值. 【解析】(1)若∠BFD =90°,则△BFD 为等腰直角三角形,且|BD|=2p ,圆F的半径||r FA =, 又根据抛物线的定义可得点A 到准线l 的距离||d FA ==.因为△ABD 的面积为24,所以1||2BD d ⋅⋅=122p ⋅= 所以24p =,由0>p ,解得2p =. 从而抛物线C 的方程为24x y =,圆F 的圆心F (0,1),半径||r FA == 因此圆F 的方程为22(1)8x y +-=. (2)若A ,B ,F 三点在同一直线m 上, 则AB 为圆F 的直径,∠ADB=90°, 根据抛物线的定义,得1||||||2AD FA AB ==,所以30ABD ∠=︒,从而直线m的斜率为3或- 当直线m 的斜率为3时,直线m 的方程为32py x =+,原点O 到直线m 的距离1pd =.依题意设直线n 的方程为y x b =+,联立22y x b x py⎧=+⎪⎨⎪=⎩,得220x px pb -=, 因为直线n 与C 只有一个公共点,所以24803p pb ∆=+=,从而6pb =-. 所以直线n 的方程为36py x =-,原点O 到直线n 的距离2pd =.因此坐标原点到m ,n 距离的比值为12236p dd ==.当直线m 的斜率为m ,n 距离的比值也为3. 【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA uuu r uu r,MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.解:(I )设(),M x y ,由已知得(),3B x -,()0,1A -. 所以(),1,MA x y =---,()0,3,MB y =--,(),2AB x =-.再由题意可知()0MA MB AB +⋅=,即()(),4,2,20x y x ---⋅=. 所以曲线C 的方程为2124y x =-. (II )设()00,P x y 为曲线21:24C y x =-上一点,因为12y x '=,所以l 的斜率为012x .因此直线l 的方程为()00012y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l的距离d . 又200124y x =-,所以2014122x d +⎫=≥ 当00x =时取等号,所以O 点到l 的距离的最小值为2.。
2011-2017全国1卷分类汇编 立体几何
2011-2017高考全国I 卷分类汇编——立体几何【2011年全国】(19)如图,四棱锥S ABCD -中,AB CD ,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥;(Ⅱ)求AB 与平面SBC 所成角的大小.【2012年全国】(19)(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥。
(Ⅰ)证明:1DC BC ⊥(Ⅱ)求二面角11A BD C --的大小。
【2013年全国】18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A【2014年全国】19. (本小题满分12分)如图三棱锥111ABC AB C -中,侧面11BB C C 为菱形,A 11AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=Bc ,求二面角111A A B C --的余弦值.【2015年全国】(18)如图,,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。
(1)证明:平面AEC ⊥平面AFC(2)求直线AE 与直线CF 所成角的余弦值【2016年全国】(18)(本题满分为12分)如图,在已A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60. (I )证明;平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【2017年全国】18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A −PB −C 的余弦值.。
近五年(含2017)新课标I卷高考理科立体几何考点分布统计表
空间几何体求表面积【2013】6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 38、某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。
【2014】12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A. B. C .6 D .419. (本小题满分12分)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC求二面角111A A B C --的余弦值.【2015】(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A.14斛 B.22斛 C.36斛 D.66斛(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
2011—2017高考全国卷Ⅰ文科数学立体几何汇编.pdf
,米堆底部的弧长 ”已知 1 斛米的体 )
A . 14 斛
B. 22 斛
C. 36 斛
D. 66 斛
【 2015,11】圆柱被一个平面截去一部分后与半球 (半径为 r )组成
一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若
该几 何 体的 表 面积 为
16+20π,则
r=( ) B
A .1
B .2
)
3
A.
2
2
B.
2
3
C.
3
1
D.
3
【 2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书
中有如下问
题: “今有委米依垣内角,下周八尺,高五尺,问 ”积及为米几何? ”其意思为:
“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一) 为 8 尺,米堆的高为 5 尺,米堆的体积和堆放的米各位多少? 积约为 1. 62 立方尺,圆周率约为 3,估算出堆放的米有 (
【 2013, 19】如图,三棱柱 ABC- A1B1C1 中, CA= CB, AB =AA1,∠ BAA1= 60°.
(1)证明: AB⊥A1C; (2) 若 AB= CB=2, A1C= 6 ,求三棱柱 ABC- A1B1C1 的体积.
文档鉴赏
【 2012,19】如图, 三棱柱 ABC- A1B1C1 中,侧棱垂直底面,
直的半径.若该几何体的体积是 28π,则它的表面积是(
)
3
A . 17π
【 2016, 11】平面
B . 18 π
C. 20π
D. 28π
过正方体 ABCD A1B1C1D1 的顶点 A , ∥ 平面 CB1D1 , I 平面
新课标全国卷理科数学分类汇编立体几何
2011年—2017年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)8.立体几何【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =,I α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23 (B )22 (C )33 (D )31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3B .866π3cm 3C .1372π3cm 3D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。
2011—2019年高考真题全国卷1理科数学分类汇编——8.立体几何
2011—2019年高考真题全国卷1理科数学分类汇编——8.立体几何一、选择题【2019.12】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .64π C .62πD .6π【2018,7】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .172B .52C .3D .2【2018,12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .334B .233C .324D .32【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =,I α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .π17 B .π18 C .π20 D .π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为1620π+,则r=()A.1 B.2 C.4 D.8【2015年,11题】【2014年,12题】【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为()A.62B.42C.6 D.4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为()A.500π3cm3B.866π3cm3 C.1372π3cm3D.2048π3cm3【2013,8】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π【2013年,8】 【2012年,7】 【2011年,6】 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 .三、解答题【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.【2018,18】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=o,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.ABCDE F(I )证明:平面AEC ⊥平面AFC ;(II )求直线AE 与直线CF 所成角的余弦值.【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.A 1【2011,18】如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.C7.立体几何(解析版)一、选择题1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .64π C .62πD .6π【答案】D【解析】解法一:,PA PB PC ABC ==Q △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC Q △为边长为2的等边三角形,3CF ∴=,又90CEF ∠=︒,213,2CE x AE PA x ∴=-==, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D \为AC 的中点,1cos 2AD EAC PA x∠==,2243142x x x x+-+∴=, 22122122x x x ∴+=∴==,,,2PA PB PC ∴===, 又===2AB BC AC ,,,PA PB PC ∴两两垂直,22226R ∴=++=,62R ∴=,344666338V R ∴=π=π⨯=π,故选D.8.【2018年理新课标I 卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. 334B. 233C. 324D. 32 【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体ABCD-A1B1C1D1中,平面AB1D1与线AA1,A1B1,A1D1所成的角是相等的,所以平面AB1D1与正方体的每条棱所在的直线所成角都是相等的,同理平面C1BD 也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面AB1D1与C1BD 中间的,且过棱的中点的正六边形,且边长为22,所以其面积为S=6×34⋅(22)2=334,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.+【2018年理新课标I 卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 217B. 25C. 3D. 2 【答案】B【解析】分析:首先根据题中所给的三视图,得到点M 和点N 在圆柱上所处的位置,点M 在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M 、N 在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(7)【解析】由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,()24226S =+⨯÷=梯,6212S =⨯=全梯,故选B ;【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =,I α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【解析】如图所示:αAA 1B1DC1D 1∵11CB D α∥平面,∴若设平面11CB D I 平面1ABCD m =,则1m m ∥ 又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C I 平面111111A B C D B D = ∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即113sin CD B ∠=. 故选A .【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是( )A .π17B .π18C .π20D .π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A . 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V≈,选B ..【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=-,解得2r =,故选B .. 【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .62B .42C .6D .4【解析】如图所示,原几何体为三棱锥D ABC -, 其中4,42,25AB BC AC DB DC =====,()24246DA =+=,故最长的棱的长度为6DA =,选C【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为 底边为6,高为3的等腰三角形,侧面ABD ⊥底面BCD , AO ⊥底面BCD , 因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B .【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .26B .36C .23D .22【解析】如图所示,根据球的性质,知⊥1OO 平面ABC ,则C O OO 11⊥.在直角C OO 1∆中,1=OC ,331=C O , ODA所以36)33(122121=-=-=C O OC OO . 因此三棱锥S -ABC 的体积6236433122=⨯⨯⨯==-ABC O V V ,故选择A .【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D 二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 .解析:设ABCD 所在的截面圆的圆心为M,则AM=221(23)6232+=,OM=224(23)2-=,16232833O ABCD V -=⨯⨯⨯=.三、解答题【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ; (2)求二面角A −MA 1−N 的正弦值. 【答案】(1)见解析;(2)10. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),(1,3,2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(1,3,2)A M =--u u u u r,1(1,0,2)A N =--u u u u r ,(0,3,0)MN =-u u u u r.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r m m , 所以32040x y z z ⎧-+-=⎪⎨-=⎪⎩,.可取(3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||25⋅〈〉===⨯‖m n m n m n , 所以二面角1A MA N --的正弦值为10. 13.【2018年理新课标I 卷】如图,四边形ABCD 为正方形,E,F 分别为AD,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF⊥BF . (1)证明:平面PEF⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 【答案】(1)证明见解析.(2) 34.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD 的法向量,设DP 与平面ABFD 所成角为θ,利用线面角的定义,可以求得sinθ=|HP⋅DP|HP|⋅|DP||=343=34,得到结果. 详解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF∩EF=F ,所以BF ⊥平面PEF . 又BF⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,|BF|为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =3.又PF =1,EF =2,故PE ⊥PF .可得PH=32,EH=32.则H(0,0,0),P(0,0,32),D(-1,-32,0),DP=(1,32,32), HP=(0,0,32)为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sinθ=|HP⋅DP|HP|⋅|DP||=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.【解析】(1)证明:∵90BAP CDP ∠=∠=︒,∴PA AB ⊥,PD CD ⊥, 又∵AB CD ∥,∴PD AB ⊥,又∵PD PA P =I ,PD 、PA ⊂平面PAD , ∴AB ⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD . (2)取AD 中点O ,BC 中点E ,连接PO ,OE ,∵AB CD ,∴四边形ABCD 为平行四边形,∴OEAB ,由(1)知,AB ⊥平面PAD ,∴OE ⊥平面PAD , 又PO 、AD ⊂平面PAD ,∴OE PO ⊥,OE AD ⊥, 又∵PA PD =,∴PO AD ⊥,∴PO 、OE 、AD 两两垂直,∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,∴()002D -,、()220B ,、(002P ,,、()202C -,, ∴(022PD =-u u u r ,、222PB =u u u r,,、()2200BC =-u u u r,,设()n x y z =r ,,为平面PBC 的法向量,由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r ,得2220220x y z x ⎧+=⎪⎨-=⎪⎩, 令1y =,则2z =,0x =,可得平面PBC 的一个法向量(012n =r,,,∵90APD ∠=︒,∴PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD ,∴PD AB ⊥,又PA AB A =I ,∴PD ⊥平面PAB ,即PD u u u r是平面PAB 的一个法向量,(022PD =-u u u r ,,,∴3cos 23PD n PD n PD n ⋅===⋅u u u r ru u u r r u u u r r ,,由图知二面角A PB C --为钝角,所以它的余弦值为3. 【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60. (Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【解析】:⑴ ∵ABEF 为正方形,∴AF EF ⊥,∵90AFD ∠=︒,∴AF DF ⊥,∵=DF EF F I∴AF ⊥面EFDC ,AF ⊂面ABEF ,∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒,∵AB EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC ∴AB ∥平面ABCD ,AB ⊂平面ABCD ∵面ABCD I 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =,()()000020E B a ,,,,()302202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,,, ()020EB a =uu r ,,,322a BC a ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,,,()200AB a =-uu u r ,,,设面BEC 法向量为()m x y z =u r ,,,00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩u r uu r u r uu u r ,即1111203202a y a x ay z ⋅=⎧⎪⎨⋅-⋅=⎪⎩,111301x y z ===-,,)301m =-u r ,ABCDE F设面ABC 法向量为()222n x y z =r,,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩r uu u r r uu u r .即2222320220a x ay az ax ⎧-+=⎪⎨⎪=⎩ 222034x y z ===,,,()034n =r,,,设二面角E BC A --的大小为θ.219cos 31316m n m n⋅===-+⋅+⋅u r r u r r θ,∴二面角E BC A --的余弦值为219-【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=o ,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.解:(Ⅰ)证明:连接BD ,设BD AC G =I ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设1GB =,由120ABC ∠=o ,可得3AG GC ==,由BE ⊥平面ABCD ,AB BC =,可知AE EC =.又AE EC ⊥,所以3EG =,且EG AC ⊥.在Rt EBG ∆中,可得2BE =,故22DF =.在Rt FDG ∆中,可得6FG =.在直角梯形BDFE 中,由2BD =,2BE =,22DF =,可得322EF =.因为222EG FG EF +=,所以EG FG ⊥,又AC FG G =I ,则EG ⊥平面AFC . 因为EG ⊂平面AEC ,所以平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC u u u r u u u r 的方向为x 轴,y 轴正方向,||GB u u u r为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得(0,3,0)A -,(1,0,2)E ,2(1,0,)2F -,(0,3,0)E ,(1,3,2)AE =u u u r ,2(1,3,)2CF =--u u u r .故3cos ,3||||AE CF AE CF AE CF ⋅<>==-u u u r u u u ru u u r u u u r u u ur u u u r . 所以直线AE 与直线CF 所成的角的余弦值为33. ……12分 【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥又 1B O CO =,故1AC AB =(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以AO=CO 又因为AB=BC ,所以BOA BOC ∆≅∆ 故OA ⊥OB ,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB=BC ,则30,0,3A ⎛⎫ ⎪ ⎪⎝⎭,()1,0,0B ,130,,03B ⎛⎫ ⎪ ⎪⎝⎭,30,,03C ⎛⎫- ⎪ ⎪⎝⎭ 1330,,33AB ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,1131,0,,A B AB ⎛⎫==- ⎪ ⎪⎝⎭u u u u r u u u r 1131,,0B C BC ⎛⎫==-- ⎪ ⎪⎝⎭u u u u r u u u r 设(),,n x y z =r是平面的法向量,则11100n AB n A B ⎧=⎪⎨=⎪⎩r u u u r g r u u u ur g ,即33030y z x z ⎧-=⎪⎨⎪-=⎪⎩所以可取()1,3,3n =r设m u r 是平面的法向量,则111100m A B n B C ⎧=⎪⎨=⎪⎩u r u u u u rg r u u u u rg,同理可取(1,m =u r 则1cos ,7n m n m n m ==r u rr u r g r u r g ,所以二面角111A A B C --的余弦值为17.【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. 证明:(1)取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA u u u r 的方向为x 轴的正方向,|OA u u u r|为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC uuu r =(1,0,3),1BB u u u =1AA u u r =(-1,3,0),1AC u u u r=(0,3-,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即30,30.x z x y ⎧+=⎪⎨-+=⎪⎩可取n =(3,1,-1). 故cos 〈n ,1AC u u u r 〉=11A C A C⋅u u u ru u u r n n =10-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为105. 【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】(1)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=,同理:1114590A DC CDC ︒︒∠=⇒∠=,得:1DC DC ⊥.又DC 1⊥BD ,DC BD D =I , 所以1DC ⊥平面BCD .而BC ⊂平面BCD ,所以1DC BC ⊥.(2)解法一:(几何法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ADA 1B 1CABC 1BC AC ⇒⊥.取11A B 的中点O ,连接1C O ,OD . 因为1111AC B C =,所以111C O A B ⊥,因为面111A B C ⊥面1A BD ,所以1C O ⊥面1A BD ,从而1C O BD ⊥,又DC 1⊥BD ,所以BD ⊥面1DC O ,因为OD ⊂平面1DC O ,所以BD OD ⊥. 由BD OD ⊥,BD ⊥DC 1,所以1C DO ∠为二面角A 1-BD -C 1的平面角. 设12AA a =,AC BC a ==,则122aC O =,12CD a =,在直角△1C OD ,1C O OD ⊥,1112C O CD =, 所以130C DO ︒∠=. 因此二面角11C BD A --的大小为30︒.解法二:(向量法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ABC AC ⇒⊥.又1C C ⊥平面ABC ,所以1C C AC ⊥,1C C BC ⊥,以C 点为原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.不妨设AA 1=2,则AC=BC=21AA 1=1, 从而A 1(1,0,2),D (1,0,1), B (0,1,0),C 1(0,0,2),所以1(0,0,1)DA =u u u u r ,(1,1,1)DB =--u u u r , 1(1,0,1)DC =-u u u u r.设平面1A BD 的法向量为1111(,,)n x y z =u r, 则11n DA ⊥u r u u u u r ,1n DB ⊥u r u u u r ,所以111100z x y z =⎧⎨-+-=⎩,即1110z x y =⎧⎨=⎩,令11y =,则1(1,1,0)n =u r .设平面1C BD 的法向量为2222(,,)n x y z =≤u u r ,则21n DC ⊥u u r u u u u r ,2n DB ⊥u u r u u u r, 所以2222200x z x y z -+=⎧⎨-+-=⎩,即22222x z y z =⎧⎨=⎩,令21z =,则2(1,2,1)n =u u r .所以121212cos ,2||||n n n n n n ⋅<>===⋅u r u u ru r u u r u r u u r 12,30n n <>=︒u r u u r .因为二面角11C BD A --为锐角,因此二面角11C BD A --的大小为30︒.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.解:(I )因为60DAB ∠=︒,2AB AD =,由余弦定理得BD =.从而222BD AD AB +=,故BD AD ⊥. 又PD ⊥底面ABCD ,可得BD PD ⊥. 所以BD ⊥平面PAD . 故PA BD ⊥.(II )如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P,()AB =-u u u r,()1PB =-u u u r,()1,0,0BC =-u u u r设平面PAB 的法向量为(),,x y z =n ,则00AB PB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rn n,即x z ⎧-⎪-=因此可取=n .设平面PBC 的法向量为m ,则00PB BC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u rm m ,可取(0,1,m =-. cos ,〈〉==m n 故二面角A PB C --的余弦值为.。
2017高考试题分类汇编之立体几何(精校版)(2021年整理精品文档)
(完整版)2017高考试题分类汇编之立体几何(精校版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017高考试题分类汇编之立体几何(精校版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017高考试题分类汇编之立体几何(精校版)的全部内容。
2017年高考试题分类汇编之立体几何一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I 理)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形。
该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) 10.A 12.B 12.C16.D2。
(2017课标II 理)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( ) π90.A π63.B π42.C π36.D3。
(2017北京理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( ) 23.A 32.B 22.C 2.D4.(2017课标II 理)已知直三棱柱111C B A ABC -中,1,2,12010====∠CC BC AB ABC ,则异面直线1AB 与1BC 所成角的余弦值为( )23.A 515.B 510.C 33.D 5。
(2017课标III 理)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) π.A 43.πB 2.πC 4.πD 6.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )(第1题)(第2题)(第3题)是( )12.+πA 32.+πB 123.+πC 323.+πD 7。
2017年全国卷文数(新课标1)立体几何
2017年全国卷文数(新课标1)立体几何6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是A. B.C. D.【答案】A【解析】【分析】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,注意解题方法的积累,属于中档题.利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【解答】解:对于选项B,由于,结合线面平行判定定理可知B不满足题意;对于选项C,由于,结合线面平行判定定理可知C不满足题意;对于选项D,由于,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选A.16.已知三棱锥的所有顶点都在球O的球面上,SC是球O的直径若平面平面SCB,,,三棱锥的体积为9,则球O的表面积为______.【答案】【解析】解:三棱锥的所有顶点都在球O的球面上,SC是球O的直径,若平面平面SCB,,,三棱锥的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得.球O的表面积为:.故答案为:.判断三棱锥的形状,利用几何体的体积,求解球的半径,然后求解球的表面积.本题考查球的內接体,三棱锥的体积以及球的表面积的求法,考查空间想象能力以及计算能力.18.如图,在四棱锥中,,且.证明:平面平面PAD;若,,且四棱锥的体积为,求该四棱锥的侧面积.【答案】证明:在四棱锥中,,,,又,,,平面PAD,平面PAB,平面平面PAD.解:设,取AD中点O,连结PO,,,平面平面PAD,底面ABCD,且,,四棱锥的体积为,由平面PAD,得,四边形,解得,,,,,该四棱锥的侧面积:侧.【解析】推导出,,从而,进而平面PAD,由此能证明平面平面PAD.设,取AD中点O,连结PO,则底面ABCD,且,,由四棱锥的体积为,求出,由此能求出该四棱锥的侧面积.本题考查面面垂直的证明,考查四棱锥的侧面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。
2017高考试题分类汇编之立体几何(精校版)
2017年高考试题分类汇编之立体几何一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课标I 理)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) 10.A12.B 12.C 16.D2.(2017课标II 理)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )π90.A π63.B π42.C π36.D 3.(2017北京理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )23.A 32.B 22.C 2.D4.(2017课标II 理)已知直三棱柱111C B A ABC -中,1,2,12010====∠CC BC AB ABC ,则异面直线1AB 与1BC 所成角的余弦值为( )23.A 515.B 510.C 33.D 5.(2017课标III 理)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) π.A 43.πB 2.πC 4.πD 6.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )12.+πA32.+πB123.+πC 323.+πD 7.(2017浙江)如图,已知正四面体ABC D -(所有棱长均相等的三棱锥),R Q P ,,分别为CABC AB ,,上的点,2,===RACRQC BQ PB AP ,分别记二面角P QR D R PQ D Q PR D ------,,的平面角为γβα,,(第1题)(第2题)(第3题)则( ) βαγ<<.A βγα<<.B γβα<<.C αγβ<<.D⋅二、填空题(将正确的答案填在题中横线上)8.(2017江苏)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 . 9.(2017天津理)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的积为 .10.(2017山东理)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .11.(2017课标I 理)如图,圆形纸片的圆心为O ,半径为cm 5,该纸片上的等边三角形ABC 的中心为O .F E D ,,为圆O 上的点,FAB ECA DBC ∆∆∆,,分别是以AB CA BC ,,为底边的等腰三角形.沿虚线剪开后,分别以AB CA BC ,,为折痕折起FAB ECA DBC ∆∆∆,,,使得F E D ,,重合,得到三棱锥.当ABC ∆的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______.12.(2017课标III 理)b a ,为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线(第6题)(第7题)O O 1O 2⋅⋅(第8题)(第10题)(第11题)与b a ,都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成060角时,AB 与b 成030角;②当直线AB 与a 成060角时,AB 与b 成060角; ③直线AB 与a 所成角的最小值为045; ④直线AB 与a 所成角的最小值为060. 其中正确的是________.(填写所有正确结论的编号)三、解答题(应写出必要的文字说明、证明过程或演算步骤)13.(2017课标I 理)如图,在四棱锥ABCD P -中,CD AB //,且90BAP CDP ∠=∠=.(1)证明:平面⊥PAB 平面PAD ;(2)若090,=∠===APD DC AB PD PA ,求二面角C PB A --的余弦值.14.(2017课标II 理)如图,四棱锥ABCD P -中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点。
2011—2017年新课标全国卷1理科数学分类汇编 三角函数、解三角形
4.三角函数、解三角形一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z 错误!未找到引用源。
B .13(2,2),44k k k ππ-+∈Z 错误!未找到引用源。
C .13(,),44k k k -+∈ZD .13(2,2),44k k k -+∈Z【2015,2】sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12【2014,6】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【2014,8】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【2012,9】已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【2011,5】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【2011,11】设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 二、填空题【2015,16】在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 . 【2014,16】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . 【2013,15】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________. 【2011,16】在ABC 中,60,3B AC ==2AB BC +的最大值为 . 三、解答题【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .3.三角函数、解三角形(解析版)一、选择题【2017,9】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; 【2016,12】已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .【2015,8】函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z 错误!未找到引用源。
2011—2017年新课标全国卷1理科数学分类汇编 导数及其应用
3.导数及其应用(含解析)一、选择题【2014,11】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 【2012,12】设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A .1ln2-B ln 2)-C .1ln2+D ln 2)+【2011,9】由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103 B .4 C .163D .6 二、填空题【2017,16】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC .的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.【2013,16】若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________. 三、解答题【2017,12】已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2016,12】已知函数2)1()2()(-+-=x a e x x f x有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .【2015,12】已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值错误!未找到引用源。
2011—2017高考全国卷Ⅰ文科数学立体几何汇编
新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB . 18πC . 20πD . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =, α平面11ABB A n =,则,m n 所成角的正弦值为( )A B .2 C . D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) BA .1B .2C .4D .8【2015,11】 【2014,8】【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15 【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为,则此球的体积为( )A B . C . D .【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O的表面积为_______.【2013,15】已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题【2017,18】如图,在四棱锥P ABCD-中,AB∥CD,且90BAP CDP∠=∠=︒.(1)证明:平面PAB⊥平面PAD;(2)若P A P D A B D C===,90APD∠=︒,且四棱锥P ABCD-的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC-的侧面是直角三角形,6PA=,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E.连结PE 并延长交AB于点G.(1)求证:G是AB的中点;(2)在题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【2015,18】如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD,(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E- ACD【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 60DAB ∠=,2AB AD =, PD ⊥底面ABCD .(1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.A 1解 析一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S =⨯⨯+⨯⨯⨯14π3π17π=+=.故选A .【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A B . C . D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=.故选A . 解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为A . 【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) BA .14斛B .22斛C .36斛D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B . 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) BA .1B .2C .4D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r,其表面积为2πr2+πr×2r+πr2+2r×2r=5πr2+4r2=16+20π,解得r=2,故选B.【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )BA.三棱锥B.三棱柱C.四棱锥D.四棱柱解:几何体是一个横放着的三棱柱.故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A.16+8π B.8+8π C.16+16π D.8+16π解析:选A.该几何体为一个半圆柱与一个长方体组成的一个组合体.V半圆柱=12π×22×4=8π,V长方体=4×2×2=16.所以所求体积为16+8π.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.15三棱锥A-BCD,底面△BCD底边为6,高为3侧面ABD⊥底面BCD,AO⊥底面BCD,因此此几何体的体积为11(63)3932V=⨯⨯⨯⨯=,故选择B.【2012,8】8.平面α截球O的球面所得圆的半径为1,球心O到平面α的,则此球的体积为()AB .C .D .【解析】如图所示,由已知11O A =,1OO =在1Rt OO A ∆中,球的半径R OA ==所以此球的体积343V R π==,故选择B .【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D .二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,O A O B ,因为,S A A C SB BC ==,所以,O A S C O B S C ⊥⊥, 因为平面S A C ⊥平面S B C ,所以OA ⊥平面S B C ,设O Ar =,3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R.又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2. 【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =. 根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥. 设PO x '=,QO y '=,则2x y R +=. ✍ 又PO B BO Q ''△∽△,知22r O B xy '==. 即2234xy r R ==. ✍ 由✍✍及x y >可得3,22R x R y ==. 则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13. 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若P A P D A B D C ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积. 【解法】(1)90BAP CDP ∠=∠=︒, ∴,A B A P C DD P⊥⊥ 又AB ∥CD ∴A B D P⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且A P D P P = ∴AB ⊥平面PADAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形即AD取AD 中点E ,连接PE ,则2PE a =,PE AD ⊥. 又因为平面PAB ⊥平面PAD 所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD 又=AB DC a =所以四边形ABCD 为矩形所以311218233233P ABCD V AB AD PE a a a a -====即2a =【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G .(1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥.因为AB PD ⊥,AB DE ⊥,PD DE D =,,PD DE ⊂平面PDG , 所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影. 理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影. 所以13D PEF PEF V S DE -=⋅△16PF EF DE =⋅⋅.在PDG △中,PG =DG =PD =2DE =.由勾股定理知PE =,由PEF △为等腰直角三角形知2PF EF ==,故43D PEF V -=. 【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD的体积为3解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ?平面AEC ,∴平面AEC ⊥平面BED . …6分(Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得,x ,GB=GD=2x. 在RtΔAEC 中,可得EG =x .∴在RtΔEBG 为直角三角形,可得x . …9分∴31132E ACD V AC GD BE -=⨯⋅⋅==, 解得x =2.由BA=BD=BC 可得.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD所以三棱锥E-ACD 的侧面积为 …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====,又120ABC ∠=,所以AG GC ==,BG GD x ==.在AEC △中,90AEC ∠=,所以12EG AC ==,所以在Rt EBG △中,BE =,所以31122sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED ===所以三棱锥的侧面积1122322S =⨯⨯=+侧【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.证明:(Ⅰ)连接 BC1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ?平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ?平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD由于AC ⊥AB 1,∴11122OA B C ==,∴4AD ==,由 OH·AD=OD·OA ,可得OH=14,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为7,所以三棱柱ABC-A 1B 1C 1的高高为7。
(最新整理)2017年高考新课标1理科数学及答案【精】
快乐
2017 年高考新课标 1 理科数学及答案【精】
(15)已知双曲线 C: x2 y2 1 (a〉0,b>0)的右顶点为 A,以 A 为圆心,b a2 b2
为半径做圆 A,圆 A 与双曲线 C 的一条渐近线交于 M、N 两点。若∠MAN=60°, 则 C 的离心率为______. (16)如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O.D、E、F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的等腰三角形。沿虚线剪开后,分别以 BC,CA,AB 为折痕折起△DBC,△ ECA,△FAB,使得 D、E、F 重合,得到三棱锥。当△ABC 的边长变化时,所 得三棱锥体积(单位:cm3)的最大值为_______.
A。440
B.330
C。220
D.110
第Ⅱ卷 二、填空题:本大题共 4 小题,每小题 5 分 (13)已知向量 a,b 的夹角为 60°,|a|=2,|b|=1,则| a +2 b | =________。
x 2y 1
(14)设 x,y 满足约束条件 2x y 1,则 z 3x 2y 的最小值为________。
A.[2, 2]
B。[1,1]
C.[0, 4]
(6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
D。 [1, 3]
A.15
B.20
C.30
D。35
(7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰 直角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形.该多面体 的各个面中有若干个是梯形,这些梯形的面积之和为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.立体几何(含解析)一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .π17 B .π18 C .π20 D .π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8【2015年,11题】 【2014年,12题】 【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013年,8】 【2012年,7】 【2011年,6】【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A .6B C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 .三、解答题【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A -PB -C 的余弦值.【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值. ABCDE【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.A 17.立体几何(解析版)一、选择题【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16(7)【解析】由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,()24226S =+⨯÷=梯,6212S =⨯=全梯,故选B ;【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【解析】如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥ 又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D = ∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是( )A .π17 B .π18 C .π20 D.π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A .【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:284R π=,圆锥底面半径16R π=,米堆体积21320123V R h ππ==,堆放的米约有221.62V ≈,选B ..【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都r ,圆柱的高为2r ,其表面积为2222142225416202r r r r r r r r πππππ⨯+⨯++⨯=+=-,解得2r =,故选B ..【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .C .6D .4【解析】如图所示,原几何体为三棱锥D ABC -,其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,选C【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R ,由R 2=(R -2)2+42,得R =5,所以球的体积为34500π5π33=(cm 3),故选A. 【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为底边为6,高为3的等腰三角形, 侧面ABD ⊥底面BCD ,AO ⊥底面BCD ,因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B .【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A .6B .6C .3D .2【解析】如图所示,根据球的性质,知⊥1OO 平面ABC ,则C O OO 11⊥.在直角COO 1∆中,1=OC ,331=C O ,所以36)33(122121=-=-=C O OC OO . 因此三棱锥S -ABC 的体积6236433122=⨯⨯⨯==-ABC O V V ,故选择A . 【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的.故选D 二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 .解析:设ABCD 所在的截面圆的圆心为M,则=22=,1623O ABCD V -=⨯⨯=三、解答题【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A -PB -C 的余弦值.【解析】(1)证明:∵90BAP CD P ∠=∠=︒,∴PA AB ⊥,PD CD ⊥, 又∵AB CD ∥,∴PD AB ⊥,又∵PD PA P = ,PD 、PA ⊂平面PAD , ∴AB ⊥平面PAD ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAD . (2)取AD 中点O ,BC 中点E ,连接PO ,OE ,∵AB CD ,∴四边形ABCD 为平行四边形,∴OEAB ,由(1)知,AB ⊥平面PAD ,∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ,∴OE PO ⊥,OE AD ⊥, 又∵PA PD =,∴PO AD ⊥,∴PO 、OE 、AD 两两垂直, ∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,∴()00D ,、)20B ,、(00P ,、()20C ,,∴(0PD = ,、2PB =,,、()00BC =-,,设()n x y z = ,,为平面PBC 的法向量,由00n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,得20y +=-=⎪⎩, 令1y =,则z =,0x =,可得平面PBC的一个法向量(01n =,,∵90APD ∠=︒,∴PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD ,∴PD AB ⊥,又PA AB A = ,∴PD ⊥平面PAB ,即PD是平面PAB 的一个法向量,(0PD = ,,,∴cos PD n PD n PD n ⋅==⋅,,由图知二面角A PB C --为钝角,所以它的余弦值为. 【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60. (Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【解析】:⑴ ∵ABEF 为正方形,∴AF EF ⊥,∵90AFD ∠=︒,∴AF DF ⊥,∵=DF EF F∴AF ⊥面EFDC ,AF ⊂面ABEF ,∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒,∵AB EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC ∴AB ∥平面ABCD ,AB ⊂平面ABCD ∵面ABCD I 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =,()()000020E B a ,,,,()02202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,, ()020EB a =u u r ,,,22a BC a ⎛⎫=- ⎪ ⎪⎝⎭uu u r ,,()200AB a =-u u u r ,,,设面BEC 法向量为()m x y z = ,,,00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩u r uur u r uu u r,即111120202a y a x ay z ⋅=⎧⎪⎨⋅-+⋅=⎪⎩,11101x y z ==-,,)01m =-u r ,ABCDEF设面ABC 法向量为()222n x y z =r,,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩r uu u r r uu u r .即222220220a x ay ax ⎧-=⎪⎨⎪=⎩22204x y z ==,,()04n =r,设二面角E BC A --的大小为θ. cos m n m n⋅===⋅u r ru r r θ,∴二面角E BC A --的余弦值为【2015,18】如图,四边形ABCD 为菱形,120ABC ∠= ,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.解:(Ⅰ)证明:连接BD ,设BD AC G = ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设1GB =,由120ABC ∠=,可得AG GC ==BE ⊥平面ABCD ,AB BC =,可知AE EC =.又AE EC ⊥,所以EG ,且EG AC ⊥.在Rt EBG ∆中,可得BE =,故2DF =.在Rt FDG ∆中,可得FG =. 在直角梯形BDFE 中,由2BD =,BE =,DF =EF =因为222EG FG EF +=,所以EG FG ⊥,又AC FG G = ,则EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AFC ⊥平面AEC . ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得(0,A,(1E,(1,0,2F -,E,(1AE =,(1,2CF =- .故cos ,||||AE CF AE CF AE CF ⋅<>==. 所以直线AE 与直线CF……12分 【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=BC 求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1BC 于O ,连结AO .因为侧面11BB C C 为菱形,所以1BC 1BC ⊥ ,且O 为1BC 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1BC A O ⊥ 又 1B O CO =,故1A C A B = (Ⅱ)因为1AC AB ⊥且O 为1BC 的中点,所以AO=CO 又因为AB=BC ,所以BOA BOC ∆≅∆ 故OA ⊥OB ,从而OA ,OB ,1OB 两两互相垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB=BC ,则A ⎛ ⎝⎭,()1,0,0B,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫⎪ ⎪⎝⎭10,33AB ⎛=- ⎝⎭,111,0,,3A B AB ⎛==- ⎝⎭111,3B C BC ⎛⎫==-- ⎪ ⎪⎝⎭ 设(),,n x y z =是平面的法向量,则11100n AB n A B ⎧=⎪⎨=⎪⎩,即003y z x z =⎨⎪-=⎪⎩所以可取(n =设m 是平面的法向量,则111100m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m = 则1cos ,7n m n m n m ==,所以二面角111A ABC --的余弦值为17. 【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. 证明:(1)取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA|为单位长,建立如图所示的空间直角坐标系O -xyz.由题设知A (1,0,0),A 1(00),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,.设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,0.x x ⎧=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11AC AC ⋅n n=. 所以A 1C 与平面BB 1C 1C所成角的正弦值为5.【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【解析】(1)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=,A 1同理:1114590A DC CDC ︒︒∠=⇒∠=,得:1DC DC ⊥.又DC 1⊥BD ,DC BD D = , 所以1DC ⊥平面BCD .而BC ⊂平面BCD ,所以1DC BC ⊥.(2)解法一:(几何法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ABC AC ⇒⊥.取11A B 的中点O ,连接1C O ,OD . 因为1111AC B C =,所以111C O A B ⊥,因为面111A B C ⊥面1A BD ,所以1C O ⊥面1A BD ,从而1C O BD ⊥,又DC 1⊥BD ,所以BD ⊥面1DC O ,因为OD ⊂平面1DC O ,所以BD OD ⊥. 由BD OD ⊥,BD ⊥DC 1,所以1C DO ∠为二面角A 1-BD -C 1的平面角. 设12AA a =,AC BC a ==,则12C O =,1C D =,在直角△1C OD ,1C O OD ⊥,1112C O CD =, 所以130C DO ︒∠=. 因此二面角11C BD A --的大小为30︒. 解法二:(向量法)由11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC ABC AC ⇒⊥.又1C C ⊥平面ABC ,所以1C C AC ⊥,1C C BC ⊥,以C 点为原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -.不妨设AA 1=2,则AC=BC=21AA 1=1, 从而A 1(1,0,2),D (1,0,1), B (0,1,0),C 1(0,0,2),所以1(0,0,1)DA = ,(1,1,1)DB =-- , 1(1,0,1)DC =-.设平面1A BD 的法向量为1111(,,)n x y z =, 则11n DA ⊥ ,1n DB ⊥ ,所以111100z x y z =⎧⎨-+-=⎩,即1110z x y =⎧⎨=⎩,令11y =,则1(1,1,0)n = .设平面1C BD 的法向量为2222(,,)n x y z =≤ ,则21n DC ⊥ ,2n DB ⊥, 所以2222200x z x y z -+=⎧⎨-+-=⎩,即22222x z y z =⎧⎨=⎩,令21z =,则2(1,2,1)n = .所以121212cos ,||||n n n n n n ⋅<>===⋅12,30n n <>=︒ .因为二面角11C BD A --为锐角,因此二面角11C BD A --的大小为30︒.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.解:(I )因为60D AB ∠=︒,2AB AD =,由余弦定理得BD =.从而222BD AD AB +=,故BD AD ⊥. 又PD ⊥底面ABCD ,可得BD PD ⊥. 所以BD ⊥平面PAD . 故PA BD ⊥.(II )如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D xyz -,则()1,0,0A,()B,()C -,()0,0,1P,()AB =-,()1PB =-,()1,0,0BC =-设平面PAB 的法向量为(),,x y z =n ,则00AB PB ⎧⋅=⎪⎨⋅=⎪⎩n n,即x z ⎧-⎪-=因此可取=n .设平面PBC 的法向量为m ,则00PB BC ⎧⋅=⎪⎨⋅=⎪⎩m m ,可取(0,1,m =-. cos ,〈〉==m n . 故二面角A PB C --的余弦值为.。