呼和浩特市七年级上学期期末数学试题题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼和浩特市七年级上学期期末数学试题题及答案
一、选择题
1.下列方程中,以32x =-
为解的是( ) A .33x x =+
B .33x x =+
C .23x =
D .3-3x x = 2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...
的图形是( ) A . B .
C .
D .
3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )
A .10-
B .10
C .5-
D .5
4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的
( )
A .208
B .480
C .496
D .592 5.下列选项中,运算正确的是( )
A .532x x -=
B .2ab ab ab -=
C .23a a a -+=-
D .235a b ab += 6.下列方程是一元一次方程的是( )
A .213+x =5x
B .x 2+1=3x
C .32y =y+2
D .2x ﹣3y =1
7.将图中的叶子平移后,可以得到的图案是()
A.B.C.
D.
8.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()
A.97B.102C.107D.112
9.下列方程变形正确的是()
A.方程
1
1
0.20.5
x x
-
-=化成
101010
10
25
x x
-
-=
B.方程 3﹣x=2﹣5(x﹣1),去括号,得 3﹣x=2﹣5x﹣1 C.方程 3x﹣2=2x+1 移项得 3x﹣2x=1+2
D.方程2
3
t=
3
2
,未知数系数化为 1,得t=1
10.﹣2020的倒数是()
A.﹣2020 B.﹣
1
2020
C.2020 D.
1
2020
11.已知∠A=60°,则∠A的补角是()
A.30°B.60°C.120°D.180°
12.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()
A .A
B 上
B .B
C 上 C .C
D 上 D .AD 上
二、填空题
13.已知x =3是方程(1)21343
x m x -++=的解,则m 的值为_____. 14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.
16.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.
17.5535______.
18.当a=_____时,分式
13a a --的值为0. 19.分解因式: 22xy
xy +=_ ___________ 20.已知23,9n m n a a -==,则m a =___________.
21.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.
22.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;
23.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.
24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .
三、解答题
25.当x 取何值时,式子13x -的值比x+12
的值大﹣1?
26.计算: (1)()7.532-⨯-
(2)()
383+3233⨯-+-
27.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。
甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:
请根据对话解答下列问题:
(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.
(2)丁的多项式是什么?(请直接写出所有答案).
28.解方程:4x+2(x ﹣2)=12﹣(x+4)
29.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)
()1该几何体中有多少个小正方体?
()2画出从正面看到的图形;
()3写出涂上颜色部分的总面积.
30.全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分,
运动形式A B C D E
人数1230m549
请你根据以上信息,回答下列问题:
()1接受问卷调查的共有人,图表中的m=,n= .
()2统计图中,A类所对应的扇形的圆心角的度数是度.
()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有
1500人,请你估计一下该社区参加环岛路“暴走团”的人数.
四、压轴题
31.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6
a++|2b+12|+(c﹣4)2=0.
(1)求B、C两点的坐标;
(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;
(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的1
3
?直接写出此时点P的坐
标.
32.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?
(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.
33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.
(1)求AC ,BC ;
(2)当t 为何值时,AP PQ =;
(3)当t 为何值时,P 与Q 第一次相遇;
(4)当t 为何值时,1cm PQ =.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】 把32
x =-
代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】 解:
A 中、把32x =-
代入方程得左边等于右边,故A 对; B 中、把32x =-
代入方程得左边不等于右边,故B 错; C 中、把32x =-
代入方程得左边不等于右边,故C 错; D 中、把32
x =-代入方程得左边不等于右边,故D 错.
故答案为:A.
【点睛】
本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.
2.C
解析:C
【解析】
【分析】
根据余角与补角的性质进行一一判断可得答案.
.
【详解】
解:A,根据角的和差关系可得∠α=∠β=45o ;
B,根据同角的余角相等可得∠α=∠β;
C,由图可得∠α不一定与∠β相等;
D,根据等角的补角相等可得∠α=∠β.
故选C.
【点睛】
本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等.
3.D
解析:D
【解析】
【分析】
根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值.
【详解】
解:∵方程2k-3x=4与x-2=0的解相同,
∴x=2,
把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.
故选:D .
【点睛】
本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.
4.C
解析:C
【解析】
【分析】
由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.
【详解】
解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,
第二行四个数分别为7,8,9,10x x x x ++++,
第三行四个数分别为14,15,16,17x x x x ++++,
第四行四个数分别为21,22,23,24x x x x ++++,
16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.
【点睛】
本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.
5.B
解析:B
【解析】
【分析】
根据整式的加减法法则即可得答案.
【详解】
A.5x-3x=2x ,故该选项计算错误,不符合题意,
B.2ab ab ab -=,计算正确,符合题意,
C.-2a+3a=a ,故该选项计算错误,不符合题意,
D.2a 与3b 不是同类项,不能合并,故该选项计算错误,不符合题意,
故选:B.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则是解题关键.
6.A
解析:A
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案.
【详解】
解:A 、2
13+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程;
C 、32y
=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程;
故选:A .
【点睛】
解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.
7.A
解析:A
【解析】
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.
【详解】
解:根据平移不改变图形的形状、大小和方向,
将所示的图案通过平移后可以得到的图案是A,
其它三项皆改变了方向,故错误.
故选:A.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.
8.B
解析:B
【解析】
【分析】
观察图形,正确数出个数,再进一步得出规律即可.
【详解】
摆成第一个“H”字需要2×3+1=7个棋子,
第二个“H”字需要棋子2×5+2=12个;
第三个“H”字需要2×7+3=17个棋子;
第n个图中,有2×(2n+1)+n=5n+2(个).
∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.
故B.
【点睛】
通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.9.C
解析:C
【解析】
【分析】
各项中方程变形得到结果,即可做出判断.
【详解】
解:A、方程x1x
1
0.20.5
-
-=化成
10x1010x
25
-
-=1,错误;
B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;
C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,
D、方程23
t
32
=,系数化为1,得:t=
9
4
,错误;
所以答案选C.
【点睛】
此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.
10.B
解析:B
【解析】
【分析】
根据倒数的概念即可解答.
【详解】
解:根据倒数的概念可得,﹣2020的倒数是
1 2020 ,
故选:B.
【点睛】
本题考查了倒数的概念,熟练掌握是解题的关键.
11.C
解析:C
【解析】
【分析】
两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.
【详解】
设∠A的补角为∠β,则∠β=180°﹣∠A=120°.
故选:C.
【点睛】
本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.D
解析:D
【解析】
【分析】
根据题意列一元一次方程,然后四个循环为一次即可求得结论.
【详解】
解:设乙走x秒第一次追上甲.
根据题意,得
5x-x=4
解得x=1.
∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;
设乙再走y秒第二次追上甲.
根据题意,得5y-y=8,解得y=2.
∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;
同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;
乙在第5次追上甲时的位置又回到AB上;
∴2020÷4=505
∴乙在第2020次追上甲时的位置是AD上.
故选:D.
【点睛】
本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.
二、填空题
13.﹣.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.
【详解】
解:把x=3代入方程得1+1+=,
解得:m=﹣.
故答案为:﹣.
【点睛】
本题考查一元一次方程的解,解题的
解析:﹣8
3
.
【解析】
【分析】
把x=3代入方程得到关于m的方程,求得m的值即可.【详解】
解:把x=3代入方程得1+1+mx(31)
4
=
2
3
,
解得:m=﹣8
3
.
故答案为:﹣8
3
.
【点睛】
本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.
14.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 15.2
【解析】
解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.
点睛:本题主要考查合并同类
解析:2
【解析】
解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.
点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.
16.80°
【解析】
【分析】
由轴对称的性质可得∠B′OG =∠BOG ,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG =∠BOG
又∠AOB′=20°,可得∠B′O G+∠BOG =
解析:80°
【解析】
【分析】
由轴对称的性质可得∠B ′OG =∠BOG ,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B ′OG =∠BOG
又∠AOB ′=20°,可得∠B ′OG +∠BOG =160°
∴∠BOG =
12
×160°=80°. 故答案为80°.
【点睛】 本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 17.【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:,5,都大于0,
则,
,
故答案为:.
【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进
5<<
【解析】
【分析】
分别对其进行6次方,比较最后的大小进而得出答案.
【详解】
解:50,
则62636555=<=<,
5<<,
5<
<. 【点睛】
本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 18.1
【解析】
【分析】
根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.
【详解】
解:由题意得:a−1=0,且a−3≠0,
解得:a =1,
故答案为:1.
【点睛】
此题主要考查了分式
解析:1
【解析】
【分析】
根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.
【详解】
解:由题意得:a−1=0,且a−3≠0,
解得:a=1,
故答案为:1.
【点睛】
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.
19.【解析】
【分析】
原式提取公因式xy,即可得到结果.
【详解】
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本
解析:xy(2y1)
【解析】
【分析】
原式提取公因式xy,即可得到结果.
【详解】
解:原式=xy(2y+1),
故答案为:xy(2y+1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.20.27
【解析】
【分析】
首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n−m=81÷3=2
解析:27
【解析】
【分析】
首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
21.6×
【解析】
试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.
所以,4 600 000 0
10
解析:6×9
【解析】
试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于
4 600 000 000有10位,所以可以确定n=10-1=9.
所以,4 600 000 000=4.6×109.
故答案为4.6×109.
22.两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直
解析:两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故答案为:两点确定一条直线.
【点睛】
考核知识点:两点确定一条直线.理解课本基本公理即可.
23.5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么9 8.5对应的数记为﹣1.5.
故答案为:﹣1.
解析:5.
【解析】
【分析】
利用有理数的减法运算即可求得答案.
【详解】
解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.
故答案为:﹣1.5.
【点睛】
本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.
24.4000
【解析】
【分析】
设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.
【详解】
设放入正方体铁块后水面高为hcm,
由题意得:50×40×8+20×20×h=
解析:4000
【解析】
【分析】
设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】
设放入正方体铁块后水面高为hcm,
由题意得:50×40×8+20×20×h=50×40×h,
解得:h=10,
则水箱中露在水面外的铁块的高度为:20-10=10(cm ),
所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).
故答案为:4000.
【点睛】
此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.
三、解答题
25.25.
【解析】
【分析】
根据题意列出方程,求出方程的解即可得到结果.
【详解】
根据题意得: x 11x 132-⎛⎫-+=- ⎪⎝
⎭ ,即 x 11x 132---=- , 去分母得到:2(x ﹣1)﹣6x ﹣3=﹣6,
去括号得:2x ﹣2﹣6x ﹣3=﹣6,
移项合并得:﹣4x =﹣1,
解得:x=0.25 ,
则x=0.25时,
13x -的值比12x + 的值大﹣1. 【点睛】
本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.
26.(1)13.5;(2)9.
【解析】
【分析】
(1)根据有理数的四则混合运算解答;
(2)根号二次根式的四则运算进行解答.
【详解】
解:(1) ()7.532-⨯-
=7.56+
=13.5;
(3--
=(23⨯-
=3+
=9.
【点睛】
本题考查的是有理数以及二次根式的计算问题,解题关键按照四则运算去计算即可.
27.(1)是,理由见详解;(2)223x x ---;223x x ++;2541x x --.
【解析】
【分析】
(1) 由题意根据“友好多项式”的定义,对甲、乙、丙三位同学的多项式进行判断即可;
(2)由题意利用甲、乙、丁三位同学的多项式为“友好多项式”进行分析求解.
【详解】
解:(1)由题意可知两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”;
∵乙减甲等于丙即222
31(232)23,x x x x x x -+---=++
∴甲、乙、丙三位同学的多项式是 “友好多项式”.
(2)∵甲、乙、丁三位同学的多项式为“友好多项式”,
∴甲-乙=丁;乙-甲=丁;甲+乙=丁;
∴丁=222(232)(31)23x x x x x x ----+=---;
或丁=222(31)(232)23x x x x x x -+---=++;
或丁=222(232)(31)541x x x x x x --+-+=--.
【点睛】
本题考查整式加减的实际应用,理解题意列出整式并利用合并同类项原则进行分析计算. 28.x =
127
【解析】
【分析】 方程去括号,移项合并,把x 系数化为1,即可求出解.
【详解】
去括号得:4x+2x ﹣4=12﹣x ﹣4,
移项合并得:7x =12,
解得:x =
127 . 【点睛】
本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.
29.(1)14个;(2)见解析;(3)33cm 2
【解析】
【分析】
(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;
(2)主视图从上往下三行正方形的个数依次为1,2,3;
(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.
【详解】
解:(1)该几何体中正方体的个数为9+4+1=14个;
(2);
(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,
共有6×4+9=33个面
所以,涂上颜色部分的总面积是:1×1×33=33(cm2).
【点睛】
考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.
30.(1)150、45、36;(2)28.8°;(3)450人
【解析】
【分析】
(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得
m=45,再用D项目人数除以总人数可得n的值;
(2)360°乘以A项目人数占总人数的比例可得;
(3)利用总人数乘以样本中C人数所占比例可得.
【详解】
解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54
%100%36%
150
n=⨯=∴n=36,
故答案为:150、45、36;
(2)A类所对应的扇形圆心角的度数为
12 36028.8
150
︒︒
⨯=
故答案为:28.8°;
(3)
45
1500450
150
⨯=(人)
答:估计该社区参加碧沙岗“暴走团”的大约有450人
【点睛】
本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
四、压轴题
31.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣
3t+21(3)当t为2秒或13
3
秒时,△OPM的面积是长方形OBCD面积的
1
3
.此时点P的坐
标是(0,﹣4)或(83,﹣6) 【解析】 【分析】
(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;
(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;
(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.
【详解】
(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).
(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12
=
⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意
得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×4
12-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12
-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13
=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83
,﹣6). 综上所述:当t 为2秒或
133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83
,﹣6).
【点睛】
本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类
讨论是解答本题的关键.
32.(1)-12,8-5t;(2)9
4
或
11
4
;(3)10;(4)MN的长度不变,值为10.
【解析】
【分析】
(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;
(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;
(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
【详解】
(1)∵点A表示的数为8,B在A点左边,AB=20,
∴点B表示的数是8﹣20=﹣12,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8﹣5t,
故答案为﹣12,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;
分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=20,解得t=9
4;
②点P、Q相遇之后,
由题意得3t﹣2+5t=20,解得t=11 4,
答:若点P、Q同时出发,9
4
或
11
4
秒时P、Q之间的距离恰好等于2;
(3)如图,设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=20,
解得:x=10,
∴点P运动10秒时追上点Q;
(4)线段MN的长度不发生变化,都等于10;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=12AP+12BP=12(AP+BP)=12
AB=10, ②当点P 运动到点B 的左侧时:
MN=MP ﹣NP=
12AP ﹣12BP=12(AP ﹣BP)=12
AB=10, ∴线段MN 的长度不发生变化,其值为10.
【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.
33.(1)AC=4cm, BC=8cm ;(2)当45
t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)3519
1cm.224t PQ =当为,,时, 【解析】
【分析】
(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;
(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;
(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.
【详解】
(1)AC=4cm, BC=8cm.
(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,
即3t 43t t =-+,解得4t 5=
. 所以当4t 5
=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.
所以当t 2=时,P 与Q 第一次相遇. (4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,
35t t 22
解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,
193t 4t 1122,t 4
+++=⨯=则解得, 3519t PQ 1cm.224
所以当为,,时,=
【点睛】
此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。