初三数学一轮复习教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学一轮复习教案
【篇一:2014年数学中考第一轮复习整套教案(完整
版)[1]】
2014年
立德树人传道解惑启发思维成就英才
中考数学一轮复习资料
白沙中学
二零一四年二月
白沙中学立德树人传道解惑启发思维成就英才
第一轮复习的目的
1、第一轮复习的目的是要“过三关”:
(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确
无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的
记忆。

我要求学生用课前5 ---15分钟的时间来完成这个要求,有些
内容我还重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也
就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对
每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮复习的步骤、方法
(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,
是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小
到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一
些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生
不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联
系而得到.这就是全面复习的含义
(2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,
了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下
功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主
要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出
重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找
重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要
内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.
(3)基本训练反复进行:学习数学,要做一定数量的题,把基本功
练熟练透,但我们不主张”题海”战术,而是提倡精练,即反复做一
些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对
些基本定理的证明,基本公式的推导,以及一些基本练习题,要作
到不用书写,就象棋手下”盲棋”一样,只需用脑子默想,即能得到
正确答案.这就是我们在常言中提到的,在20分钟内完成10道客
观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训
练有素,”熟能生巧”,基本功扎实的人,遇到难题办法也多,不易
被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把
会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功
扎实的人,出了错立即会发现,很少会”粗心”地出错
3、数学:过来人谈中考复习数学巧用“两段”法
立德树人传道解惑启发思维成就英才中考数学复习大致分为两个
阶段。

第一个阶段,是第一轮复习。

应尽可能全面细致地回顾以往学过的
知识。

概念和定理的复习建议跟着老师的安排复习进行,同时一定
要注意配合复习进度适当做一些练习。

这时候做练习题不要求做得
太多、太杂,更不能满足于做对即可,关键是要在练习中领悟和掌
握各种题型的解题方法和技巧。

可以参考老师帮助总结的各种类型题,再结合自己的实际情况消化理解,力图把每一个题型都做熟做透。

对于想冲击高分的同学,可以在难题上下工夫,尤其是往年考
过的压轴题,一定要仔细弄明白。

第二个阶段,是在三次模拟考试期间。

在此期间,要重点训练自己
答题的速度和准确率,不要再去死抠特别难的题了。

每天至少要做
一套模拟试题,逐步适应中考状态,不要让手“生”了。

要重视三次
模拟考试,就把它当作中考去对待,努力适应大考的环境。

在中考前的几天,再做一两套模拟题,把平时易错的题看一遍,让
心里充满自信,之后就不要再看了,养足了精神,准备考试。

最后再向大家介绍一些考场技巧:要保持适度的紧张,先把选择题
拿下来,让心里有个底,接下来按部就班地做。

切记,不要挑着题做,遇到难题不要慌,想想平时学过的知识,一点一点做下去,实
在做不出来也不要灰心,跳过去,千万不要因小失大,影响了大局。

做到最后大题时,更要一步一步去推,能写几步写几步,即使拿不
了全分,拿一半分,就很不错了。

最后,做完了一定要检查,检查
时要一道一道地查,一点也不要遗漏,切忌浮躁。

第一部分数与代数
第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1
课时整式第2课时因式分解第3课时分式第4讲二次根式
第二部分方程与不等式
第二章方程与不等式
第1课时一元一次方程与二元一次方程组第2课时分式方程第3
课时一元二次方程第2讲不等式与不等式组
第三部分图形与证明
第三章三角形与四边形第1讲相交线和平行线第2讲三角形
第1课时三角形
第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课
时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形
立德树人传道解惑启发思维成就英才
第四部分圆与三角函数
第四章圆
第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关
的计算
第五章三角函数
第1讲锐角三角函数第2讲解直角三角形
第3讲锐角三角函数的应用
第五部分图形与变换
第六章图形与变换
第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲尺规
作图第4讲图形的相似第5讲解直角三角形
第六部分函数
第七章函数
第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数
第七部分统计与概率
第八章统计与概率第1讲统计第2讲概率
第八部分中考专题突破
专题一归纳与猜想
专题二方案与设计
立德树人传道解惑启发思维成就英才
专题三阅读理解型问题专题四开放探究题专题五数形结合思想第九部分基础题强化提高测试
中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试中考数学基础题强化提高测试
2014年中考数学模拟试题(一) 2014年中考数学模拟试题(二)
【篇二:初三数学第一轮复习教案1】
初三数学第一轮复习教案代数部分第一章:实数
教学目的:
1、掌握数的概念及分类,正确理解和运用数学概念;
2、熟练掌握数轴、相反数、绝对值、倒数的概念,灵活运用这些知识解决实际问题。

3、会进行实数的大小比较。

4、理解近似数与有效数字、指数、科学记数法等概念。

5、会熟练灵活正确地进行有理数的运算。

6、了解平方根、算术平方根、立方根的概念,会用平方运算求某些非负数的平方根和算术平方根。

基础知识点:一、实数的分类: ??????正整数?整数?
???零??有理数???
负整数?有限小数或无限循环小数实数???? ?????正分数?分数? ?????负分数?????无理数???正无理数??负无理数?无限不循环小数
?1、有理数:任何一个有理数总可以写成p
q
的形式,其中p、q是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、4;特定结构的
1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是 -a;(2)a和b互为相反数?a+b=0 2、倒数:
(1)实数a(a≠0)的倒数是1a
;(2)a和b 互为倒数?ab?1;(3)注意0没有倒数
3、绝对值:
??a,
a?0(1)一个数a 的绝对值有以下三种情况:a??0,
a?0 ??
?a,a?0
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根
(1)平方根,算术平方根:设a≥0,称?a叫a的平方根,a叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴
1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算 1、加法:
(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用加法交换律、结合律。

2、减法:
减去一个数等于加上这个数的相反数。

3、乘法:
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:
乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依
次运算,不同级的运算,先算高级的运算再算低级的运算,有括号
的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法
(其中1≤a<10,n为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。

精确度的形式有
两种:(1)精确到那一位;(2)保留几个有效数字。

例题:
例1、已知实数a、b在数轴上的对应点的位置如图所示,且a?b。

化简:a?a?b?b?a
分析:从数轴上a、b两点的位置可以看到:a<0,b>0且a?b 所
以可得:
解:原式??a?a?b?b?a?a
例2、若a?(?34)?3,b??(34)3,c?(34
)?3,比较a、b、c的大小。

分析:a??(43)3??1;b????3?3???1且b?0;c>0;所以容易得出:a<b<c。

?4?
解:略
例3、若a?2b?2互为相反数,求a+b的值分析:由绝对值非负特性,可知a?2?0,
b?2?0,又由题意可知:
a?2?b?2?0
所以只能是:a–2=0,b+2=0,即a=2,b= –2 ,所以a+b=0 解:

例4、已知a与b互为相反数,c与d互为倒数,m的绝对值是1,求a?b
?cd?m2m
的值。

解:原式=0?1?1?0
22
例5、计算:(1)8
1994
?0.1251994 (2)?
??e?1?e???e?1????2???
?e??
??2??????
解:(1)原式=(8?0.125)1994?11994?1
?1(2)原式=??e?
e?1????e?1e?1??1?1
??2
?2?????2?2?=e?
?e???????
第二章:代数式
教学目的:
1、了解代数式的概念,会列代数式,会求代数式的值。

2、了解整式、单项式、多项式概念,会把一个多项式按某个字母的
升幂或降幂排列。

3、掌握合并同类项方法,去(添)括号法则,熟练掌握数与整式相
乘的运算及整式的加减运算。

4、理解整式的乘除运算性质,并能熟练地进行整式的乘除运算。

5、理解乘法公式的意义,掌握五个乘法公式的结构特征,灵活运用
五个乘法公式进行运算。

6、会进行整式的混合运算,灵活运用运算律与乘法公式使运算简便。

7、掌握因式分解的四种基本方法,并能用这些方法进行多项式因式
分解。

8、掌握分式的基本性质,会熟练地进行约分和通分,掌握
分式的加、减、乘、除、乘方的运算法则。

9、了解二次根式及分母有理化概念,掌握二次根式的性质,并能灵
活应用它化简二次根式,掌握二次根式乘、除法则,会用它们进行
运算,会将分母中含有一个或两个二次根式的式子进行分母有理化;了解最简二次根式,同类二次根式的概念,掌握二次根式的加、减、乘、除的运算法则,会用它们进行二次根式的混合运算。

基础知识点:一、代数式
1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代
数式。

单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做
代数式的值。

3、代数式的分类:????整式?单项式
代数式??有理式??
?多项式??
??分式?
无理式
二、整式的有关概念及运算
1、概念
(1)单项式:像x、7、2x2y,这种数与字母的积叫做单项式。


独一个数或字母也是单项式。

单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的
次数。

单项式的系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

多项式的项:多项式中每一个单项式都叫多项式的项。

一个多项式
含有几项,就叫几项式。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式
的次数。

不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到
大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项
叫做同类项。

2、运算
(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作
为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,
把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前
面是“–”号,括到括号里的各项都变号。

整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先
去括号,再合并同类项。

(2)整式的乘除:
幂的运算法则:其中m、n都是正整数同底数幂相乘:am
?an
?a
m?n
;同底数幂相除:am?an?a
m?n
;幂的乘方:
(am)n?amn积的乘方:(ab)n?anbn。

单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。

多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。

多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。

乘法公式:
平方差公式:(a?b)(a?b)?a2?b2;
完全平方公式:(a?b)2?a2?2ab?b2,(a?b)2?a2?2ab?b2 三、因式分解
1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:
(1)提取公因式法:ma?mb?mc?m(a?b?c) (2)运用公式法:平方差公式:a2?b2?(a?b)(a?b);完全平方公式:
a2?2ab?b2?(a?b)2
(3)十字相乘法:x2?(a?b)x?ab?(x?a)(x?b)
(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若ax2
?bx?c?0(a?0)的两个根是x1、x2,则有:
ax2?bx?c?a(x?x1)(x?x2)
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提公因式;
(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式
1、分式定义:形如a
b
的式子叫分式,其中a、b是整式,且b中含有字母。

(1)分式无意义:b=0时,分式无意义;b≠0时,分式有意义。

(2)分式的值为0:a=0,b≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:
(1)aab?a?m
b?m
(m是?0的整式);
(2)b?a?mb?m(m是?0的整式) (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何
两个,分式的值不变。

3、分式的运算:
(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式
1、二次根式的概念:式子a(a?0)叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a与
a;ab?cd与ab?cd)
2、二次根式的性质:
(1) (a)2?a(a?0);(2)
a2?a???
a
(a?0)
??a
(a?0)
;(3)
ab?a?b(a≥0,b≥0)
;(4)ab
?ab
(a?0,b?0) 3、运算:
(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法:a?b?ab(a≥0,b≥0)。

(3)二次根式的除法:
ab
?
a
b
(a?0,b?0) 二次根式运算的最终结果如果是根式,要化成最简二次
根式。

例题:一、因式分解:
1、提公因式法:例1、24a2
(x?y)?6b2
(y?x)
分析:先提公因式,后用平方差公式解:略
[规律总结]因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的
审查,如果还能分解,应继续分解。

2、十字相乘法:
例2、(1)x4
?5x2
?36;(2)(x?y)2?4(x?y)?12
分析:可看成是x2
和(x+y)的二次三项式,先用十字相乘法,初步分解。

解:略
[规律总结]应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式,有时还需要连续用十字相乘法。

3、分组分解法:例3、x3?2x2
?x?2
分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。

解:略
[规律总结]对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。

4、求根公式法:例4、x2
?5x?5解:略二、式的运算
巧用公式例5、计算:(1?1a?b)2?(1?12
a?b
)
分析:运用平方差公式因式分解,使分式运算简单化。

解:略 [规律总结]抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种
变形,公式的逆用,掌握运用公式的技巧,使运算简便准确。

2、化简求值:
例6、先化简,再求值:5x2?(3x2?5x2)?(4y2?7xy),其中x= – 1
y =1?2 解:略
[规律总结]一定要先化到最简再代入求值,注意去括号的法则。

3、
分式的计算:
例7、化简a?52a?6
?(16a?3
?a?3)
分析:– a?3可看成?a2?9
a?3
解:略
[规律总结]分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号
4、根式计算例8、已知最简二次根式2b?1和7?b是同类二次根式,求b的值。

分析:根据同类二次根式定义可得:2b+1=7–b。

解:略
[规律总结]二次根式的性质和运算初三数学第一轮复习教案
第三章:方程和方程组
教学目的:
1、了解等式、方程和方程组的有关概念;
2、熟练掌握一元一次、一元二次方程的解法,会灵活运用各种解法
求方程的根;
3、熟练掌握分式方程一般解法及换元法,并掌握分式方程验根的方法;
4、能灵活运用代入法和加减法解二元一次方程组及解简单的
三元一次方程组; 5、会用代入法解由一个二元二次方程和一个二
元一次方程组成的二元二次方程组;
6、理解一元二次方程根的判别式,会根据根的判别式判定数字系数
的一元二次方程根的情况,会运用它解决一些简单问题;
7、掌握一元二次方程根与系数的关系,会用它由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程有关两个根的对称式的值等。

基础知识点:
一、方程有关概念
1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程 1、一元一次方程
(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b 是已知数,a≠0)
(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)
(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程
(1)一元二次方程的一般形式:ax2
?bx?c?0(其中x是未知数,a、b、c是已知数,a≠0)
(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:??b2
(5)一元二次方程根与系数的关系:
若x2
1,x2是一元二次方程ax?bx?c?0的两个根,那么:x1?x2??
ba
,x1?x2?
ca
(6)以两个数x1,x2为根的一元二次方程(二次项系数为1)是: x2?(x1?x2)x?x1x2?0
三、分式方程
(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:
一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组
1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组
3、一次方程组:
(1)二元一次方程组:
一般形式:??a1x?b1y?c1
?a(a1,a2,b1,b2,c1,c2不全为0)
2
x?b2y?c2 解法:代入消远法和加减消元法
解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

(2)三元一次方程组:
解法:代入消元法和加减消元法 4、二元二次方程组:
(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。

(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。

考点与命题趋向分析例题:
一、一元二次方程的解法例1、解下列方程:
【篇三:九年级数学第一轮复习学案】
第1课时实数课型:复习课
主备人:审核人:班级:_______ 小组:_______检查:_____【知识梳理】(以下为同学们预习内容,请独立完成。

上课前组长检查,订正。


1.实数: _______和_______统称为实数.
跟踪练习:
最大不能超过50.5mm,最小不低于_____mm..
⑵把下列各数分别填入相应的集合里
:?22?
?; 72
有理数集合:{};无理数集合:{};负实数集合:{}.
2.数轴
规定了________、_________、__________的直线叫数轴.。

相关文档
最新文档