初中数学各种公式大全,超级实用!【精】

合集下载

完整版)初中数学公式大全

完整版)初中数学公式大全

完整版)初中数学公式大全一、基础运算法则1.加法法则:a+b=b+a2. 乘法法则:ab = ba3. 结合律:(a+b)+c = a+(b+c);(ab)c = a(bc)4. 分配律:a(b+c) = ab+ac二、整数运算1. 正整数的乘方:a的n次方:an = a × a × ... × a (n个a 连乘)2.负整数的乘方:a的负n次方:a^(-n)=1/(a^n)3.零的乘方:0的n次方(n为正整数):0^n=04.零的乘方:0的0次方:0^0=1三、代数运算1. 同底数幂相乘:ab^n = (ab)^n2. 积的幂:(ab)^n = a^n × b^n3.商的幂:(a/b)^n=(a^n)/(b^n)4.幂的乘方:(a^n)^m=a^(n×m)5.开方:a^(1/n)=n√a6.负指数的表示:a^(-n)=1/(a^n)四、二次方程1. 标准形式:ax^2+bx+c = 0,其中a≠02. 一元二次方程求根公式:x = (-b±√(b^2-4ac))/(2a)3.解的个数:一元二次方程有两个解时,称为有两个不等实数根;有一个解时,称为有两个相等的实数根;无解时,称为无实数根。

4. 判别式:Δ=b^2-4ac当Δ>0时,方程有两个不等实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根。

五、几何公式1.平行线的性质:平行线两边对应角相等、内错角相等、外错角相等、同位角相等。

2.三角形的内角和:三角形的内角和为180°。

3.三角形的边与角的关系:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a^2 = b^2 + c^2 - 2bc*cosA4.三角形的两边关系:两边之和大于第三边;两边之差小于第三边。

5.等腰三角形的性质:底角相等,腰相等。

六、平面图形1. 长方形:周长P = 2(l + w),面积S = lw2.正方形:周长P=4a,面积S=a^23. 三角形:周长P = a + b + c,面积S = 1/2bh4.梯形:周长P=a+b1+b2+c5.圆:周长C=2πr,面积S=πr^2七、概率与统计1.事件的概率:P(A)=n/N,其中n是事件A发生的次数,N是事件的可能发生的总次数。

初中数学常用公式大全

初中数学常用公式大全

初中数学常用公式大全1.数与式-两个数的和:a+b-两个数的差:a-b-两个数的积:a×b-两个数的商:a÷b-两个数的平均数:(a+b)÷2-两个数的和的平方:(a+b)²-两个数的差的平方:(a-b)²-两个数的积的平方:(a×b)²-两个数的商的平方:(a÷b)²2.平方与立方-数的平方:a²-数的立方:a³-平方差公式:(a+b)×(a-b)=a²-b²- 立方和公式:a³ + b³ = (a + b) × (a² - ab + b²) - 立方差公式:a³ - b³ = (a - b) × (a² + ab + b²) 3.代数式- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca- (a - b - c)² = a² + b² + c² - 2ab - 2bc + 2ca4.百分数-百分数的意义:百分数是以100为基数表示的分数,百分号表示百分数。

-百分数与小数的转化:将百分数去掉百分号,并除以100,即得小数;将小数乘以100,并加上百分号,即得百分数。

-百分数与分数的转化:将百分数的百分号去掉,并将百分数的百分数除以100,即得分数;将分数的分子乘以100,并在分母上加上百分号,即得百分数。

-相当百分数:等效于一样的部分,并且百分数与百分数之间可以相互替代。

5.比例与比例等式-比例:两个比例相等时,称为比例,记作a:b=c:d-比值:两个数的比较结果,记作a/b或a:b-比例等式:两个比例相等的等式,如a:b=c:d-长度、面积、体积的比例:两个相似图形的对应边长、面积或体积的比值相等。

初一数学公式大全总结

初一数学公式大全总结

千里之行,始于足下。

初一数学公式大全总结以下是初一数学常用的一些公式总结:1. 整数的加减法:a +b = b + aa -b = a + (-b)2. 整数的乘法:a *b = b * a(a * b) * c = a * (b * c)a * (b + c) = a * b + a * c3. 整数的除法:a /b =c (b ≠ 0)4. 平方和差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^25. 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a - b)(a + b)6. 平方根定义:√a * √a = a第1页/共2页锲而不舍,金石可镂。

7. 百分数的基本关系:p% = p/100a% * b% = (a * b) / 1008. 加法算式变形:a +b +c = (a + b) + ca +b +c = a + (b + c)a + 0 = a9. 单位换算:1米 = 100厘米1纳米 = 0.000000001米1千克 = 1000克1升 = 1000毫升10. 图形的周长和面积:矩形的周长:2 * (长 + 宽)矩形的面积:长 * 宽正方形的周长:4 * 边长正方形的面积:边长 * 边长圆的周长:2 * π * 半径圆的面积:π * 半径^2这些是初一数学常用的一些公式,希望对你有帮助!。

初中数学全套公式大全

初中数学全套公式大全

初中数学全套公式大全1.代数公式- 分配律:a(b+c) = ab + ac-结合律:(a+b)+c=a+(b+c)- 因式分解:ab+ac = a(b+c)-二次方差:(a+b)(a-b)=a^2-b^2- 三次方差:a^3 + b^3 = (a+b)(a^2-ab+b^2)- 一次方程求解:ax + b = 0 => x = -b/a- 二次方程求解:ax^2 + bx + c = 0 => x = (-b±√(b^2-4ac))/(2a)- 三次方程求解:ax^3 + bx^2 + cx + d = 0 => 需用牛顿法等等2.几何公式-周长:正方形周长=4×边长矩形周长=2×(长+宽)圆周长=π×直径-面积:正方形面积=边长×边长矩形面积=长×宽三角形面积=底×高/2圆面积=π×半径^2-体积:长方体体积=长×宽×高圆柱体积=圆面积×高圆锥体积=圆面积×高/3-相似三角形面积比:AB/CD=BC/EF=AC/DE-圆的性质:正切与切线垂直相等弧所对的圆心角是相等的相等弧的扇形所对的弧长和扇形的面积也相等3.概率公式-事件的概率:P(A)=事件A发生的次数/总的样本空间次数-对立事件:P(A')=1-P(A)-全概率公式:事件B在事件A发生的条件下发生的概率为P(A)×P(B,A),而总概率为P(A)-乘法公式:两个同时发生的独立事件A和B的概率为P(A∩B)=P(A)×P(B)-加法公式:两个互不相容(即不能同时发生)的事件A和B的概率为P(A∪B)=P(A)+P(B)4.超越函数的公式- e^x、e^(-x)、ln(x)、log(x)等函数的展开公式-三角函数的和差化积公式和倍角公式-反三角函数的公式-指数函数、对数函数的性质及展开公式5.统计学公式-平均值:平均值=总和/总数-中位数:将数据从小到大排列,如果总数是奇数,则中位数为中间的那个数;如果总数是偶数,则中位数为中间两个数的平均值-众数:出现次数最多的数-极差:最大值-最小值-方差:各数据与平均数的差的平方和的均值-标准差:方差的平方根-相关系数:相关系数范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无关。

初中数学78个公式

初中数学78个公式

初中数学78个公式以下是初中数学常见的78个公式(按照相关的知识点进行分类):1. 平方差公式:$a^2 - b^2 = (a - b)(a + b)$2. 比例相等:$\frac{a}{b} = \frac{c}{d}$3. 二次根式:$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$4. 平方根的开平方:$(\sqrt{a})^2 = a$5. 次方公式:$a^n \cdot a^m = a^{n + m}$6. 分指数:$\frac{a^n}{a^m} = a^{n - m}$7. 平方和分解:$a^2 + b^2 + 2ab = (a + b)^2$8. 平方差分解:$a^2 - b^2 = (a + b)(a - b)$9. 平方差和分解:$a^2 + b^2 - 2ab = (a - b)^2$10. 一元一次方程:$ax + b = 0$11. 一元二次方程:$ax^2 + bx + c = 0$12. 一元三次方程:$ax^3 + bx^2 + cx + d = 0$13. 直线方程:$y = kx + b$14. 平行线的性质:$k_1 = k_2$15. 垂直线的性质:$k_1 \cdot k_2 = -1$16. 直线的截距式:$\frac{x}{a} + \frac{y}{b} = 1$17. 圆的标准方程:$(x - a)^2 + (y - b)^2 = r^2$18. 圆心坐标公式:$(a, b)$19. 圆的半径:$r$20. 弧长:$L = 2\pi r$21. 扇形面积公式:$S = \frac{\theta}{360^\circ} \pi r^2$22. 正方形的周长:$P = 4a$23. 正方形的面积:$S = a^2$24. 长方形的周长:$P = 2(a + b)$25. 长方形的面积:$S = ab$26. 三角形的周长:$P = a + b + c$27. 三角形的面积:$S = \frac{1}{2}bh$28. 直角三角形的勾股定理:$a^2 + b^2 = c^2$29. 等腰三角形的斜边:$2l = b$30. 锐角三角形的高:$h = b\sin A$31. 五边形的内角和:$(n - 2) \cdot 180^\circ$32. 正多边形的内角和:$(n - 2) \cdot 180^\circ$33. 两角之和的三角函数:$\sin(A \pm B) = \sin A \cos B \pm\cos A \sin B$34. 两角之差的三角函数:$\cos(A \pm B) = \cos A \cos B \pm\sin A \sin B$35. 两角之和的正切函数:$\tan(A \pm B) = \frac{\tan A \pm\tan B}{1 \mp \tan A \tan B}$36. 同角三角函数之商:$\tan A = \frac{\sin A}{\cos A}$37. 逆三角函数关系:$\sin^{-1} (\sin A) = A$,$\cos^{-1}(\cos A) = A$,$\tan^{-1} (\tan A) = A$38. 二项式定理:$(a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n - 1}b + \binom{n}{2} a^{n - 2}b^2 + \ldots + \binom{n}{n - 1} ab^{n - 1} + \binom{n}{n} b^n$39. 等比数列通项公式:$a_n = a_1 \cdot q^{n - 1}$40. 等差数列通项公式:$a_n = a_1 + (n - 1)d$41. 等差数列求和公式:$S_n = \frac{n}{2}(a_1 + a_n)$42. 任意项数列求和公式:$S_n = \frac{a_1 + a_n}{2} \cdot n$43. 数列首项:$a_1$44. 数列公差:$d$45. 直角坐标系中两点之间的距离:$d = \sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}$46. 连续整数的和:$S_n=\frac{n}{2}(a_1+a_n)$47. 无穷等差数列的和:$S = \frac{a_1}{1 - q}$48. 平行四边形的周长:$P = 2(a + b)$49. 平行四边形的面积:$S = bh$50. 梯形的面积:$S = \frac{1}{2}(a + b)h$51. 梯形的内角和:$(n - 2) \cdot 180^\circ$52. 三角形内角和定理:$A + B + C = 180^\circ$53. 三角形外角和定理:$A' + B' + C' = 360^\circ$54. 三角形的内心:$(x, y)$55. 三角形的外心:$(x, y)$56. 三角形的重心:$(x, y)$57. 三角形的垂心:$(x, y)$58. 反比例函数:$y = \frac{k}{x}$59. 弧度与角度的转换:$360^\circ = 2\pi \ rad$60. 锐角三角函数的定义:$\sin x = \frac{y}{r}$,$\cos x =\frac{x}{r}$,$\tan x = \frac{y}{x}$61. 负数的平方:$(-a)^2 = a^2$62. 模的性质:$|x| = \begin{cases} x, &x \geq 0\\ -x, &x < 0 \end{cases}$63. 绝对值基本不等式:$|a + b| \leq |a| + |b|$64. 定义域:$x$65. 值域:$y$66. 最大值:$y_\text{max}$67. 最小值:$y_\text{min}$68. 直角三角形的面积:$S = \frac{1}{2}ab$69. 多边形的外角和:$360^\circ$70. 多边形的内角和:$(n - 2) \cdot 180^\circ$71. 渐进线:$y = ax + b$72. 正数的倒数:$\frac{1}{a}$73. 反函数的定义:$f(f^{-1}(x)) = x$,$f^{-1}(f(x)) = x$74. 递增函数:$x_1 < x_2, f(x_1) < f(x_2)$75. 递减函数:$x_1 < x_2, f(x_1) > f(x_2)$76. 弧长的比例:$\frac{S}{L} = \frac{\theta}{360^\circ}$77. 圆周角的比例:$\frac{\theta}{360^\circ} = \frac{L}{2\pi r}$78. 英寸与厘米的换算:$1 \text{ inch} = 2.54 \text{ cm}$这些公式在初中数学中是最常见和最基础的公式,希望对你的学习有所帮助。

初中数学各种公式(完整版)

初中数学各种公式(完整版)

初中数学各种公式(完整版) 初中数学公式大全1.乘法与因式分解① $(a+b)(a-b)=a^2-b^2$② $(a\pm b)^2=a^2\pm 2ab+b^2$③ $(a+b)(a^2-ab+b^2)=a^3+b^3$④ $(a-b)(a^2+ab+b^2)=a^3-b^3$a^2+b^2=(a+b)^2-2ab$a-b)^2=(a+b)^2-4ab$2.幂的运算性质① $a^1=a$⑥ $a^{-n}=\frac{1}{a^n}$② $a^{\frac{1}{n}}=\sqrt[n]{a}$③ $(a^m)^n=a^{mn}$④ $a^m\times a^n=a^{m+n}$⑤ $\frac{a^m}{a^n}=a^{m-n}$⑦ $a^0=1(a\neq 0)$特别地:$a^{\frac{1}{2}}=\sqrt{a}$3.二次根式① $\sqrt{a^2}=a(a\geq 0)$② $|\pm a|=|a|$③ $\sqrt{ab}=\sqrt{a}\sqrt{b}$④ $\sqrt{a+b}=\sqrt{a}\sqrt{b}(\text{其中}a>0,b\geq 0)$4.三角不等式a|-|b|\leq |a\pm b|\leq |a|+|b|(\text{定理})$;加强条件:$||a|-|b||\leq |a\pm b|\leq |a|+|b|$也成立,这个不等式也可称为向量的三角不等式(其中$a$,$b$分别为向量$a$和向量$b$);a+b|\leq |a|+|b|$;$|a-b|\leq |a|+|b|$;$|a|\leq b\iff -b\leq a\leq b$;a-b|\geq |a|-|b|$;$-|a|\leq a\leq |a|$;5.某些数列前$n$项之和1+2+3+4+5+6+7+8+9+\cdots+n=\frac{n(n+1)}{2}$;1+3+5+7+9+11+13+15+\cdots+(2n-1)=n^2$;2+4+6+8+10+12+14+\cdots+(2n)=n(n+1)$;1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+\cdots+n^2=\frac{n(n +1)(2n+1)}{6}$;1^3+2^3+3^3+4^3+5^3+6^3+\cdots+n^3=\frac{n^2(n+1)^2} {4}$;1\times 2+2\times 3+3\times 4+4\times 5+5\times 6+6\times 7+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$;6.一元二次方程对于方程:$ax^2+bx+c=0$:①求根公式是$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,其中$\Delta=b^2-4ac$叫做根的判别式。

初中数学公式汇总(精华版)

初中数学公式汇总(精华版)

初中数学公式汇总(精华版)一、幂的运算:①同底数幂相乘:ma ·na =nm a+;②同底数幂相除:m a ÷n a =nm a-;③幂的乘方:nm a )(=mna;④积的乘方:n ab )(=n a nb ;⑤分式乘方:n nn ba b a =)((注意:凡是公式都可以倒用)二.完全平方公式:2222)(b ab a b a +±=±)平方差公式 22b a -=(a+b )(a-b ) (注意:凡是公式都可以倒用) 三.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);ba ba=(a ≥0,b >0)四.一元二次方程一般形式:)0(02≠=++a c bx ax1、求根公式:)04(24222,1≥--±-=ac b aac b b x2.根的判别式:ac b 42-=∆当ac b 42-=∆>0时,一元二次方程)0(02≠=++a c bx ax 有两个不相等实数根.反之亦然.<当ac b 42-=∆=0时,一元二次方程)0(02≠=++a c bx ax 有两个相等的实数根. 反之亦然.当ac b 42-=∆<0时,一元二次方程)0(02≠=++a c bx ax 没有的实数根. 反之亦然.3.根与系数的关系:ac x x a b x x =⋅-=+2121, 逆定理:若n x x m x x =⋅=+2121,,则以21,x x 为根的一元二次方程是:02=+-n mx x 。

4.常用等式:2122122212)(x x x x x x -+=+212212214)()(x x x x x x -+=-5.不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ¥③212212214)()(x x x x x x -+=- ④21221214)(||x x x x x x -+=-⑤||22)(|)||(|2121221221x x x x x x x x +-+=+ ⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式。

初中数学所有公式

初中数学所有公式

初中数学所有公式初中数学公式:一、代数公式1. 二元一次方程:ax + by = c。

2. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)²= a² - 2ab + b²。

3. 平方根公式:√(a² + b²) = √a² + √b²。

4. 求根公式:x = (-b ± √(b² - 4ac)) / 2a。

5. 一次函数:y = kx + b。

6. 二次函数:y = ax² + bx + c。

二、几何公式1. 周长公式:正方形的周长=4a,长方形的周长=2(a+b)。

2. 面积公式:正方形的面积=a²,长方形的面积=a*b,三角形的面积=1/2*底*高。

3. 圆的周长公式:C=2πr,其中π为3.14。

4. 圆的面积公式:S=πr²。

三、比例与百分数公式1. 比例公式:a:b = c:d。

2. 百分数公式:百分数 = (部分 / 全体) * 100%。

3. 增长量与增长率:增长量 = 原值 * 增长率,增长率 = (增长量 / 原值) * 100%。

四、三角函数公式1. 正弦公式:sinA = 对边 / 斜边。

2. 余弦公式:cosA = 临边 / 斜边。

3. 正切公式:tanA = 对边 / 临边。

4. 正负角公式:sin(-A) = -sinA,cos(-A) = cosA。

五、概率与统计公式1. 概率公式:P(A) = 事件A发生的次数 / 总次数。

2. 组合公式:C(n, m) = n! / (m! * (n - m)!),其中n表示总数,m表示选取的个数。

3. 平均数公式:平均数 = (数据之和) / (数据个数)。

六、等价变换公式1. 分配律:a(b + c) = ab + ac。

2. 结合律:(a + b) + c = a + (b + c)。

初中数学各种公式大全

初中数学各种公式大全

初中数学各种公式大全初中数学中有很多重要的公式,下面是一份初中数学各种公式的完整版,包括代数、几何、概率统计等方面的公式。

一、代数篇1.平方差公式:$(a+b)(a-b)=a^2-b^2$2. 完全平方公式:$(a+b)^2=a^2+2ab+b^2$、$(a-b)^2=a^2-2ab+b^2$3. 二次方程的根与系数的关系:若$x_1$和$x_2$是方程$ax^2+bx+c=0$的两个根,则$x_1+x_2=-\frac{b}{a}$、$x_1x_2=\frac{c}{a}$4. 一元一次方程求解公式:$x=\frac{c-b}{a}$5.等差数列通项公式:$a_n=a_1+(n-1)d$6.等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}[2a_1+(n-1)d]$7.等比数列通项公式:$a_n=a_1\cdot q^{(n-1)}$8.等比数列前n项和公式(当$,q,<1$时):$S_n=\frac{a_1(1-q^n)}{1-q}$9. 二项式定理:$(a+b)^n=C_n^0a^n+C_n^1a^{(n-1)}b+C_n^2a^{(n-2)}b^2+...+C_n^kb^{(n-k)}+...+C_n^nb^n$10. 二次根式的性质:$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$二、几何篇1.相似三角形的性质:对应角相等、对应边成比例2.直角三角形勾股定理:若$a$、$b$、$c$为直角三角形的两条直角边和斜边,则$c^2=a^2+b^2$3. 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$(其中$R$为三角形外接圆的半径)4. 余弦定理:$c^2=a^2+b^2-2ab\cos C$5. 面积公式:$\triangle ABC=\frac{1}{2}ab\sin C$6. 圆的面积公式:$S=\pi r^2$7. 矩形面积公式:$S=a\cdot b$8. 平行四边形面积公式:$S=bh$9. 梯形面积公式:$S=\frac{1}{2}(a+b)h$10. 扇形面积公式:$S=\frac{1}{2}r^2\theta$三、概率与统计篇1. 事件的概率:$P(A)=\frac{N(A)}{N(S)}$(其中$N(A)$为事件$A$发生的次数2. 随机事件的概率:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$3.等可能事件的概率:$P(A)=\frac{m}{n}$(其中$m$为事件$A$的可能结果数,$n$为试验的总可能结果数)4. 组合数公式:$C_n^k=\frac{n!}{k!(n-k)!}$(其中$n!$表示$n$的阶乘)5. 二项分布公式:$P(X=k)=C_n^kp^kq^{(n-k)}$(其中$X$为二项分布的随机变量,$p$为单次实验中事件$A$的概率,$q=1-p$)6. 正态分布标准化公式:$x=\frac{X-\mu}{\sigma}$(其中$X$为正态分布的随机变量,$\mu$为正态分布的均值,$\sigma$为正态分布的标准差)以上是初中数学中各种公式的完整版,供你参考。

初中数学公式大全(从初一到初三)

初中数学公式大全(从初一到初三)

一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。

数学公式大全初一

数学公式大全初一

数学公式大全初一一、有理数相关公式。

1. 有理数加法法则。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,( - 3)+(-5)=-(3 + 5)=-8。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 5)=-(5 - 3)=-2,( - 3)+5 = 5-3 = 2。

- 一个数同0相加,仍得这个数,如0+3 = 3。

2. 有理数减法法则。

- 减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

例如:5-3 = 5+( - 3)=2,3-5 = 3+( - 5)=-2。

3. 有理数乘法法则。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)=-15,( - 3)×5=-15。

- 任何数同0相乘,都得0。

4. 有理数除法法则。

- 除以一个不等于0的数,等于乘这个数的倒数。

即a÷ b=a×(1)/(b)(b≠0)。

例如:6÷3 = 6×(1)/(3)=2,6÷(-3)=6×(-(1)/(3))=-2。

- 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

5. 乘方。

- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a^n中,a 叫做底数,n叫做指数。

例如:2^3=2×2×2 = 8,( - 2)^3=(-2)×(-2)×(-2)=-8。

6. 混合运算顺序。

- 先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

例如:2×(3 + 4)^2-5- 先算括号里的3 + 4 = 7。

- 再算乘方7^2=49。

初中数学必背公式大全(拿去不用谢)

初中数学必背公式大全(拿去不用谢)

初中数学必背公式大全(拿去不用谢)1. 一次函数的公式:y = kx + b ,其中k为斜率,b为y轴截距。

2.二次函数的顶点坐标公式:(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

3.二次函数的轴对称线公式:x=h,其中h为顶点的横坐标。

4. 二次函数的判别式:Δ = b^2 - 4ac ,其中a、b、c为二次函数的系数。

5.二次函数的解的公式:x=(-b±√Δ)/(2a),其中a、b、c为二次函数的系数。

6. 三角函数的正弦定理:a / sinA = b / sinB = c / sinC ,其中a、b、c为三角形的边长,A、B、C为对应角的度数。

7. 三角函数的余弦定理:c^2 = a^2 + b^2 - 2abcosC ,其中a、b、c为三角形的边长,C为夹角的余弦。

8. 三角函数的正切公式:tanA = sinA / cosA ,其中A为角度。

9.平方差公式:(a+b)(a-b)=a^2-b^2,其中a、b为变量。

10. 平方和公式:(a + b)^2 = a^2 + 2ab + b^2 ,其中a、b为变量。

11. 立方差公式:(a + b)(a^2 - ab + b^2) = a^3 + b^3 ,其中a、b为变量。

12.代数因式分解公式:x^2-y^2=(x+y)(x-y),其中x、y为变量。

13. 余弦的和差公式:cos(A ± B) = cosAcosB - sinAsinB ,其中A、B为角度。

14. 正弦的和差公式:sin(A ± B) = sinAcosB ± cosAsinB ,其中A、B为角度。

15. 余切的和差公式:tan(A ± B) = (tanA ± tanB) / (1 ∓tanAtanB) ,其中A、B为角度。

16.相反数的和等于零:a+(-a)=0,其中a为实数。

17.加减相同数等于零:a+(-a)=0,其中a为实数。

初中数学公式汇总

初中数学公式汇总

初中数学公式大全表以下是一些初中数学公式的大全表,供您参考:1. 平方差公式:a^2-b^2=(a+b)(a-b)2. 完全平方公式:a^2±2ab+b^2=(a±b)^23. 立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)4. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)5. 完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^36. 三角形的面积公式:S=1/2absinC7. 两角和公式:sin(A+B)=sinAcosB+cosAsinB8. 两角差公式:sin(A-B)=sinAcosB-cosAsinB9. 倍角公式:sin2A=2sinAcosA10. 余弦定理:c^2=a^2+b^2-2abcosC11. 正弦定理:a/sinA=b/sinB=c/sinC=2R12. 平行四边形的面积公式:S=底×高13. 梯形的面积公式:S=1/2(上底+下底)×高14. 圆周长公式:C=πd=2πr15. 圆的面积公式:S=πr^216. 扇形面积公式:S=1/2lr=πr^2×n/360°17. 直径所对的圆周角公式:∠A=90°18. 旁切圆半径公式:r=(a+b-c)/219. 旁切圆直径公式:d=2r20. 三角函数定义式:sinA=∠A的对边/斜边cosA=∠A的邻边/斜边tanA=∠A的对边/∠A的邻边cotA=∠A的邻边/∠A的对边21. 三角函数关系式:tanA=-cotA sinA cosA=-cosA sinA tanA cosA=sinA22. 三角函数诱导式:sin(π/2-A)=cosA cos(π/2-A)=sinA tan(π/2-A)=cotA cot(π/2-A)=tanA sin(π/2+A)=cosA cos(π/2+A)=-sinA tan(π/2+A)=-cotA cot(π/2+A)=-tanA sin(π-A)=sinA cos(π-A)=-cosA tan(π-A)=-tanA cot(π-A)=-cot23.三角函数倍角公式:sin2A=2sinAcosA cos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)24. 三角函数半角公式:sin^2A=(1-cosA)/2 cos^2A=(1+cosA)/2 tan^2A=(1-cosA)/(1+cosA) cot^2A=(1+cosA)/(1-cosA)25. 三角函数积化和差公式:sinAcosB=sin(A+B)+sin(A-B) cosAsinB=sin(A+B)-sin(A-B) cosAcosB=cos(A+B)-sin(A-B) sinA sinB=sin(A+B)+sin(A-B)26.三角函数和差化积公式:sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB27.三角函数倍角公式:sin(2α)=2sin(α)cos(α) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tan(α)/(1-tan^2(α))28.三角函数万能公式:sinα=(-1)^(j+1)*2^(j+1)*a^(j+1)/(2^(j+1)*a^(j+1)+2^(j)*a^(j))cosα=2^(j)*a^(j)/(2^(j+1)*a^(j+1)+2^(j)*a^(j)) tanα=(-1)^(j+1)*a/(2^(j)*a^(j+1))29. 三角函数倒数公式:tanα*cotα=1 sinα*cscα=1 cosα*secα=130. 直角三角形ABC中,角A的正弦值、余弦值和正切值可以通过以下公式计算:sin A = 对边/ 斜边cos A = 邻边/ 斜边tan A = 对边/ 邻边31. 诱导公式:sin(π/2-a)=cosa cos(π/2-a)=sina32. sin(π/2+a)=cosa cos(π/2+a)=-sina33. sin(π-a)=sina cos(π-a)=-cosa34. sin(π+a)=-sina cos(π+a)=-cosa35. 正弦定理:a/sinA=b/sinB=c/sinC=2R36. 余弦定理:a^2=b^2+c^2-2bc*cosA37. 三角形面积公式:S=(a+b+c)/238. 扇形面积公式:S=(n/360)*π^2*r^239. 梯形面积公式:S=(a+b)*h/240. 圆形周长公式:C=2πr41. 圆形面积公式:S=πr^2。

初中数学全部公式

初中数学全部公式

初中数学全部公式初中数学常用公式:一、代数公式:1.两数相加的和等于它们反过来相加的和:a+b=b+a2.两数相减的差等于它们反过来相减的差:a-b≠b-a3.两数相乘的积等于它们反过来相乘的积:a×b=b×a4.两数相除的商等于它们分子、分母反过来相除的商:a÷b≠b÷a5. 两个数之和的平方等于它们的平方和加上两倍的它们的积:(a +b)² = a² + 2ab + b²6. 平方差公式:(a - b)² = a² - 2ab + b²7. 平方和公式:a² + b² = (a +b)² - 2ab8.两个平方差的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²9.一次方差公式:(a+b)×(a-b)=a²-b²10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 平方完全差公式:(a - b)² = a² - 2ab + b²12.两个完全平方的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²13.四平方定理:任何一个正整数都可以表示成不超过四个正整数的平方之和。

14.二项式定理:(a+b)ⁿ=C(n,0)aⁿ+C(n,1)aⁿ⁻¹b+C(n,2)aⁿ⁻²b²+...+a(b+a)ⁿ⁻¹bⁿ⁻¹+bⁿ15.幂运算的乘法法则:aⁿ×aᵐ=aⁿ⁺ᵐ16.幂运算的除法法则:aⁿ÷aᵐ=aⁿ⁻ᵐ二、几何公式:1.线段等分点公式:已知线段AB,M为AB的中点,则AM=MB=AB/22.垂直平分线公式:已知线段AB,O为线段AB的中点,则AO⊥OB,并且AO=OB=AB/23.线段外一点到线段的距离公式:已知线段AB和一点C,以A、B为两端点作线段AB的垂直平分线,交垂直平分线于点D,则CD为点C到线段AB的距离。

初中数学各种公式大全超级实用!

初中数学各种公式大全超级实用!

初中数学各种公式大全超级实用!初中数学中常用的公式有很多,下面是一些比较常见的公式:1.幂运算公式:a)幂的乘法公式:a^m*a^n=a^(m+n)b)幂的除法公式:a^m/a^n=a^(m-n)c)幂的乘方公式:(a^m)^n=a^(m*n)d)幂的零次方公式:a^0=1e)幂的负次方公式:a^(-n)=1/a^n2.开根运算公式:a)平方根的公式:√a*√a=ab)乘方根公式:(a^(1/n))^n=a3.三角函数公式:a) 正弦函数的公式:sin(a ± b) = sinacosb ± cosasinbb) 余弦函数的公式:cos(a ± b) = cosacosb ∓ sinasinbc) 正切函数的公式:tan(a ± b) = (tan a ± tan b) / (1 ∓tanatanb)4.直角三角形解题公式:a) 三角恒等式:sin^2θ + cos^2θ = 1b) 三角函数的基本关系:tanθ = sinθ / cosθ5.勾股定理(直角三角形):直角三角形的两边长分别为a和b,斜边长为c,满足a^2+b^2=c^26.同位角公式:a) 同位角的和差公式:sin(a ± b) = sinacosb ± cosasinbb) 同位角的乘积公式:sinasinb = 1/2 (cos(a-b) - cos(a+b))7.等比数列公式:a)通项公式:a_n=a_1*q^(n-1)b)等比数列前n项和公式:S_n=a_1*(q^n-1)/(q-1)c)等比中项公式:a_m = sqrt(a_(m-1) * a_(m+1))8.直线方程公式:a)一般式方程:Ax+By+C=0b)截距式方程:x/a+y/b=19. 一元一次方程:ax + b = 0,解为x = -b/a。

《初中数学公式大全》

《初中数学公式大全》

《初中数学公式大全》一、代数部分1.平方差公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a-b)(a+b)3.一元一次方程:ax + b = 0 (a ≠0)解:x=-b/a4.一元二次方程:ax² + bx + c = 0 (a ≠ 0)解: x = (-b ± √(b² - 4ac)) / (2a)5.二次差公式:(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac6.三次差公式:(a + b + c + d)² = a² + b² + c² + d² + 2ab + 2ac + 2ad + 2bc + 2bd + 2cd7.分式运算公式:a/b ± c/d = (ad ± bc)/(bd)8.数列通项公式:an = a1 + (n - 1)d9.等差数列前n项和公式:Sn=(n/2)(2a1+(n-1)d)10.等比数列前n项和公式:Sn=a1(1-r^n)/(1-r)(r≠1)11.等差数列求和公式:Sn = (n/2)(a1 + an)12.等比数列求和公式:Sn=a1(1-r^n)/(1-r)(r≠1)13.n个非零数的乘法积为1的不等式:a₁+a₂+...+aₙ≥n(√(a₁a₂...aₙ)) 14.平方根性质:√ab = √a * √b15.高斯定理:1+2+3+...+n=n(n+1)/216.平方根运算公式:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²a² + b² = (a + b)² - 2aba²-b²=(a+b)(a-b)17.完全立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³(a - b)³ = a³ - 3a²b + 3ab² - b³18.四次立方公式:(a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴(a - b)⁴ = a⁴ - 4a³b + 6a²b² - 4ab³ + b⁴19.乘法公式:(a + b)(c + d) = ac + ad + bc + bd20.三角函数和与差化积公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)cos(a ± b) = cos(a)cos(b) ∓ sin(a)sin(b)tan(a ± b) = [tan(a) ± tan(b)] / [1 ∓ tan(a)tan(b)] 21.对数运算公式:loga(m ∙ n) = loga(m) + loga(n)loga(m/n) = loga(m) - loga(n)loga(m^p) = p ∙ loga(m)二、几何部分1.直角三角形斜边平方等于两直角边平方和:c²=a²+b²2.正弦定理:a/sinA = b/sinB = c/sinC3.余弦定理:a² = b² + c² - 2bc∙cosAb² = a² + c² - 2ac∙cosBc² = a² + b² - 2ab∙cosC4.面积公式:三角形面积:S=1/2∙底∙高平行四边形面积:S=底∙高梯形面积:S=1/2∙(上底+下底)∙高圆面积:S=πr²5.角平分线公式:AD/AE=BD/BE=CD/CE6.三角形外接圆与外心的性质:三角形的三条边的中垂线交于一点,该点称为三角形的外心。

初中数学公式全部

初中数学公式全部

初中数学公式全部初中数学中常用的公式包含了代数、几何、三角函数、概率与统计等多个方面。

以下是一些常见的初中数学公式:一、代数公式1.求和公式:-等差数列前n项和 Sn = (a1 + an) 某 n / 2-等差数列前n项和Sn=(2a1+d(n-1))某n/2-等比数列前n项和Sn=a1某(1-q^n)/(1-q)2.因式分解公式:- 二次差公式 (a + b)^2 = a^2 + 2ab + b^2- 平方差公式 (a - b)^2 = a^2 - 2ab + b^2- 平方和公式 a^2 + b^2 = (a + b)^2 - 2ab-平方差公式a^2-b^2=(a+b)(a-b)3.二次方程的根公式:- 一元二次方程 a某^2 + b某 + c = 0 的根公式某 = (-b ±√(b^2 - 4ac)) / 2a二、几何公式1.直角三角形的勾股定理:-c^2=a^2+b^22.三角形面积公式:-面积S=1/2某底某高(对于任意三角形)- 面积S = 1/2 某边某边某 sin(夹角)(对于任意三角形)- 面积S = a 某 b 某 sin(夹角) / 2(对于已知两边和夹角的三角形)3.多边形面积公式:- 正多边形面积S = 1/2 某边长某边长某 n 某 sin(360度 / n)三、三角函数公式1.周期性公式:- sin(θ + 2π) = sin(θ)- cos(θ + 2π) = cos(θ)- tan(θ + π) = -tan(θ)2.三角函数的和差化积公式:- sin(α ± β) = sinαcosβ ± cosαsinβ- cos(α ± β) = cosαcosβ ∓ sinαsinβ- tan(α± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)四、概率与统计公式1.事件的概率:-P(A)=n(A)/n(S),表示事件A发生的概率2.期望:-对于离散型随机变量,期望E(X)=Σ(某某P(X=某))-对于连续型随机变量,期望E(X)=∫(某某f(某))d某这些仅是初中数学中的一部分公式,希望能对你学习初中数学有所帮助!。

初中数学公式大全

初中数学公式大全

初中数学公式大全一、基础四则运算公式1.加法公式:a+b=b+a2.减法公式:a-b≠b-a,但a-b=-(b-a)3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a,但a÷b=1/(b÷a)二、分数的运算公式1. 分数加法:a/b + c/d = (ad + bc)/bd2. 分数减法:a/b - c/d = (ad - bc)/bd3. 分数乘法:(a/b) × (c/d) = ac/bd4.分数除法:(a/b)÷(c/d)=(a/b)×(d/c)三、整式的乘法公式1.乘法分配律:a×(b+c)=a×b+a×c四、平方与开方公式1. 平方公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²2.开方公式:√a×√a=a,√(a×b)=√a×√b五、比例公式1.速度公式:速度=路程/时间2.比例关系:a:b=c:d六、三角函数公式1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:a² = b² + c² - 2bc × cosA3. 正切定理:tanA = a/b七、平行线与三角形公式1.平行线性质:同位角相等、内错角相等、同旁内角互补2.三角形内角和公式:三角形内角和为180°3.等腰三角形性质:底角相等、等腰线段相等八、数列与函数公式1.等差数列通项公式:an = a1 + (n - 1) × d2.等差数列前n项和公式:Sn = (a1 + an) × n / 23.左移函数公式:y=f(x+h)得到的图像向左移动h个单位4.上移函数公式:y=f(x)+k得到的图像向上移动k个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学各种公式及性质1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。

2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(ab)n=nnab;⑥a-n=1na,特别:()-n=()n;⑦a0=1(a≠0)。

3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。

4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式。

当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。

②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。

③以a和b为根的一元二次方程是x2-(a+b)x+ab=0。

7.一次函数一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标,称为截距)。

①当k>0时,y随x的增大而增大(直线从左向右上升);②当k <0时,y 随x 的增大而减小(直线从左向右下降);③特别地:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点。

8. 反比例函数反比例函数y =(k ≠0)的图象叫做双曲线。

①当k >0时,双曲线在一、三象限(在每一象限内,从左向右降); ②当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升)。

9. 二次函数(1).定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。

(2).抛物线的三要素:开口方向、对称轴、顶点。

①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。

(3).几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标 2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=20=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2ab x 2-=(ab ac a b 4422--,) (4).求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=。

②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。

③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=(5).抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。

②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线。

abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧。

③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。

当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab。

(6).用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。

③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。

(7).直线与抛物线的交点①y 轴与抛物线c bx ax y ++=2得交点为(0, c )。

②抛物线与x 轴的交点。

二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:a 有两个交点⇔(0>∆)⇔抛物线与x 轴相交;b 有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切;c 没有交点⇔(0<∆)⇔抛物线与x 轴相离。

③平行于x 轴的直线与抛物线的交点同②一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根。

④一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:a 方程组有两组不同的解时⇔l 与G 有两个交点;b 方程组只有一组解时⇔l 与G 只有一个交点;c 方程组无解时⇔l 与G 没有交点。

⑤抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-10. 统计初步(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌④标准差:方差的算术平方根。

数据1x 、2x ……, n x 的标准差s ,则s =()()()222121.....n x x x x x x n 轾-+-++-犏臌一组数据的方差越大,这组数据的波动越大,越不稳定。

11.频率与概率(1)频率频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。

(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。

③大量的重复实验时频率可视为事件发生概率的估计值; 12. 锐角三角形①设∠A 是△ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠A 的正切:tan A =.并且sin 2A +cos 2A =1。

0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小。

②余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A 。

③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,tan30º=,tan45º=1,tan60º=。

④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tanα=。

13. 正(余)弦定理(1)正弦定理 a/sinA=b/sinB=c/sinC=2R ;注:其中 R 表示三角形的外接圆半径。

正弦定理的变形公式:(1) a=2RsinA, b=2RsinB, c=2RsinC ;(2) sinA : sinB : sinC = a : b : c (2)余弦定理 b 2=a 2+c 2-2accosB ;a 2=b 2+c 2-2bccosA ;c 2=a 2+b 2-2abcosC ;注:∠C 所对的边为c ,∠B 所对的边为b ,∠A 所对的边为a14. 三角函数公式 (1) 两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) (2) 倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3) 半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) (4) 和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB (5) 积化和差2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 15. 平面直角坐标系中的有关知识(1)对称性:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y 轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b )。

相关文档
最新文档