龙西乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙西乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)实数在数轴上的位量如图所示,则下面的关系式中正确的个数为()
A. 1
B. 2
C. 3
D. 4
【答案】B
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:由数轴可知:
b<-a<0<a<-b,
∴a+b<0,b-a<0,>,|a|<|b|,
故①②错误;③④正确.
故答案为:B.
【分析】由数轴可知:b<-a<0<a<-b,从而可逐一判断对错.
2、(2分)将不等式组的解集在数轴上表示,下列表示中正确的是()
A.
B.
C.
D.
【答案】A
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解不等式组可得-1≤x<1,A符合题意。

【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
3、(2分)如图,是测量一物体体积的过程:
(1 )将300mL的水装进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积为下列范围内的()
A.10cm3以上,20 cm3以下
B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下
D.40 cm3以上,50 cm3以下
【答案】D
【考点】一元一次不等式组的应用
【解析】【解答】解:设玻璃球的体积为x,
则有,可
解得40<x<50.
故一颗玻璃球的体积在40cm3以上,50cm3以下,
故答案为:D.
【分析】设玻璃球的体积为x,再根据题意列出不等式:4x<500-300,5x>500-300,化简计算即可得出x的取值范围.
4、(2分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】D
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵DH∥EG∥BC
∴∠DCB=∠HDC,∠HDC=∠DME,
∵DC∥EF
∴∠DCB=∠EFB,∠FEG=∠DME=∠GMC
∴与∠DCB相等的角有:∠HDC,∠DME,∠EFB,∠FEG,∠GMC
故答案为:D
【分析】根据平行线的性质即可求解。

5、(2分)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()
A. n≤m
B. n≤
C. n≤
D. n≤
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:设成本为a元,由题意可得:a(1+m%)(1﹣n%)﹣a≥0,
则(1+m%)(1﹣n%)﹣1≥0,
去括号得:1﹣n%+m%﹣﹣1≥0,
整理得:100n+mn≤100m,
故n≤.故答案为:B
【分析】先设出成本价,即可用成本价表示出标价,再用根据“不亏本”即售价减去成本大于等于0即可列出一元一次不等式,解关于x的不等式即可求得n的取值范围.
6、(2分)不等式x<-2的解集在数轴上表示为()
A.
B.
C.
D.
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:A、数轴上表达的解集是:,不符合题意;
B、数轴上表达的解集是:,不符合题意;
C、数轴上表达的解集是:,不符合题意;
D、数轴上表达的解集是:,符合题意.
故答案为:D.
【分析】满足x<-2 的点都在-2的左边,不包括-2本身,应用“<”表示。

7、(2分)观察701班学生上学方式统计图,下列关于图中信息描述不正确的是()
A. 该班骑车上学的人数不到全班人数的20%
B. 该班步行人数超过骑车人数的50%
C. 该班共有学生48人
D. 该班乘车上学的学生人数超过半数
【答案】D
【考点】条形统计图
【解析】【解答】解:A、由统计图可知,该班学生总数为48人,骑车上学的有9人,所占百分比为
18.75%,故选项不符合题意;
B、由统计图可知,该班步行人数为14人,骑车人数有9人,该班步行人数超过骑车人数的50%,故选项不符合题意;
C、由统计图可知,该班学生总数为14+9+16+9=48人,故选项不符合题意;
D、由统计图可知,该班学生总数为48人,该班乘车上学的学生人数16人,没有超过半数,故选项符合题意.
故答案为:D
【分析】根据统计图中的数据相加可得该班的人数,从而判断C,利用对应的人数除以班级总数可得对应的百分比,从而判断A、B,根据乘车人数与班级人数对比可判断D.
8、(2分)如图,点在射线上,,则等于()
A. B. 180º
C. D. 180º
【答案】C
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD∥EF
∴∠B=∠BCD,∠E+∠DCE=180°
∴∠DCE=180°-∠E
∵∠BCD+∠DCE+∠GCE=180°
∴∠B+180°-∠E+∠GCE=180°
∴∠GCE=∠E-∠B
故答案为:C
【分析】根据平行线的性质得出∠B=∠BCD,∠E+∠DCE=180°,再根据∠BCD+∠DCE+∠GCE=180°,即可证得结论。

9、(2分)一个数若有两个不同的平方根,则这两个平方根的和为()
A.大于0
B.等于0
C.小于0
D.不能确定
【答案】B
【考点】平方根
【解析】【解答】解:∵正数的平方根有两个,一正一负,互为相反数,
∴这两个平方根的和为0。

故答案为:B.
【分析】根据正数平方根的性质,结合题意即可判断。

10、(2分)下列说法,正确的有()
(1 )整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.
A. 1个
B. 2个
C. 3个
D. 4个
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,立方根及开立方,有理数及其分类
【解析】【解答】解:(1)整数和分数统称为有理数;正确.
(2)符号不同的两个数叫做互为相反数;错误,比如2,-4符号不同,不是互为相反数.
(3)一个数的绝对值一定为正数;错误,0的绝对值是0.
(4)立方等于本身的数是1和-1.错误,0的立方等于本身,
故答案为:A.
【分析】根据有理数的定义,可对(1)作出判断;只有符号不同的两个数叫互为相反数,可对(2)作出判断;任何数的绝对值都是非负数,可对(3)作出判断;立方根等于它本身的数是1,-1和0,可对(4)作出判断,综上所述可得出说法正确的个数。

11、(2分)如果方程组的解与方程组的解相同,则a、b的值是()
A.
B.
C.
D.
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:由题意得:是的解,
故可得:,解得:.
故答案为:A.
【分析】由题意把x=3和y=4分别代入两个方程组中的第二个方程中,可得关于a、b的二元一次方程组,解这个方程组即可求得a、b的值。

12、(2分)下列四幅图中,∠1和∠2是同位角的是()
A. (1)、(2)
B. (3)、(4)
C. (1)、(2)、(3)
D. (2)、(3)、(4)
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故答案为:A.
【分析】根据同位角的定义,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,观察图形即可得出答案。

二、填空题
13、(2分)100的平方根是________52的平方根是________.
【答案】±10;±5
【考点】平方根
【解析】【解答】∵(±10)2=100,∴100的平方根是±10.故答案为±10.
∵52=25,∵(±5)2=25,
∴25的平方根是±5,即52的平方根是±5.
【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。

根据平方根的意义可得100的平方根是10;的平方根是 5.
14、(1分)我国体育健儿在24届﹣30届奥运会上获得金牌的情况如图所示,则在这七届奥运会上,我国体育健儿共获得________枚金牌.
【答案】186
【考点】折线统计图
【解析】【解答】解:在这七届奥运会上,我国体育健儿共获得金牌的枚数是:
5+16+16+28+32+51+38=186(枚).
故答案为:186.
【分析】找出七届的金牌数并相加。

15、(1分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.
【答案】10
【考点】一元一次不等式的应用
【解析】【解答】解:设售价至少应定为x元/千克,依题可得方程x(1-5%)×80≥760,从而得出x≥10.
故答案为:10.
【分析】设售价至少应定为x元/千克,根据“ 有5%的水果正常损耗”可知销售的水果占(1-5%),故每千克水果损耗后的价格为x(1-5%),根据题意列出不等式即可.
16、(1分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为________
【答案】65°
【考点】平行线的性质
【解析】【解答】∵∠1=155°,∴∠EDC=180°-155°=25°.
∵DE∥BC,∴∠C=∠EDC=25°.
∵在△ABC中,∠A=90°,∠C=25°,
∴∠B=180°-90°-25°=65°.
故答案为65°
【分析】由平行线的性质,可知∠EDC=∠C,因为∠EDC与∠1是互为邻补角,所以可知∠C的值,又因为∠C与∠B互余,所以可知∠B的值.
17、(1分)已知x、y是二元一次方程组的解,则x+y的值是________ .
【答案】5
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:由①×4得
8x-4y=32③
由②+③得
9x=39
x=
将x=代入①得
-y=8
解之y=

∴x+y=+=5
故答案为:5
【分析】观察方程组中同一未知数的系数特点,y的系数存在倍数关系且符号相反,因此将方程①×4+②,消去y,求出x的值,再求出y的值,然后求出x、y之和即可。

18、(1分)如图,若∠1=∠D=39°,∠C和∠D互余,则∠B=________
【答案】129°
【考点】平行线的判定与性质
【解析】【解答】解:
∵∠1=∠D,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠C和∠D互余,
∴∠C=90°﹣∠D=90°﹣39°=51°,
∴∠B=180°﹣∠C=180°﹣51°=129°,
故答案为:129°
【分析】由内错角相等,两直线平行,可知AB//CD ,可知∠C的度数,又因为两直线平行,同旁内角互补;即可求出∠B的值.
三、解答题
19、(5分)解方程组:
【答案】解:把①代入②得:3x-(2x-3)=8
x=5
把x=5代入①得y=7
原方程组的解为
【考点】解二元一次方程组
【解析】【分析】观察方程组中第一个方程是用含x的代数式表示y,因此利用代入消元法求解即可。

20、(5分)如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC.
【答案】证明:∵AB⊥AC
∴∠ACB=90°(垂直定义)
∵∠1=30°
∴∠BAD=∠BAC+∠1=120°
又∵∠B=60°
∴∠BAD+∠B=180°
∴AD∥BC(同旁内角互补,两直线平行)
故答案为:ACB,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行
【考点】平行线的判定
【解析】【分析】根据同旁内角互补,两直线平行,得出结论.
21、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1= ∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
22、(5分)解方程组
【答案】解:令=k
x=2k,y=3k.z=4k
将它们代入②得
解得k=2
所以x=4,y=6,z=8
原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】“遇到连比,设比值为k”,用含k的代数式表示x、y、z,再将x、y、z带入方程5x+2y−3z=8即可求解,这是非常有用的方法.
23、(5分)如图,已知1= 2,GFA=40°,HAQ=15°,ACB=70° ,AQ平分FAC.
求证:BD∥GE∥AH.
【答案】证明:∵∠ 1= ∠ 2
∴GE∥AH.
∴∠GFA=∠FAH=40°
∵∠FAQ=∠FAH+∠HAQ=40°+15°=55°
∵AQ平分∠ FAC.
∴∠FAC=2∠FAQ=2×55°110°
∵∠HAC=∠FAC-∠FAH=110°-40°=70°
∵∠ ACB=70 °
∴∠HAC=∠ ACB
∴AH∥BD
∵GE∥AH.
∴BD∥GE∥AH.
【考点】平行线的判定与性质
【解析】【分析】根据同位角相等,两直线平行,可证得GE∥AH,再根据平行线的性质及已知角的度数求出∠FAQ的度数,再根据角平分线的定义,求出∠FAC的度数,从而可求出∠ACB的度数,然后由∠HAC=∠ACB,可证得AH∥BD,根据同平行于一条直线的两直线平行,即可得证。

24、(5分)如图,DB∥FG∥EC,点A在FG上,∠ABD=60°,∠GAC=∠ACE=36°,AP平分∠BAC.求∠PAG 的度数.
【答案】解:∵DB∥FG∥EC,
∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,
∴∠BAC=∠BAG+∠CAG=96°;
∵AP为∠BAC的平分线,
∴∠BAP=∠CAP=48°,
∴∠PAG=∠CAP﹣∠GAC=12°
【考点】角平分线的定义,平行线的性质
【解析】【分析】根据两直线平行,内错角相等,和角平分线的定义,求出∠PAG的度数.
25、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
26、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,
……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
第21 页,共21 页。

相关文档
最新文档