Eviews基本操作(3.1版本)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Eviews基本操作(3.1版本)
一、创建工作文件
一种创建方法为点击file/new/workfile,然后输入frequency,以及开始(start)日期和结束(end) 日期.(注:如果是截面数据,要选undated or irregular项,然后在start中输入1,end中输入样本容量)。
输入完毕后,点击OK就可以得到工作文件窗口。
二、导入excel文件中的数据
1)在excel中先建立数据文件2)然后创建eviews工作文件
3)点击file/import/read text-lotus-excel选项,在对话框中选择已建立的excel文件
4)打开后,在新的对话框中输入想要分析的变量名称,然后点击OK即可。
此时工作文件中出现变量图标。
三、直接输入数据
1)创建一个工作文件(方法同一)2)点击quick/empty group,打开一个空白表格3)点击ser01,把第一列全选,在命令栏中输入变量名称后回车,即可改变变量名称,按此方法命名每一变量4)删除group对话框后,会发现工作文件中多了新变量四、画图
有两种方法可以将数据绘成曲线,第一种方法是:
1)首先在工作文件中选中所要分析的变量,点击右键open/as group项,打开数据文件2)点击view/graph/scatter(或其它图形)后,即可画出图形
3)在选中图表窗口后,在工作文件窗口点击edit/copy,在对话框中点击copy to clipboard,然后可将图表粘贴到word文档中,还可进行编辑
第二种方法是:
1)在工作文件窗口中点击quick/graph
2)在弹出的对话框中输入想要分析的变量
3)选择图表的类型及选项即可输出图表
4)可将图表移动到word文档中并进行编辑(方法同上)
五、数据的描述性统计量
1)在工作文件中选中变量后,点击右键点open group,打开数据文件
2)点击view/descriptive stats/common sample,就会出现描述性统计量
3)在选中若干行统计量数据后,点击edit/copy,在弹出的对话框中点OK,然后可将其粘贴到word文档中
注:
Mean 样本均值
Median 中位数
Maximum 最大值
Minimum 最小值
Std. Dev. 标准差
Skewness 偏度
Kurtosis 峰度
Jarque-Bera 正态性检验
Probability P值
Observations样本容量
六、一元线性回归模型的估计
1)建立变量的工作文件2)在主菜单上选择quick/estimate equation,出现对话框
3) 在对话框的equation specification框中,按被解释变量、常数项、解释变量的顺序输入,中间用空格空开
4)在对话框的estimation settings框中,在method栏中选择估计方法,点击OK即可5)在工具栏中,点击name,在name to identify object框中输入方程的新名字,点击OK 后,工作文件中将出现方程的图标
注:R-squared 拟合优度Mean dependent var 被解释变量均值Adjusted R-squared 修正的拟合优度S.D. dependent var 被解释变量标准差
S.E. of regression 回归方程标准差Akaike info criterion 赤池信息准则
Sum squared resid 残差平方和Schwarz criterion 施瓦兹信息准则
Log likelihood 似然函数的对数F-statistic F统计量
Durbin-Watson stat DW统计量Prob(F-statistic) F统计量的P值
6)在第四步输出估计结果后,在结果窗口中点击view/actual,fitted,residual/相应的残差图,可出现被解释变量的实际值、估计值、残差以及残差图。
点击view/representations(描述),可出现几个不同的估计方程,点击edit/copy可进行编辑。
点击view/estimation output,回到估计结果。
点击view/covariance matrix,可出现估计量的协方差阵,点击freeze后可对表格进行编辑。
七、一元线性回归模型的预测
1)在工作文件主窗口点击procs/change workfile range(改变范围),弹出对话框,在对话框的end date栏中输入预测值的时间或序号,点击OK
2)在工作文件窗口中双击解释变量文件,在变量窗口中点击edit+/-键,进入编辑模式,在变量窗口底端输入新序号的数值,再点击edit+/-键,关闭编辑模式
3)再次进行估计,点击quick/estimate equation,在对话框中输入方程,注意样本范围应不包括新序号,点击OK得到估计结果
4)点击结果窗口中的forecast键,产生对话框,在对话框中选择样本范围,点击OK可得预测曲线图。
同时在工作文件窗口产生新变量,双击后可得预测值
八、生成新变量
在变量的工作文件主窗口点击procs/generate/series,在弹出的窗口中输入新变量的函数表达式,点击OK后,在工作文件窗口出现新变量图标,选中新变量后可建立回归模型注:+ 加;- 减;* 乘;/ 除;^ 幂;
D(X) :X的一阶差分LOG(X):X的自然对数EXP(X):指数函数
ABS(X):绝对值SQR(X):平方根INV(X):X的倒数
@SUM(X):序列X的和@MEAN(X):序列X的平均数
@V AR(X):序列X的方差@SUMSQ(X):序列X的平方和
@OBS(X):序列X有效观测值的个数
@COV(X,Y):序列X和序列Y的协方差
@COR(X,Y):序列X和序列Y的相关系数
@CROSS(X,Y):序列X和序列Y的乘积之和。
九、多元回归模型的估计
1)建立多变量的工作文件后,点击quick/estimate equation,在对话框中依次输入被解释变量、常数项c、解释变量,中间用空格,然后点击OK
2)在估计的结果窗口点击view/representations,出现方程的表达式,复制最后的表达式,将其粘贴到命令窗口,在窗口中输入scalar 新变量(不同于被解释变量)=方程右端(解释变量要输入数值),按回车,可见工作文件多了一个纯量标志,双击便得预测值
十、模型的异方差性
a) 异方差的检验
古典线性回归模型的一个重要假设是总体回归方程的随机扰动项u i同方差,即他们具有相同的方差σ2。
如果随机扰动项的方差随观察值不同而异,即u i的方差为σi2,就是异方差。
检验异方差的步骤是先在同方差假定下估计回归方程,然后再对得到的的回归方程的残差进行假设检验,判断是否存在异方差。
Eviews提供了怀特(White)的一般异方差检验功能。
零假设:原回归方程的误差同方差。
备择假设:原回归方程的误差异方差
操作步骤:在工作文件主窗口选定需要分析的回归方程\ 打开估计方程及其统计检验结果输出窗口\点击工具栏中的View \选Residual Tests \ White Heteroskedasticity (no cross terms)或White Heteroskedasticity (cross terms),可得到辅助回归方程和怀特检验统计量-
即F统计量、2
χ统计量的值及其对应的p值。
由图中的显示结果可以看出:在5%显著水平下我们拒绝零假设,接受回归方程的误差项存在异方差的假设。
一般地,只要图中给出的p 值小于给定的显著水平,我们就可以在该显著水平下拒绝零假设。
F-statistic 3.573259 Probability 0.027230
Obs*R-squared 11.21329 Probability 0.047311
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 10/05/06 Time: 18:14
Sample: 1984 2003
Included observations: 20
C 41643039 38925032 1.069827 0.3028
RENJUNGDP -101275.1 66462.62 -1.523790 0.1498
RENJUNGDP^2 14.42638 15.52129 0.929457 0.3684
-8.196993 7.578420 -1.081623 0.2977
RENJUNGDP*CHUK
OU
CHUKOU 45909.21 20723.85 2.215284 0.0438
CHUKOU^2 0.555283 0.843298 0.658467 0.5209
R-squared 0.560664 Mean dependent var 16246747
Adjusted R-squared 0.403759 S.D. dependent var 26960715
S.E. of regression 20818165 Akaike info criterion 36.78388
Sum squared resid 6.07E+15 Schwarz criterion 37.08259
Log likelihood -361.8388 F-statistic 3.573259
Durbin-Watson stat 1.746126 Prob(F-statistic) 0.027230
注意:White Heteroskedasticity (no cross terms)与White Heteroskedasticity (cross terms)
选项的区别在于:在no cross terms选项下得到的辅助回归方程中不包含原回归方程左手变量的交叉乘积项作为解释变量;而cross terms选项下得到的辅助回归方程中包含原回归方程左手变量的交叉乘积项作为解释变量。
在我们使用的一元回归例子中,这两个选项的作用没有区别。
当我们分析多元回归模型的异方差问题时,因为所选辅助回归方程的解释变量不同,这两个选项的作用就不同了。
b) 异方差的修正:加权最小二乘法
在工作文件主菜单选Quick \Estimate Equations,进入输入估计方程对话框输入待估计方程,选择估计方法—普通最小二乘法,点击Options按钮进入方程估计选择对话框,选择Weighted LS/TSLS \ 在对话框内输入用作加权的序列名称\ OK应用,回到估计方程对话框,点击OK得到加权最小二乘法回归方程。
权序列的选取:1)用普通最小二乘法估计回归方程,在工作文件窗口出现resid图标
2)点击procs/generate/series,在窗口中输入resid1=abs(resid),产生resid1图标,点击procs/generate/series,在窗口中输入resid2=inv(resid1),产生resid2图标
3)在权的对话框内输入resid2
十一、模型的序列相关性
a) 一阶序列相关的检验:DW检验
b) 方法:见书114页
Dependent Variable: CHUXU
Method: Least Squares
Date: 10/05/06 Time: 21:47
Sample: 1984 2003
Variable Coefficient Std. Error t-Statistic Prob.
C -5719.992 2198.735 -2.601492 0.0186
RENJUNGDP 3.773130 1.462698 2.579568 0.0195
CHUKOU 2.116770 0.408663 5.179743 0.0001
R-squared 0.983303 Mean dependent var 31893.75
Adjusted R-squared 0.981339 S.D. dependent var 32003.86
S.E. of regression 4371.935 Akaike info criterion 19.74128
Sum squared resid 3.25E+08 Schwarz criterion 19.89064
Log likelihood -194.4128 F-statistic 500.5740
Durbin-Watson stat 0.815974 Prob(F-statistic) 0.000000
Estimation Command:
=====================
LS CHUXU C RENJUNGDP CHUKOU
Estimation Equation:
=====================
CHUXU = C(1) + C(2)*RENJUNGDP + C(3)*CHUKOU
Substituted Coefficients:
=====================
CHUXU = -5719.991597 + 3.773129627*RENJUNGDP +
2.116770043*CHUKOU
Dependent Variable: CHUXU
Method: Least Squares
Date: 10/05/06 Time: 21:51
Sample(adjusted): 1985 2003
Included observations: 19 after adjusting endpoints
Convergence achieved after 14 iterations
Variable Coefficient Std. Error t-Statistic Prob.
C -12709.85 12737.66 -0.997817 0.3342
RENJUNGDP 8.202262 3.577764 2.292566 0.0367
CHUKOU 1.012704 0.596076 1.698951 0.1100
AR(1) 0.802118 0.237689 3.374654 0.0042
R-squared 0.991992 Mean dependent var 33508.44
Adjusted R-squared 0.990391 S.D. dependent var 32032.93
S.E. of regression 3140.060 Akaike info criterion 19.12654
Sum squared resid 1.48E+08 Schwarz criterion 19.32536
Log likelihood -177.7021 F-statistic 619.4082
Durbin-Watson stat 1.360176 Prob(F-statistic) 0.000000
Inverted AR Roots .80
Estimation Command:
=====================
LS CHUXU C RENJUNGDP CHUKOU AR(1)
Estimation Equation:
=====================
CHUXU = C(1) + C(2)*RENJUNGDP + C(3)*CHUKOU + [AR(1)=C(4)] Substituted Coefficients:
=====================
CHUXU = -12709.85128 + 8.202262003*RENJUNGDP +
1.012704271*CHUKOU + [AR(1)=0.8021180294]
Dependent Variable: CHUXU
Method: Least Squares
Date: 10/05/06 Time: 21:56
Sample(adjusted): 1986 2003
Included observations: 18 after adjusting endpoints
Convergence achieved after 29 iterations
Variable Coefficient Std. Error t-Statistic Prob.
C -11015.05 9090.391 -1.211724 0.2472
RENJUNGDP 10.37824 2.543574 4.080180 0.0013
CHUKOU 0.238829 0.410945 0.581170 0.5711
AR(1) 1.561604 0.281776 5.542003 0.0001
AR(2) -0.727499 0.299916 -2.425677 0.0306
R-squared 0.993775 Mean dependent var 35279.87
Adjusted R-squared 0.991859 S.D. dependent var 31989.67
S.E. of regression 2886.323 Akaike info criterion 19.00349
Sum squared resid 1.08E+08 Schwarz criterion 19.25081
Log likelihood -166.0314 F-statistic 518.8080
Inverted AR Roots .78+.34i .78 -.34i
Estimation Command:
=====================
LS CHUXU C RENJUNGDP CHUKOU AR(1) AR(2)
Estimation Equation:
=====================
CHUXU = C(1) + C(2)*RENJUNGDP + C(3)*CHUKOU +
[AR(1)=C(4),AR(2)=C(5)]
Substituted Coefficients:
=====================
CHUXU = -11015.04513 + 10.37824109*RENJUNGDP +
0.2388287737*CHUKOU + [AR(1)=1.561603603,AR(2)=-0.7274994041]
Dependent Variable: CHUXU
Method: Least Squares
Date: 10/05/06 Time: 21:58
Sample(adjusted): 1987 2003
Included observations: 17 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C -15149.18 12274.44 -1.234206 0.2428
RENJUNGDP 11.13895 2.861859 3.892208 0.0025
CHUKOU 0.188107 0.408724 0.460229 0.6543
AR(1) 1.637151 0.319197 5.128961 0.0003
AR(2) -1.037573 0.517766 -2.003944 0.0703
R-squared 0.993720 Mean dependent var 37223.54
Adjusted R-squared 0.990865 S.D. dependent var 31859.80
S.E. of regression 3045.098 Akaike info criterion 19.15102
Sum squared resid 1.02E+08 Schwarz criterion 19.44509
Log likelihood -156.7837 F-statistic 348.0946
Inverted AR Roots .58+.38i .58 -.38i .49
Estimation Command:
=====================
LS CHUXU C RENJUNGDP CHUKOU AR(1) AR(2) AR(3)
Estimation Equation:
=====================
CHUXU = C(1) + C(2)*RENJUNGDP + C(3)*CHUKOU +
[AR(1)=C(4),AR(2)=C(5),AR(3)=C(6)]
Substituted Coefficients:
=====================
CHUXU = -15149.18287 + 11.13895089*RENJUNGDP +
0.1881066332*CHUKOU +
[AR(1)=1.637151092,AR(2)=-1.037573047,AR(3)=0.2323816533]
十二、工具变量法
1)建立工作文件,判定随机解释变量,选择工具变量
2)点击quick/estimate equation,在对话框中输入方程变量,选择TSLS,在下方对话框中输入工具变量名称,点击OK
十三、联立方程模型
以例6.4.1(202页)为例,首先建立工作文件
1、用狭义的工具变量法估计消费方程
在工作文件主窗口点击quick/estimate equation,选择估计方法TSLS,在equation specification对话框输入消费方程,在instrument list对话框输入先决变量,点击OK
2、 用间接最小二乘法估计消费方程 一步一步算
3、用两阶段最小二乘法估计消费方程
点击objects/new object,选择system,如下图
点击OK后,在对话框中输入方程,如下图
点击estimate,
点击OK,。