专题6 新定义与阅读理解型问题

合集下载

新定义与阅读理解创新型问题

新定义与阅读理解创新型问题

新定义与阅读理解创新型问题一.选择题(共4小题)1.(2020•荆州)定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(﹣2)=2x−4−1的解是()A.x=4B.x=5C.x=6D.x=73.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.4.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟二.填空题(共11小题)5.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.6.(2020•十堰)对于实数m ,n ,定义运算m *n=(m +2)2﹣2n.若2*a=4*(﹣3),则a=.7.(2020•青海)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=√a+b√a−b ,如:3⊕2=√3+2√3−2=√5,那么12⊕4=.8.(2020•湘潭)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式123456789纵式|||||||||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是.9.(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.10.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.11.(2020•衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为.12.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.13.(2020•荆州)我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为.14.(2020•乐山)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是.15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A 、B 的坐标分别表示为(5,0°)、(4,300°),则点C 的坐标表示为 .三.解答题(共35小题)16.(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积. (2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA、S △OBC S △ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M . ①若正方形ABCD 的边长为4,求EM 的长度; ②若S △CME =1,求正方形ABCD 的面积.17.(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC AB =AB AC,那么称点B 为线段AC的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.18.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.19.(2020•宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,AD̂=BD̂,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.20.(2020•陕西)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究̂上一点,且PB̂=2PÂ,连接AP,BP.∠APB的平(2)如图2,AB是半圆O的直径,AB=8.P是AB分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,垂足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.21.(2020•咸宁)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.22.(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.23.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.24.(2020•常州)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=√3x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√2为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4√5,求直线l的函数表达式.25.(2020•连云港)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S 1、S 2的代数式表示);(4)如图4,点A 、B 、C 、D 把⊙O 四等分.请你在圆内选一点P (点P 不在AC 、BD 上),设PB 、PC 、BĈ围成的封闭图形的面积为S 1,P A 、PD 、AD ̂围成的封闭图形的面积为S 2,△PBD 的面积为S 3,△P AC 的面积为S 4,根据你选的点P 的位置,直接写出一个含有S 1、S 2、S 3、S 4的等式(写出一种情况即可).26.(2020•南京)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AD AB=A′D′A′B′.(1)当CD C′D′=AC A′C′=AB A′B′时,求证△ABC ∽△A 'B 'C .证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD C′D′=AC A′C′=BC B′C′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.27.(2020•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y =6xx 2+1性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=6xx2+1…−1513−2417−125﹣30312524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x﹣1的解集(保留1位小数,误差不超过0.2).28.(2020•重庆)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=−12x2+2的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…−23a﹣2﹣4b﹣4﹣2−1211−23…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=−12x2+2的图象关于y轴对称;②当x=0时,函数y=−12x2+2有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=−23x−103的图象如图所示,结合你所画的函数图象,直接写出不等式−12x2+2<−23x−103的解集.29.(2020•内江)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m ≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=m n.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)=36=12.(1)填空:f(6)=;f(9)=;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.30.(2020•重庆)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”. 31.(2020•张家界)阅读下面的材料:对于实数a ,b ,我们定义符号min {a ,b }的意义为:当a <b 时,min {a ,b }=a ;当a ≥b 时,min {a ,b }=b ,如:min {4,﹣2}=﹣2,min {5,5}=5. 根据上面的材料回答下列问题: (1)min {﹣1,3}= ; (2)当min {2x−32,x+23}=x+23时,求x 的取值范围. 32.(2020•荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值. 【问题】解方程:x 2+2x +4√x 2+2x −5=0. 【提示】可以用“换元法”解方程. 解:设√x 2+2x =t (t ≥0),则有x 2+2x =t 2 原方程可化为:t 2+4t ﹣5=0 【续解】33.(2020•扬州)阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足3x ﹣y =5①,2x +3y =7②,求x ﹣4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x ﹣4y =﹣2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x ﹣y = ,x +y = ;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x *y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= .34.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x ﹣2|的几何意义是数轴上x 所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段P A与PB的长度之和,∴当点P在线段AB上时,P A+PB=3,当点P在点A的左侧或点B的右侧时,P A+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x﹣4|+|x+2|的最小值是;②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.35.(2020•随州)勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S 1,S 2,直角三角形面积为S 3,请判断S 1,S 2,S 3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m 的式子表示) ①a 2+b 2+c 2+d 2= ;②b 与c 的关系为 ,a 与d 的关系为 .36.(2020•呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现者名的黄金分割比√5−12≈0.618.如图,圆内接正五边形ABCDE ,圆心为O ,OA 与BE 交于点H ,AC 、AD 与BE 分别交于点M 、N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:△ABM 是等腰三角形且底角等于36°,并直接说出△BAN 的形状; (2)求证:BM BN=BN BE,且其比值k =√5−12;(3)由对称性知AO ⊥BE ,由(1)(2)可知MN BM也是一个黄金分割数,据此求sin18°的值.37.(2020•江西)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S 1,S 2,S 3之间的关系问题”进行了以下探究: 类比探究(1)如图2,在Rt △ABC 中,BC 为斜边,分别以AB ,AC ,BC 为斜边向外侧作Rt △ABD ,Rt △ACE ,Rt △BCF ,若∠1=∠2=∠3,则面积S 1,S 2,S 3之间的关系式为 ; 推广验证(2)如图3,在Rt △ABC 中,BC 为斜边,分别以AB ,AC ,BC 为边向外侧作任意△ABD ,△ACE ,△BCF ,满足∠1=∠2=∠3,∠D =∠E =∠F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由; 拓展应用(3)如图4,在五边形ABCDE 中,∠A =∠E =∠C =105°,∠ABC =90°,AB =2√3,DE =2,点P 在AE 上,∠ABP =30°,PE =√2,求五边形ABCDE 的面积.38.(2020•湘西州)问题背景:如图1,在四边形ABCD 中,∠BAD =90°,∠BCD =90°,BA =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD 、DC 于E 、F .探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是;探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN 绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.39.(2020•青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC 于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)40.(2020•齐齐哈尔)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF 上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD 边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.41.(2020•德州)问题探究:小红遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,AD 是中线,求AD 的取值范围.她的做法是:延长AD 到E ,使DE =AD ,连接BE ,证明△BED ≌△CAD ,经过推理和计算使问题得到解决. 请回答:(1)小红证明△BED ≌△CAD 的判定定理是: ; (2)AD 的取值范围是 ; 方法运用:(3)如图2,AD 是△ABC 的中线,在AD 上取一点F ,连结BF 并延长交AC 于点E ,使AE =EF ,求证:BF =AC .(4)如图3,在矩形ABCD 中,AB BC=12,在BD 上取一点F ,以BF 为斜边作Rt △BEF ,且EFBE=12,点G 是DF 的中点,连接EG ,CG ,求证:EG =CG .42.(2020•宁波)【基础巩固】(1)如图1,在△ABC 中,D 为AB 上一点,∠ACD =∠B .求证:AC 2=AD •AB . 【尝试应用】(2)如图2,在▱ABCD 中,E 为BC 上一点,F 为CD 延长线上一点,∠BFE =∠A .若BF =4,BE =3,求AD 的长. 【拓展提高】(3)如图3,在菱形ABCD 中,E 是AB 上一点,F 是△ABC 内一点,EF ∥AC ,AC =2EF ,∠EDF =12∠BAD ,AE =2,DF =5,求菱形ABCD 的边长.43.(2020•邵阳)已知:如图①,将一块45°角的直角三角板DEF 与正方形ABCD 的一角重合,连接AF ,CE ,点M 是CE 的中点,连接DM .(1)请你猜想AF 与DM 的数量关系是 .(2)如图②,把正方形ABCD 绕着点D 顺时针旋转α角(0°<α<90°).①AF 与DM 的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长DM 到点N ,使MN =DM ,连接CN ) ②求证:AF ⊥DM ;③若旋转角α=45°,且∠EDM =2∠MDC ,求AD ED的值.(可不写过程,直接写出结果)44.(2020•天水)性质探究如图(1),在等腰三角形ABC 中,∠ACB =120°,则底边AB 与腰AC 的长度之比为 . 理解运用(1)若顶角为120°的等腰三角形的周长为4+2√3,则它的面积为 ;(2)如图(2),在四边形EFGH 中,EF =EG =EH ,在边FG ,GH 上分别取中点M ,N ,连接MN .若∠FGH =120°,EF =20,求线段MN 的长. 类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示)45.(2020•盐城)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt△ABC中,∠C=90°,AB=2√2,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.32 1.50.4BC0.40.8 1.2 1.62 2.4 2.8AC+BC 3.2 3.5 3.8 3.94 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析:①BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x=____时,y最大;(Ⅳ)进一步精想:若Rt△ABC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=____时,AC+BC 最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ);(Ⅳ);问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B ﹣﹣E ﹣﹣F ﹣﹣G ﹣﹣A 是一个感光元件的截面设计草图,其中点A ,B 间的距离是4厘米,AG =BE =1厘米.∠E =∠F =∠G =90°.平行光线从AB 区域射入,∠BNE =60°,线段FM 、FN 为感光区域,当EF 的长度为多少时,感光区域长度之和最大,并求出最大值.46.(2020•临沂)已知⊙O 1的半径为r 1,⊙O 2的半径为r 2.以O 1为圆心,以r 1+r 2的长为半径画弧,再以线段O 1O 2的中点P 为圆心,以12O 1O 2的长为半径画弧,两弧交于点A ,连接O 1A ,O 2A ,O 1A 交⊙O 1于点B ,过点B 作O 2A 的平行线BC 交O 1O 2于点C .(1)求证:BC 是⊙O 2的切线;(2)若r 1=2,r 2=1,O 1O 2=6,求阴影部分的面积.47.(2020•天津)将一个直角三角形纸片OAB 放置在平面直角坐标系中,点O (0,0),点A (2,0),点B 在第一象限,∠OAB =90°,∠B =30°,点P 在边OB 上(点P 不与点O ,B 重合).(Ⅰ)如图①,当OP =1时,求点P 的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P ,并与x 轴的正半轴相交于点Q ,且OQ =OP ,点O 的对应点为O ',设OP =t .①如图②,若折叠后△O 'PQ 与△OAB 重叠部分为四边形,O 'P ,O 'Q 分别与边AB 相交于点C ,D ,试用含有t 的式子表示O 'D 的长,并直接写出t 的取值范围;②若折叠后△O 'PQ 与△OAB 重叠部分的面积为S ,当1≤t ≤3时,求S 的取值范围(直接写出结果即可).48.(2020•南京)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.49.(2020•达州)(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.。

中考数学 精讲篇 专题突破六 新定义阅读理解题

中考数学 精讲篇 专题突破六 新定义阅读理解题

解: (1)32=(9+7)(9-7)=(6+2)(6-2).
∵92+72>62+22, ∴F(32)=92+72=130, 故答案为:130.
(2)∵x+y 能被 7 整除,1≤x≤y≤7, ∴x+y=7 或 x+y=14,
x=1, x=2, x=3, x=7, ∴y=6 或y=5 或y=4 或y=7.
类型二:新定义方法阅读理解问题
3.(2021·九龙坡区校级模拟)一个正整数 p 能写成 p=(m+n)(m-n)(m, n 均为正整数,且 m≠n),则称 p 为“平方差数”,m,n 为 p 的一个平方 差变形,在 p 的所有平方差变形中,若 m2+n2最大,则称 m,n 为 p 的最 佳平方差变形,此时 F(p)=m2+n2.例如: 24=(7+5)(7-5)=(5+1)(5 -1),因为 72+52>52+12,所以 7 和 5 是 24 的最佳平方差变形,所以 F(24) =74. (1)F(32)=________; (2)若一个两位数 q 的十位数字和个位数字分别为 x,y(1≤x≤y≤7) , q 为“平方差数”且 x+y 能被 7 整除,求 F(q)的最小值.
解:(1)F(13,26)=(2 163+1 236)÷11=309.
(2)F(a,18)=(1 000+100+10m+8+1 000+100+80+m)÷11 =(2 288+11m) ÷11 =208 +m, F(b,26)=(2 000+100n+60+5+1 000n+200+ 50+6)÷11 =(2 321+1 100n)÷11 =211+100n,
∵a+b 与 a+b-1 互质. ∴a+b=9k 或 a+b-1 =9k(k 为正整数). ∵1≤a≤9,0≤b≤9, ∴1≤a+b≤18,0≤a+b-1≤17.

2021年中考数学专题复习:新定义和阅读理解题

2021年中考数学专题复习:新定义和阅读理解题

2021年中考数学专题复习:新定义和阅读理解题“新定义”题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路.这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等.在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识.阅读理解题源于课本,高于课本,既考查阅读能力,又综合考查学生的数学意识和数学综合应用能力,尤其侧重于考查学生的数学思维能力和创新意识. 这类题目的结构一般为:给出一段阅读材料,学生通过阅读,将材料所给的信息加以搜集整理,在此基础上,按照题目的要求进行推理解答.一、新定义1.对于任意两个不相等的数a,b定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.2.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.4.用⊕定义一种新运算:对于任意实数m和n,规定m⊕n=m2n-mn-3n,如:1⊕2=12×2-1×2-3×2=-6.(1)求(-2)⊕3;(2)若3⊕m≥-6,求m的取值范围,并在所给的数轴上表示出解集.5.定义:分数nm(m,n为正整数且互为质数)的连分数1a1+1a2+1a3+…(其中a1,a2,a3,…为整数,且等式右边的每一个分数的分子都为1),记作n m =⊕ 1a 1+1a 2+1a 3+…,例如719=⊕1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719=⊕12+11+12+12,则________=⊕11+12+13.6.定义一种新运算⎠⎛b a n·x n -1dx =a n -b n ,例如⎠⎛n k 2xdx =k 2-n 2,若⎠⎛5mm -x -2dx =-2,则m=( )A .-2 B. -25 C .2 D.257.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =-xB .y =x +2C .y =2xD .y =x 2-2x8.对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =-x 2-10x +m(m≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x -m -2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( A )A .0<x 1x 3<1 B.x 1x 3>1 C .0<x 2x 4<1 D.x 2x 4>1二、阅读理解题1.阅读理解:已知两点M(x 1,y 1),N(x 2,y 2),则线段MN 的中点K(x ,y)的坐标公式为:x =x 1+x 22,y =y 1+y 22.如图,已知点O 为坐标原点,点A(-3,0),⊕O 经过点A ,点B 为弦PA 的中点.若点P(a ,b),则有a ,b 满足等式:a 2+b 2=9.设B(m ,n),则m ,n 满足的等式是( )A .m 2+n 2=9 B.922322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-n mC .(2m +3)2+(2n)2=3D .(2m +3)2+4n 2=9 2.已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =||kx 0+b -y 01+k 2,例如:点(0,1)到直线y =2x +6的距离d =||2×0+6-11+22= 5.据此进一步可得两条平行线y =x 和y =x -4之间的距离为________.3.阅读材料:设a→=(x 1,y 1),b→=(x 2,y 2),如果a→⊕b→,则x 1·y 2=x 2·y 1.根据该材料填空,已知a→=(4,3),b→=(8,m),且a→⊕b→,则m =________. 4.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0且a≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a≠1,M >0,N >0),理由如下: 设log a M =m ,log a N =n ,则M =a m ,N =a n , ⊕M·N =a m ·a n =a m+n,由对数的定义得m +n =log a (M·N) 又⊕m +n =log a M +log a N , ⊕log a (M·N)=log a M +log a N. 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式___________________________________;(2)log a MN =__________.(a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 69+log 68-log 62=________. 5.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依次类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为________,第5项是________.(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…,a n -a n -1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d)+d =a 1+2d , a 4=a 3+d =(a 1+2d)+d =a 1+3d , ……由此,请你填空完成等差数列的通项公式: a n =a 1+(________)d.(3)-4041是等差数列-5,-7,-9…的第________项. 6.阅读下面的材料:如果函数y =f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数; (2)若x 1<x 2,都有f(x 1)>f(x 2),则称f(x)是减函数. 例题:证明函数f(x)=6x (x >0)是减函数. 证明:设0<x 1<x 2,f(x 1)-f(x 2)=6x 1-6x 2=6x 2-6x 1x 1x 2=6(x 2-x 1)x 1x 2. ⊕0<x 1<x 2,⊕x 2-x 1>0,x 1x 2>0.⊕6(x 2-x 1)x 1x 2>0.即f(x 1)-f(x 2)>0. ⊕f(x 1)>f(x 2).⊕函数f(x)=6x (x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=1x2+x(x <0),f(-1)=1(-1)2+(-1)=0,f(-2)=1(-2)2+(-2)=-74. (1)计算:f(-3)=________,f(-4)=________;(2)猜想:函数f(x)=1x 2+x(x <0)是________函数(填“增”或“减”).参考答案一 1.2 2.C 3.1.14.解:(1)(-2)※3=(-2)2×3-(-2)×3-33=43+23-33=3 3.(2)∵3※m ≥-6,∴32·m -3m -3m ≥-6. 解得:m ≥-2.将解集表示在数轴上如下:5.710 6.B 7.B 8.A二 1.D 2.22 3.6 4.(1)4=log 381(或log 381=4) (2)log a M -log a N (3)2 5.(1)5 25 (2)n -1 (3)2019 6.(1)-269 -6316 (2)增。

中考数学复习《新定义及阅读理解型问题》测试题(含答案)

中考数学复习《新定义及阅读理解型问题》测试题(含答案)

中考数学复习《新定义及阅读理解型问题》测试题(含答案)题型解读1.考查题型:①新定义计算型;②阅读理解型;③新定义与阅读理解结合题. 2.考查内容:①新定义下的实数运算;②涉及“新定义”的阅读理解及材料分析;③与函数、多边形、圆结合,通过材料或定义进行相关证明或计算.3.在做此类题型时,首先要理解新定义的运算方式,提升从材料阅读中提取信息的能力,结合已知条件中的推理方法,学以致用,便可得以解决.1.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=-18,则方程x ⊗(-2)=2x -4-1的解是( ) A . x =4 B . x =5 C . x =6 D . x =72.对于实数a 、b ,我们定义符号max {a ,b}的意义为:当a≥b 时,max {a ,b}=a ;当a <b 时,max {a ,b}=b ;如max {4,-2}=4,max {3,3}=3.若关于x 的函数为y =max {x +3,-x +1},则该函数的最小值是( )A . 0B . 2C . 3D . 43.我们根据指数运算,得出了一种新的运算,下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=-1.其中正确的是( )A . ①②B . ①③C . ②③D . ①②③4.设a ,b 是实数,定义关于@的一种运算如下:a@b =(a +b)2-(a -b)2,则下列结论:( ) ①若a@b =0,则a =0或b =0; ②a@(b +c)=a@b +a@c ;③不存在实数a ,b ,满足a@b =a 2+5b 2;④设a ,b 是矩形的长和宽,若该矩形的周长固定,则当a =b 时,a@b 的值最大. 其中正确的是( )A . ②③④B . ①③④C . ①②④D . ①②③5.对于实数a ,b ,定义运算“*”:a*b =⎩⎪⎨⎪⎧a 2-ab (a≥b)a -b (a<b ),例如:因为 4>2,所以4*2=42-4×2=8,则(-3)*(-2)=________.6.规定:log a b(a>0,a ≠1,b>0)表示a ,b 之间的一种运算. 现有如下的运算法则:log a a n=n ,log N M =log a Mlog a N(a>0,a ≠1,N>0,N ≠1,M>0), 例如:log 223=3,log 25=log 105log 102,则log 1001000=________.第7题图7.实数a ,n ,m ,b 满足a<n<m<b ,这四个数在数轴上对应的点分别是A ,N ,M ,B(如图).若AM 2=BM·AB,BN 2=AN·AB,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________. 8.请阅读下列材料,并完成相应的任务: 阿基米德折弦定理阿基米德(Archimedes ,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.他与牛顿、高斯并称为三大数学王子.阿拉伯Al -Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al -Biruni 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图①,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC>AB ,M 是ABC ︵的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =AB +BD.下面是运用“截长法”证明CD =AB +BD 的部分证明过程.证明:如图②,在CB 上截取CG =AB ,连接MA ,MB ,MC 和MG. ∵M 是ABC ︵的中点, ∴MA =MC. …图① 图②任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图③,已知等边△ABC 内接于⊙O,AB =2,D 为AC ︵上一点,∠ABD =45°,AE ⊥BD 于点E ,则△BDC 的周长是________.图③9.如果三角形三边的长a 、b 、c 满足a +b +c3=b ,那么我们就把这样的三角形叫做“匀称三角形”.如:三边长分别为1,1,1或3,5,7,…的三角形都是“匀称三角形”.(1)如图①,已知两条线段的长分别为a 、c(a<c),用直尺和圆规作一个最短边、最长边的长分别为a 、c 的“匀称三角形”(不写作法,保留作图痕迹);(2)如图②,△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 延长线于点E ,交AC 于点F.若BE CF =53,判断△AEF 是否为“匀称三角形”?请说明理由.10.我们知道,任意一个正整数n 都可以进行这样的分解:n =p×q(p,q 是正整数,且p≤q),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数.求证:对任意一个完全平方数m ,总有F(m)=1;(2)如果一个两位正整数t ,t =10x +y(1≤x≤y≤9,x ,y 是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”.求所有“吉祥数”中F(t)的最大值.11.已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离d 可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(1,-1)到直线y =x -1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y =3x +9的位置关系并说明理由; (3)已知直线y =-2x +4与y =-2x -6平行,求这两条直线之间的距离.12.【图形定义】如图,将正n 边形绕点A 顺时针旋转60°后,发现旋转前后两图形有另一交点O ,连接AO ,我们称AO 为“叠弦”;再将“叠弦”AO 所在的直线绕点A 逆时针旋转60°后,交旋转前的图形于点P ,连接PO ,我们称∠OAB 为“叠弦角”,△AOP 为“叠弦三角形”. 【探究证明】(1)请在图①和图②中选择其中一个证明:“叠弦三角形”(即△AOP)是等边三角形; (2)如图②,求证:∠OAB=∠OAE′. 【归纳猜想】(3)图①、图②中“叠弦角”的度数分别为__________,__________; (4)图中,“叠弦三角形”__________等边三角形(填“是”或“不是”); (5)图中,“叠弦角”的度数为__________(用含n 的式子表示).13.若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x 的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.1. B 【解析】根据题意a ⊗b =1a -b 2,则 x ⊗(-2)=1x -(-2)2=1x -4,又∵x ⊗(-2)=2x -4-1,∴1x -4=2x -4-1,解得x =5,经检验x =5是原方程的根,∴原方程x ⊗(-2)=2x -4-1的解是x =5. 2. B 【解析】当x +3≥-x +1时,max{x +3,-x +1}=x +3,此时x ≥-1,∴y ≥2;当x +3<-x +1时,max{x +3,-x +1}=-x +1,此时x <-1,∴y >2.综上y 的最小值为2.3. B 【解析】①∵24=16,∴log 216=4,故①正确;②∵52=25,∴log 525=2,故②不正确;③∵2-1=12,∴log 212=-1,故③正确. 4. C 【解析】∵a @b =(a +b )2-(a -b )2,若a @b =0,则(a +b )2-(a -b )2=0,∴(a +b )2=(a -b )2, ∴a +b =±(a -b ),∴a =0或b =0,∴①正确;∵a @b =(a +b )2-(a -b )2,∴a @(b +c )=[a +(b +c )]2-[a -(b +c )]2=[a +(b +c )+a -(b +c )][a +(b +c )-(a -b -c )]=4ab +4ac ,∵a @b +a @c =(a +b )2-(a -b )2+(a +c )2-(a -c )2=a 2+2ab +b 2-a 2+2ab -b 2+a 2+2ac +c 2- a 2+2ac -c 2=4ab +4ac ,∴a @(b +c )=a @b +a @c ,∴②正确;∵a @b =(a +b )2-(a -b )2= a 2+2ab +b 2-a 2+2ab -b 2=4ab ,当a =b =0时,满足a @b =a 2+5b 2,∴③错误;若矩形的周长固定,设为2c ,则2c =2a +2b ,b =c -a ,a @b =(a +b )2-(a -b )2=4ab =4a (c -a )=-4(a -12c )2+c 2,∴当a =12c 时,4ab 有最大值是c 2,即a =b 时,a @b 的值最大,∴④正确.综上,正确结论有①②④.5. -1 【解析】根据新定义,当a<b 时,a*b =a -b 列出常规运算,进行计算便可.∵-3<-2,∴由定义可知,原式=-3-(-2)=-1.6. 32 【解析】根据新运算法则,得log 1001000=log 101000log 10100=log 10103log 10102=32. 7. 25-4 【解析】设AN =y ,MN =x ,由题意可知:AM 2=BM ·AB ,∴(x +y)2=2(2-x -y),解得x +y =5-1(取正),又BN 2=AN·AB ,∴(2-y)2=2y ,解得y =3-5(y <2),∴m -n =MN =x =5-1-(3-5)=25-4,故填25-4.8. 解:(1)又∵∠A =∠C ,CG =AB. ∴△MBA ≌△MGC(SAS ),∴MB =MG . 又∵MD ⊥BC , ∴BD =GD ,∴CD =CG +GD =AB +BD. (2)2+2 2.【解法提示】折线BDC 为⊙O 的一条折弦,由题意知A 为BDC ︵中点,由材料中折弦定理易得BE =DE +CD ,在Rt △ABE 中可得BE =2,所以△BCD 周长为BC +CD +DE +BE =2+2 2.9. 解:(1)作图如解图①.第9题解图①(2)△AEF是“匀称三角形”.理由如下:如解图②,第9题解图②连接AD、OD,∵AB是⊙O直径,∴AD⊥BC,∵AB=AC,∴D是BC中点,∵O是AB中点,∴OD是△ABC的中位线,∴OD∥AC.∵DF切⊙O于D点,∴OD⊥DF,∴EF⊥AF,过点B作BG⊥EF于点G,易证Rt△BDG≌Rt△CDF(AAS),∴BG=CF,∵BECF=53,∴BEBG=53,∵BG∥AF(或Rt△BEG∽Rt△AEF),∴BEBG=AEAF=53.在Rt△AEF中,设AE=5k,则AF=3k,由勾股定理得,EF=4k,∴AF+EF+AE3=3k+4k+5k3=4k=EF,∴△AEF是“匀称三角形”.10. (1)证明:∵m是一个完全平方数,∴m=p×q,当p=q时,p×q就是m的最佳分解,∴F(m)=pq=pp=1.(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2(y≤9),∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的“吉祥数”为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57,68=1×68=2×34=4×17,79=1×79,∴F(13)=113,F(24)=46=23,F(35)=57,F(46)=223,F(57)=157,F(68)=417,F(79)=179,∴“吉祥数”中F(t)的最大值为:F(35)=57.11. 解:(1)∵直线y =x -1,其中k =1,b =-1, ∴点P(1,-1)到直线y =x -1的距离为: d =|kx 0-y 0+b|1+k 2=|1-(-1)-1|1+12=12=22.(2)相切.理由如下:∵直线y =3x +9,其中k =3,b =9,∴圆心Q(0,5)到直线y =3x +9的距离为d =|kx 0-y 0+b|1+k 2=|3×0-5+9|1+(3)2=42=2,又∵⊙Q 的半径r 为2,∴⊙Q 与直线y =3x +9的位置关系为相切.(3)在直线y =-2x +4上任意取一点P , 当x =0时,y =4, ∴P(0,4),∵直线y =-2x -6,其中k =-2,b =-6,∴点P(0,4)到直线y =-2x -6的距离为d =|kx 0-y 0+b|1+k 2=|-2×0-4-6|1+(-2)2=105=25,∴这两条直线之间的距离为2 5.12. (1)选择图①.证明:依题意得∠DAD′=60°,∠PAO =60°. ∵∠DAP =∠DAD′-∠PAD′=60°-∠PAD′,∠D ′AO =∠PAO -∠PAD ′=60°-∠PAD′, ∴∠DAP =∠D′AO.∵∠D =∠D′,AD =AD′, ∴△DAP ≌△D ′AO(ASA ), ∴AP =AO , 又∵∠PAO =60°,∴△AOP 是等边三角形. 选择图②.证明:依题意得∠EAE′=60°,∠PAO =60°. ∵∠EAP =∠EAE′-∠PAE′=60°-∠PAE′, ∠E ′AO =∠PAO -∠PAE′=60°-∠PAE′, ∴∠EAP =∠E′AO(ASA ). ∵∠E =∠E′,AE =AE′, ∴△EAP ≌△E ′AO , ∴AP =AO , 又∵∠PAO =60°, ∴△AOP 是等边三角形.第12题解图(2)证明:如解图,连接AC ,AD ′,CD ′. ∵AE ′=AB ,∠E′=∠B =180°×(5-2)5=108°,E ′D ′=BC ,∴△AE ′D ′≌△ABC(SAS ),∴AD ′=AC ,∠AD ′E ′=∠ACB , ∴∠AD ′C =∠ACD′, ∴∠OD ′C =∠OCD′, ∴OC =OD′,∴BC -OC =E′D′-OD′,即BO =E′O. ∵AB =AE′,∠B =∠E′, ∴△ABO ≌△AE ′O(SAS ), ∴∠OAB =∠OAE′. (3)15°,24°.【解法提示】∵由(1)得,在图①中,△AOP 是等边三角形, ∴∠DAP +∠OAB =90°-60°=30°, 在△OAB 和△OAD′中,⎩⎪⎨⎪⎧OA =OABA =D′A, ∴△ABO ≌△AD ′O(HL ), ∴∠OAB =∠D′AO , 由(1)知∠D′AO =∠DAP , ∴∠OAB =∠DAP , ∴∠OAB =12×30°=15°;∵由(1)得,在图②中,△PAO 为等边三角形, ∴∠PAE +∠BAO =∠EAB -∠PAO ,∵∠EAB=15×180°×(5-2)=108°,∴∠PAE+∠BAO=48°,同理可证得∠OAB=∠PAE,∴∠OAB=12×48°=24°.(4)是.【解法提示】由(1)(2)可知,“叠弦”AO所在的直线绕点A逆时针旋转60°后,AO=AP,且∠PAO =60°,故△AOP是等边三角形.(5)60°-180°n(n≥3).【解法提示】由(1)(2)(3)可知,“叠弦角”的度数为正n边形的内角度数减去60°之后再除以2,即∠OAB=180°(n-2)n-60°2,化简得∠OAB=60°-180°n(n≥3).13. 解:(1)由题意得n=1,∴抛物线y=x2-2x+1=(x-1)2,顶点为Q(1,0),将(1,0)代入y=mx+1,得m=-1,∴m=-1,n=1.(2)由题意设“路线”L的解析式为y=a(x-h)2+k,∵顶点Q的坐标在y=6x和y=2x-4上,∴⎩⎪⎨⎪⎧k=6hk=2h-4,解得h=-1或3,∴顶点Q的坐标为(-1,-6)或(3,2),∴y=a(x+1)2-6或y=a(x-3)2+2,又∵“路线”L过P(0,-4),代入解得a=2(顶点为(-1,-6)),a=-23(顶点为(3,2)),∴y=2(x+1)2-6或y=-23(x-3)2+2,即y=2x2+4x-4或y=-23x2+4x-4.(3)由题可知抛物线顶点坐标为(-3k2-2k+12a,4ak-(3k2-2k+1)24a),设带线l:y=px+k,代入顶点坐标得p=3k2-2k+12,11 ∴y =3k 2-2k +12x +k , 令y =0,则带线l 交x 轴于点(-2k 3k 2-2k +1,0),令x =0,则带线l 交y 轴于点(0,k), ∵k ≥12>0, ∴3k 2-2k +1=3(k -13)2+23>0, ∴带线l 与坐标轴围成三角形面积为S =12·2k 3k 2-2k +1·k =k 23k 2-2k +1=11k 2-2·1k +3, 令t =1k ,∵12≤k ≤2,∴12≤t ≤2,∴S =1t 2-2t +3,∴1S =t 2-2t +3=(t -1)2+2,故当t =2时,(1S )max =3;当t =1时,(1S )min =2.∴13≤S ≤12.。

北京市2021-2021年中考数学复习专题:新定义阅读理解问题

北京市2021-2021年中考数学复习专题:新定义阅读理解问题

新定义阅读理解问题新定义学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。

其主要目的是通过对新定义的理解与运用来考查学生的自学能力,便于学生养成良好的学习习惯。

解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”; 归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。

一、基础练习部分★例1:【2021——2021海淀期末】对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中f(n )表示n 的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F 1(n )=F(n ),F k +1(n )=F(F K (n ))(K 为正整数).例如:F 1(123)=F(123)=10,F 2(123)=F(F 1(123))=F(10)=1.(1)求:F 2(4)=,F 2021(4)=;(2)若F 3m (4)=89,则正整数m 的最小值是.答案:(1)37,26;(2)6. 练习①:【2021通州一模】定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n 2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是;若13n =,则第2021次“F 运算”的结果是.答案:1,4练习②:【2021门头沟二模】我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“i ”,使其满足i 2=-1 (即方程x 2=-1有一个根为i ),并且进一步规定: 一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3= i 2·i =(-1)(-1)·i =-i , i 4=( i 2)2=(-1) 2=1,从而对任意正整数n ,则i 6=______________;由于i 4n+1=i 4n ﹒i=(i 4)n ﹒i=i,同理可得i 4n+2=﹣1, i 4n+3=﹣i , i 4n =1那么i + i 2+ i 3+ i 4+…+ i 2012+ i 2021的值为_____ 答案:-1,i★例2:【2009宣武一模】任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:()p F n q =.例如18可以分解成1×18、2×9或3×6,这时就有31(18)62F ==.给出下列关于F(n )的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则F(n )=1.其中正确说法的个数是()A.1B.2C.3D.4 答案:B练习①:【2011北京中考】在右表中,我们把第i 行第j列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j=1时,a i ,j =a 2,1=1.按此规定,a 1,3=;表中的25个数中,共有个1;计算a 1,1•a i ,1+a 1,2•a i ,2+a 1,3•a i ,3+a 1,4•a i ,4+a 1,5•a i ,5的值为.答案:0;15;1.练习②:【2011海淀二模】某种数字化的信息传输中,先将信息转化为数学0和1组成的数字串,并对数字串进行了加密后再传输.现采用一种简单的加密方法:将原有的每个1都变成10,原有的每个0变成01.我们用A 0表示没有经过加密的数字串.这样对A 0进行一次加密就得到一个新的数字串A 1,对A 1再进行一次加密又得到一个新的数学串A 2,依此类推,…,例如:A 0:10,则A 1:1001.若已知A 2:100101101001,则A 0:,若数字串A 0共有4个数字,则数字串A 2中相邻两个数字相等的数对至少..有 对. 答案:101 ,4练习③:【202X 燕山一模】若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式.如在代数式a +b +c 中,把a 和b 互相替换,得b +a +c ;把a 和c 互相替换,得c +b +a ;把b 和c ……;a +b +c 就是完全对称式.下列三个代数式:① (a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a .其中为完全对称式的是A .①②B .②③C .①③D .①②③ 答案:A练习④:【202X 西城一模】在平面直角坐标系中,对于平面内任一点P (a ,b )若规定以下两种变换: ①f (a ,b )= (-a ,-b ).如f (1,2)= (-1,-2);②g (a ,b )= (b ,a ).如g (1,3)= (3,1)按照以上变换,那么f (g (a ,b ))等于A .(-b ,-a )B .(a ,b )C .(b ,a )D .(-a ,-b ) 答案:A★例3:【2009昌平二模】请阅读下列材料:我们规定一种运算:,例如:. 按照这种运算的规定,请解答下列问题:(1)直接写出 的计算结果;(2)若,直接写出和的值.(3)当取何值时, ; 答案:(1)3.5; (2)x=8,y=2. (3) ; a b ad bc c d=-2325341012245=⨯-⨯=-=-1220.5--0.517830.51x y xy --==--x y x 0.5012x xx -=15x -±=a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 a 3,1 a 3,2 a 3,3 a 3,4 a 3,5 a 4,1a 4,2 a 4,3 a 4,4 a 4,5 a 5,1a 5,2 a 5,3 a 5,4 a 5,5变式练习:【2008宣武一模】对于实数d c b a ,,,规定一种运算:c a bc ad d b -=,如21=-20()21-⨯ 220-=⨯-,那么)3(2x -2554=-时,=x ( ).(A )413-(B )427(C )423-(D )43- 答案:(D)练习:①【2006北京中考(课标卷)】用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1。

2020届中考数学(真题版)专项练习:新定义与阅读理解题(含答案)

2020届中考数学(真题版)专项练习:新定义与阅读理解题(含答案)

新定义与阅读理解题1.(2019自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②–①得2S–S=S=22019–1,∴S=1+2+22+…+22017+22018=22019–1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数),请写出计算过程.解:(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②–①得2S–S=S=210–1,∴S=1+2+22+…+29=210–1;故答案为:210–1;(2)设S=3+3+32+33+34+…+310①,则3S=32+33+34+35+…+311②,②–①得2S=311–1,所以S=1131 2-,即3+32+33+34+ (310)1131 2-;故答案为:1131 2-;(3)设S =1+a +a 2+a 3+a 4+…+a n ①, 则aS =a +a 2+a 3+a 4+…+a n +a n +1②, ②–①得:(a –1)S =a n +1–1,a =1时,不能直接除以a –1,此时原式等于n +1;a ≠1时,a –1才能做分母,所以S =111n a a +--,即1+a +a 2+a 3+a 4+…+a n=111n a a +--.2.(2019随州)若一个两位数十位、个位上的数字分别为m ,n ,我们可将这个两位数记为mn ,易知mn =10m +n ;同理,一个三位数、四位数等均可以用此记法,如abc =100a +10b +c . 【基础训练】 (1)解方程填空:①若2x +3x =45,则x =__________; ②若7y –8y =26,则y =__________; ③若93t +58t =131t ,则t =__________; 【能力提升】(2)交换任意一个两位数mn 的个位数字与十位数字,可得到一个新数nm ,则mn +nm 一定能被__________整除,mn –nm 一定能被__________整除,mn •nm –mn 一定能被__________整除;(请从大于5的整数中选择合适的数填空) 【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.解:(1)①∵mn=10m+n,∴若2x+3x=45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算, 972–279=693, 963–369=594, 954–459=495, 954–459=495,… 故答案为:495.②当任选的三位数为abc 时,第一次运算后得:100a +10b +c –(100c +10b +a )=99(a –c ), 结果为99的倍数,由于a >b >c ,故a ≥b +1≥c +2, ∴a –c ≥2,又9≥a >c ≥0, ∴a –c ≤9,∴a –c =2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891, 再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…, 故都可以得到该黑洞数495.3.(2019衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x 3a c+=,y 3b d+=那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x 143-+==1,y ()823+-==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.解:(1)∵17 3 +﹣=2,573+=4,∴点C(2,4)是点A、B的融合点;(2)①由融合点定义知x13=(t+3),y13=(2t+3),则t=3x﹣3,则y13=(6x﹣6+3)=2x﹣1;②要使△DTH为直角三角形,可分三种情况讨论:(i)当∠DHT=90°时,如图1所示,设T(m,2m﹣1),则点E(m,2m+3),由点T是点D,E的融合点得:m32302133m mm+++=-=或,解得:m32=,即点E(32,6);(ii)当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的融合点得:点E(6,15);(iii)当∠HTD=90°时,该情况不存在;综上所述,符合题意的点为(32,6)或(6,15).4.(2019天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形.理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)如图1,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG2,BE2,∴GE2=CG2+BE2-CB2=73,∴GE735.(2019白银)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM (SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.解:延长A1B1至E,使EB1=A1B1,连接EM1、EC1,如图所示:则EB1=B1C1,∠EB1M1=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1三点共线,在△A1B1M1和△EB1M1中,11111111 1111A B EBA B M EBMMB M B=⎧⎪∠=∠⎨⎪=⎩,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A1M1=M1N1,∴EM1=M1N1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5,∵∠1+∠6=90°,∴∠5+∠6=90°,∴∠A1M1N1=180°﹣90°=90°.6.(2019江西)特例感知(1)如图1,对于抛物线211y x x=--+,2221y x x=--+,2331y x x=--+,下列结论正确的序号是_________;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.解:(1)①当x =0,1231y y y ===,所以正确;②123,,y y y 的对称轴分别是直线112x =-,21x =-,332x =-,所以正确;③123,,y y y 与1y =交点(除了点C )横坐标分别为–1,–2,–3,所以距离为1,都相等,正确.(2)①2224124n n n y x nx x +⎛⎫=--+=-++ ⎪⎝⎭,所以顶点24,24n n n P ⎛⎫+- ⎪⎝⎭,令顶点n P 横坐标2n x =-,纵坐标244n y +=,22241142n n y x +⎛⎫==-+=+ ⎪⎝⎭,即:n P 顶点满足关系式21y x =+. ②相邻两点之间的距离相等.理由:根据题意得;()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++, ∴C n C n –1两点之间的铅直高度=()2211k nk k k nk k --++---+=.C n C n –1两点之间的水平距离=1()1k n k n --+---=.∴由勾股定理得C n C n –12=k 2+1, ∴C n C n –1③n n C A 与11n n C A --不平行. 理由:根据题意得:()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++,(),1n A n -,()11,1n A n --+.过C n ,C n –1分别作直线y =1的垂线,垂足为D ,E ,所以D (–k –n ,1),E (–k –n +1,1). 在Rt △DA n C n 中,tan ∠DA n C n =()2211()n n k nk C D k nkk n A D n k n k---++===+----,在Rt △EA n –1C n –1中,tan ∠EA n –1C n –1=()22111111(1)n n k nk k C E k nk kk n A E n k n k-----+++-===+--+---+,∵1k n +-≠k n +,∴tan ∠DA n C n ≠tan ∠EA n –1C n –1, ∴n n C A 与11n n C A --不平行.7.(2019济宁)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x(x >0)是减函数. 证明:设0<x 1<x 2,f (x 1)–f (x 2)=()212112121266666x x x x x x x x x x ---==. ∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0. ∴()21126x x x x ->0.即f (x 1)–f (x 2)>0.∴f (x 1)>f (x 2),∴函数f (x )═6x(x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=21x+x (x <0), f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74.(1)计算:f (–3)=__________,f (–4)=__________; (2)猜想:函数f (x )=21x+x (x <0)是__________函数(填“增”或“减”); (3)请仿照例题证明你的猜想.解:(1)∵f (x )=21x+x (x <0), ∴f (–3)=21(3)-–3=–269,f (–4)=21(4)-–4=–6316, 故答案为:–269,–6316; (2)∵–4<–3,f (–4)>f (–3), ∴函数f (x )=21x +x (x <0)是增函数, 故答案为:增; (3)设x 1<x 2<0,∵f (x 1)–f (x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +) ∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f (x 1)–f (x 2)<0,∴f (x 1)<f (x 2), ∴函数f (x )=21x +x (x <0)是增函数. 8.(2019宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线. (1)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点. 求证:四边形ABEF 是邻余四边形.(2)如图2,在5×4的方格纸中,A ,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是邻余线,E ,F 在格点上.(3)如图3,在(1)的条件下,取EF 中点M ,连结DM 并延长交AB 于点Q ,延长EF 交AC 于点N .若N 为AC 的中点,DE =2BE ,QB =3,求邻余线AB 的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形ABEF即为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,M为EF中点,∴DM=ME.∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴35 QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.9.(2019枣庄)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(–3)的值;(2)若x⊗(–y)=2,(2y)⊗x=–1,求x+y的值.解:(1)根据题中的新定义得:原式=8–3=5;(2)根据题中的新定义化简得:2241x yx y-=⎨+=-⎧⎩①②,①+②得:3x+3y=1,则x+y=13.10.(2019河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7.则(1)用含x的式子表示m=__________;(2)当y=–2时,n的值为__________.解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可得x+2x+2x+3=m+n=y.当y=–2时,5x+3=–2.解得x=–1.∴n=2x+3=–2+3=1.11.(2019白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=__________.解:①当∠A 为顶角时,等腰三角形两底角的度数为:218080︒-︒=50°, ∴特征值k =808505︒=︒; ②当∠A 为底角时,顶角的度数为:180°–80°–80°=20°,∴特征值k =208014︒=︒; 综上所述,特征值k 为85或14;12.(2019湘西)阅读材料:设a =(x 1,y 1),b =(x 2,y 2),如果a ∥b ,则x 1•y 2=x 2•y 1,根据该材料填空,已知a =(4,3),b =(8,m ),且a ∥b ,则m =__________.解:∵a =(4,3),b =(8,m ),且a ∥b ,∴4m =3×8,∴m =6.。

新定义与阅读理解问题 九年级数学专项训练(含解析)

新定义与阅读理解问题 九年级数学专项训练(含解析)

新定义与阅读理解问题一、单选题A.1B.4C.6D()(A.113︒B.92二、填空题16.定义一种新的运算:a☆三、解答题17.若定义一种运算:a b∆()(32-=--+⨯-2Δ32(3)23参考答案:1.A【分析】本题考查了有理数的混合运算,理解题中的新定义是解此类题的关键.根据题中的新定义计算即可求出4-※2的值.【详解】解:根据新定义得:4-※22422=-⨯+84=-+4=-,故选:A 2.B【分析】本题考查了新运算,解一元一次方程,掌握新运算正确计算是解题的关键,根据()310312x ⎡⎤+⨯=⎣⎦★,()336x +⨯=-解方程即可.【详解】解:根据新定义得()31012x =★★()310312x ⎡⎤+⨯=⎣⎦★()3104x +=★()36x =-★()336x +⨯=-5x =-故选:B 3.D【分析】据提供的“F ”运算,对正整数n 分情况(奇数、偶数)循环计算,由于449n =为奇数应先进行F ①运算,发现从第4次运算结果开始循环,且奇数次运算的结果为8,偶数次为1,而第201次是奇数,这样循环计算一直到第201次“F ”运算,得到的结果为8.本题主要考查了新定义运算,有理数的混合运算.熟练掌握“F ”运算法则,找到结果存在的规律,根据有理数的混合运算求出答案,是解题的关键.【详解】解:第一次:344951352⨯+=,故选:A.8.C【分析】本题主要考查了等腰三角形的性质、相似三角形的性质等知识带你,由10.12x =,22x =-【分析】本题考查有理数的混合运算,新定义问题,根据已知公式得出24420x +=,解之可得答案.【详解】解:420x ⊗= ,24420x ∴+=,即2416x =,解得:12x =,22x =-.故答案为:122,2x x ==-.11.5【分析】此题考查了解一元一次方程和平方根解方程.根据题中的新定义分两种情况化简已知等式,求出x 的值即可.【详解】解:当4x ≥时,则1629x +=,解得13x =,不符合题意;当4x <时,则2429x +=,解得15=x ,25x =-(舍去),综上,x 的值为5.故答案为:5.12.3-【分析】本题考查了一次函数图象上点的坐标特征,根据“衍生函数”的定义,找出一次函数21y x =-+的“衍生函数”是解题的关键.【详解】解:由定义知,一次函数21y x =-+的“衍生函数”为()()210210x x y x x ⎧-+≥⎪=⎨+<⎪⎩,∵点()2,P m -在一次函数的“衍生函数”图象上,20x =-<,∴()2213m =⨯-+=-.故答案为:3-.13.1【分析】本题考查了解一元一次方程.理解题意,正确的列一元一次方程是解题的关键.由题意知,()3434341a =⨯+++※,3420=※,即()3434120a ⨯+++=,计算求解即可.【详解】解:由题意知,()3434341a =⨯+++※,3420=※,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,过C时,且在等腰直角三角形∴当O、、过点O分别作弦CG CF DE。

初中数学- 新定义阅读理解题(含答案解析)-2021年实用精品

初中数学- 新定义阅读理解题(含答案解析)-2021年实用精品

题型六新定义阅读理解题1. (2016重庆B卷)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=pq.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数a是另外—个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y是自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18.那么我们称这个数t为“吉祥数”.求所有“吉祥数”中F(t)的最大值.2. (2017重庆A卷)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123.对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213 +321+132 =666,666÷111=6,所以,F(123) =6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s)F(t).当F(s)+F(t)=18时,求k的最大值.3. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883 ,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.4. (2017张家界)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部.它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=________,i4=________;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+ (i2017)5. (2018原创)若整数m是8的倍数,那么称整数m为“发达数”.例如,因为16是8的倍数,所以16是“发达数”.(1)已知整数m等于某个奇数的平方减1,求证:m是“发达数”.(2)已知两位正整数t=10x+y(1≤x≤y≤9,其中x,y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“发达数”,求所有符合条件的两位正整数t.6. (2017重庆南开模拟)若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P,到点P距离为1的点所对应的数分别记为a,b.定义:若数K=a2+b2-ab,则称数K为“尼尔数”.例如:若P所表示的数为3,则a=2,b=4,那么K=22+42-2×4=12;若P所表示的数为12,则a =11,b=13,那么K=132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.7. (2017重庆一外一模)若一个三位数t=abc(其中a,b,c不全相等且都不为0),重新排列各数位上的数字必可得到一个最大数和一个最小数,此最大数和最小数的差叫作原数的差数,记为T(t).例如,357的差数T(357)=753-357=396. (1)已知一个三位数a1b(其中a>b>1)的差数T(a1b)=792,且各数位上的数字之和为一个完全平方数,求这个三位数.(2)若一个三位数ab2(其中a、b都不为0)能被4整除,将个位上的数字移到百位得到一个新数2ab被4除余1,再将新数的个位数字移到百位得到另一个新数b2a 被4除余2,则称原数为4的“闺蜜数”.例如:因为612=4×153,261=4×65+1,126=4×31+2,所以612是4的一个闺蜜数.求所有小于500的4的“闺蜜数”t,并求T(t)的最大值.8. (2017重庆八中一模)一个三位正整数M,其各位数字均不为零且互不相等,若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0, b≠0).若N的“团结数”与N之差为24,求N的值.9. (2017重庆大渡口区模拟)我们知道:一个整数的个位数是偶数,则它一定能被2整除;一个整数的各位数字之和能被3整除,则它一定能被3整除.若一个整数既能被2整除又能被3整除,那么这个整数一定能被6整除.数字6象征顺利、吉祥,我们规定,能被6整除的四位正整数abcd(千位数字为a,百位数字为b,十位数字为c,个位数字为d)是“吉祥数”.请解答下面几个问题:(1)已知785x是“吉祥数”,则x=________.(2)若正整数abcd是“吉祥数”,试说明:d+4(a+b+c)能被2整除.(3)小明完成第(2)问后认为:四位正整数abcd是“吉祥数”,那么d+4(a+b+c)也能被6整除.你认为他说得对吗?请说明理由.10. —个正整数,由N个数字组成,若它的第一位数可以被1整除,它的前两位数可以被2整除,前三位数可以被3整除,…,一直到前N位数可以被N整除,则这样的数叫做“精巧数”.如:123的第—位“1”可以被1整除,前两位数“12”可以被2整除,“123”可以被3整除,则123是一个“精巧数”.(1)若四位数123k是一个“精巧数”,求k的值;(2)若一个三位“精巧数”2ab各位数字之和为—个完全平方数,请求出所有满足条件的三位“精巧数”.11. (2017重庆巴蜀模拟)阅读材料:欢喜数——若一个四位数的前2位数是后2位数的2倍,则称该数为“欢喜数”,如1005、2211等都是欢喜数;半和数——一个数,若各个数位上的数字之和等于十位上的数字的2倍,则称该数为“半和数”,如132等都是半和数;平方差数——一个三位数字,若十位上数字等于百位数字与个位数字的平方差,则称该数为“平方差数”.根据上面的材料,回答下列问题:(1)证明所有的三位“半和数”均能被11整除;(2)若一个四位正整数abbc是欢喜数,bmc既是半和数又是平方差数,求m的值.12. 一个三位自然数m,将它任意两个数位上的数字对调后得一个首位不为0的新三位自然数m′(m′可以与m相同),记m′=abc,在m′所有的可能情况中,当|a +2b-c|最小时,我们称此时的m′是m的“幸福美满数”,并规定K(m)=a2+2b2-c2.例如:318按上述方法可得新数有:381、813、138;因为|3+2×8-1|=18,|8+2×1-3|=7,|1+2×3-8|=1,1<7<18,所以138是318的“幸福美满数”,K(318)=12+2×32-82=-45.(1)若三位自然数t的百位上的数字与十位上的数字都为n(1≤n≤9,n为自然数),个位上的数字为0,求证:K(t)=0;(2)设三位自然数s=100+10x+y(1≤x≤9,1≤y≤9,x,y为自然数),且x<y.交换其个位与十位上的数字得到新数s′,若19s+8s′=3888,那么我们称s为“梦想成真数”,求所有“梦想成真数”中K(s)的最大值.13. (2018原创)如果一个自然数从高位到个位是由一个数字或几个数字重复出现组成,那么我们把这样的自然数叫循环数,被重复的一个或几个数字称为“循环节”,我们把“循环节”的数字个数叫做循环数的阶数,例如:252525,它由“25”依次重复出现组成,所以252525是循环数.它是2阶6位循环数;再如:11是1阶2位循环数,789789789是3阶9位循环数,345634563456是4阶12位循环数….(1)请你直接写出3个2阶6位循环数,猜想任意一个2阶6位循环数能否被7整除,并说明理由;(2)已知一个能被13整除的2阶4位循环数,设循环节为xy,(0<x<5),求y与x 之间的函数关系.14. (2018原创)若一个三位数,其个位数加上十位数等于百位数,可表示为t=100(x +y)+10y+x,则称实数t为“加成数”.将t的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数h,规定q=t-h,f(m)=q9.例如:321是一个“加成数”,将其百位作为个位,个位作为十位,十位作为百位,得到的数h=213,∴q=321-213=108,f(m)=1089=12.(1)当f(m)最小时,求此时对应的“加成数”t的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.15. (2017重庆渝中区校级二模)对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数abc(a≤c),在所有重新排列的三位数中,当|a+c-2b|最小时,称此时的abc为t的“最优组合”,并规定F(t)=|a-b|-|b -c|,例如:124重新排序后为:142、214,因为|1+4-4|=1,|1+2-8|=5,|2+4-2|=4,所以124为124的“最优组合”,此时F(124)=-1.(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能被1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.16. (2018原创)如果两个实数a ,b ,使得a 2+b 与a +b 2都是有理数,我们则称(a ,b )是“完美数对”.如:(12)2+13=14+13=712,12+(13)2=12+19=1118,因为712,1118是有理数,所以(12,13)是“完美数对”;(2)2+1=3,2+12=1+2,因为1+2为无理数,所以(2,1)不是“完美数对”.(1)请判断(12+2,12-2)是否是“完美数对”,并说明理由;(2)若(a ,b )是“完美数对”,且a +b =2,证明:a ,b 都是有理数.17. 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想,其中的“任何不小于7的奇数,都可以表示为三个质数之和”称为“弱哥德巴赫猜想”,并已经得到了成功的证明.根据“弱哥德巴赫猜想”,任意一个不小于7的奇数m,都可以进行这样的拆分:m=a+b+c(a、b、c均为质数,且a≥b≥c),在m的所有这种拆分中,如果a、c两数之差a-c最小,我们就称a+b+c是m的最优拆分.并规定:P(m)=a-c.例如9可以分解成2+2+5,3+3+3,因为5-2>3-3,所以3+3+3是9的最优拆分,且P(9)=0.(1)由上述条件,可得:P(11)=________;若P(n)=1,则n=________;若P(n)=0,证明n必定能被3整除;(2)t是一个两位正整数,且t的十位数字、个位数字分别为x、y(1≤x≤y≤9,x、y为整数).若t的十位数字、个位数字和的8倍加上t所得的和为99,则我们称这个数t为“期盼数”,求所有“期盼数”中P(t)的最大值.18. 对于一个大于100的整数,若将它的后两位之前的数移到个位之后,重新得到一个新数,称之为原数的“兄弟数”. 比如:2017的兄弟数为1720, 168的兄弟数为681.根据以上阅读材料,回答下列问题.(1)求证:—个三位数与其兄弟数之差一定能被9整除;(2)已知一个六位数的兄弟数恰好是原六位数的4倍,求满足条件的原六位数.19. (2017重庆南开模拟)一个自然数m,若将其数字重新排列可得—个新的自然数n,如果m=3n,我们称m是一个“希望数”,例如:3105=3×1035,71253=3×23751,371250=3×123750.(1)请说明41不是希望数,并证明任意两位数都不可能是“希望数”;(2)一个四位“希望数”M记为abcd,已知abcd=3·cbad,且c=2,请求出这个四位“希望数”.20. (2017重庆西大附中月考)一个三位正整数N,各个数位上的数字互不相同且都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数,所有这些两位数的和等于这个三位数本身,则称这样的三位数N为“公主数”.例如:132,选择百位数字1和十位效字3所组成的两位数为:13和31,选择百位数字1和个位数字2所组成的两位数为:12和21,选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“公主数”.—个三位正整数,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数为“伯伯数”.(1)判断123是不是“公主数”?请说明理由.(2)证明:当一个“伯伯数”xyz是“公主数”时,则z=2x.(3)若一个“伯伯数”与132的和能被13整除,求满足条件的所有“伯伯数”.21. (2018原创)若实数a 可以表示成两个连续自然数的倒数差,即a =1n -1n +1,那么我们称a 为第n 个“1阶倒差数”,例如12=1-12,∴12是第1个“1阶倒差数”,16=12-13,∴16是第2个“1阶倒差数”.同理,若b =1n -1n +2,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且1d -1c =22,求c ,d 的值.22. (2017重庆八中二模)若在一个两位正整数N 的个位数字与十位数字之间添上数字2,组成一个新的三位数,我们称这个三位数为N 的“诚勤数”,如34的“诚勤数”为324;若将—个两位正整数M 加2后得到一个新数,我们称这个新数为M 的“立达数”,如34的“立达数”为36.(1)求证:对任意一个两位正整数A ,其“诚勤数”与”立达数”之差能被6整除;(2)若一个两位正整数B 的“立达数”的各位数字之和是B 的各位数字之和的一半,求B 的值.23. (2017重庆南岸区二模)若一个两位正整数m 的个位数为8,则称m 为“好数”.(1)求证:对任意“好数”m ,m 2-64一定为20的倍数;(2)若m=p2-q2,且p,q为正整数,则称数对(p,q)为“友好数对”.规定:H(m)=qp.例如68=182-162,称数对(18,16)为“友好数对”,则H(68)=1618=89.求小于50的“好数”中,所有“友好数对”的H(m)的最大值.24. (2018原创)定义,对于一个多位自然数a,若其从左向右各个数位上的数恰好是前一数位数字加1,我们称自然数a是“格调数”.例如,12,123,1234等都是“格调数”.根据数的特点,我们可以发现,最小的“格调数”是12,最大的“格调数”是123456789.而如果一个“格调数”有七位时,第一位上的数字最大只能是3,这样的“格调数”是3456789.(1)已知四位“格调数”m和n,若m-n=3333,求m的值;(2)规定:任意一个能被18整除的数,称为“发财数”.对于任意一个三位“格调数”t=100a+10(a+1)+(a+2),交换其个位和百位上的数字,得到新的三位数k,令q=k-t,猜想q是否为“发财数”,请说明理由.25. (2017重庆一中一模)人和人之间讲友情,有趣的是,数与数之间也有相类似的关系,若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1+2+3+6+9=21;51的正因数有1、3、17、51,它的真因数之和为1+3+17=21,所以称18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)8的真因数之和为________;求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(2)一个百位上的数为4的五位“两头蛇数”能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.26. (2018原创)依次排列的几个数,如:a,b,c,…,对任意相邻的两个数,都用右边的数减去左边的数,并将所得的差写在这两个数之间,从而产生一个新数串:a,b-a,b,c-b,c,…,我们称这样的一次操作为“差变增数列”.例如,对于依次排列的两个数,1,2,做一次“差变增数列”所得数串为1,1,2;再做一次“差变增数列”所得数串为1,0,1,1,2.(1)已知依次排列的3个数:2,8,7,做一次“差变增数列”,所得新数串所有数字的和是________;做m次“差变增数列”后,所得新数串所有数字的和为________(用含m的代数式表示);(2)若依次排列的3个数:x,8,y;其中,0≤x<y≤9,且x,y均为整数,做100次“差变增数列”后所得数串的所有数字和为216,求x和y的值.27. (2017重庆江北区一模)一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是________;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.求证:任意的一组“相关和平数”之和是1111的倍数.28. (2017重庆南岸区一模)对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则D(20,6)=20-6=14.若“矩数”P的最佳拆分点为t,“矩数”q的最佳拆分点为s,当D(p,q)=30时,求st的最大值.29. (2017重庆一外二模)若一个多位自然数t=abc…fg的各数位上的数字满足b-a=c-b=…=g-f=k(k≠0),则称该数为“k”类自然数,把自然数t各数位上的数字从左往右数,所有奇数位上的数字之和的平方减去所有偶数位上的数字之和的平方,记为F(t).例如:135是一个“2”类自然数.F(135)=(1+5)2-32=274321是一个“-1”类自然数.F(4321)=(4+2)2-(3+1)2=20(1)证明:任意一个三位“k”类自然数与它百位上的数字之和一定能被4整除;(2)如果—个四位自然数,交换其个位数字与千位数字得到的新数减去原数所得的差能够被18整除,则称这个数为“成年数”.若一个“k”类自然数t是“成年数”,求F(t)的最小值.30. 阅读下列材料解决问题:两个多位正整数,若它们各数位上的数字和相等,则称这两个多位数互为“调和数”.例如:37与82,它们各数位上的数字和分别为3+7,8+2,∵3+7=8+2=10,∴37与82互为“调和数”;又如:123与51,它们各数位上的数字和分别为1+2+3,5+1,∵1+2+3=5+1=6,∴123与51互为“调和数”.(1)若两个三位数a43、2bc(0≤b≤a≤9,0≤c≤9且a、b、c为整数)互为“调和数”,且这两个三位数之和是17的倍数,求这两个“调和数”;(2)若A、B是两个不相等的两位数,A=xy,B=mn,A、B互为“调和数”,且A 与B之和是B与A之差的3倍,求证:y=-x+9.答案1. (1)证明:∵m是一个完全平方数,∴m=p×q,当q=p时,p·q就是m的最佳分解,∴F(m)=pq=pp=1;(2)解:由题意得,(10y+x)-(10x+y)=18,得y=x+2,∴t=10x+y=10x+x+2=11x+2(1≤x≤7),则所有的吉祥数为:13,24,35,46,57,68,79共7个,∵13=1×13,24=1×24=2×12=3×8=4×6,35=1×35=5×7,46=1×46=2×23,57=1×57=3×19,68=1×68=2×34=4×17,79=1×79,则F(13)=113,F(24)=23,F(35)=57,F(46)=223,F(57)=319,F(68)=417,F(79)=179,∵57>23>417>319>223>113>179,∴“吉祥数”中F (t )的最大值为F (35)=57.2. 解:(1)F (243)=(423+342+234)÷111=9,F (617)=(167+716+671)÷111=14;(2)∵s ,t 都是相异数.∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6,∵F (s )+F (t )=18,∴x +5+y +6=x +y +11=18,∴x +y =7,∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数.∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1, ∵s 是相异数,∴x ≠2,x ≠3,∵t 是相异数,∴y ≠1,y ≠5,∴满足条件的有⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8, ∴k =F (s )F (t )=612=12或k =F (s )F (t )=99=1或k =F (s )F (t )=108=54, ∵12<1<54,∴k 的最大值为54.3. 解:(1)1331,2442,1001;猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为: 1000x +100y +10y +x =1001x +110y =11(91x +10y ), ∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除;∴任意一个四位“和谐数”能被11整除;(2)设这个三位的“和谐数”为xyx ,用十进制表示为: 100x +10y +x =101x +10y ,∵它是11的倍数,∴101x +10y 11为整数, ∵101x +10y 11=99x +11y +2x -y 11=9x +y +2x -y 11,x ,y 是0~9之间的整数,∴2x -y 11是整数. 又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8,∵要使2x -y 11是整数, 则2x -y 只能是0,∴2x -y =0,即y =2x ,∴y 与x 之间的函数关系式是y =2x (1≤x ≤4,x 为自然数).4. 解:(1)-i ;1;【解法提示】∵i 2=-1,∴i 3=i 2·i =-i ,i 4=i 2·i 2=(-1)×(-1)=1.(2)原式=3-4i +3i -4i 2=3-i +4=7-i ;(3)根据题意可得i =i ,i 2=-1,i 3=-i ,i 4=1,i 5=i ,i 6=-1,…,i 2016=1,i2017=i,∵i+i2+i3+i4=0,2016÷4=504,∴i+i2+i3+i4+…+i2017=i2017=i.5.解:(1)设这个奇数为2n+1,n为任意整数,由题意知m=(2n+1)2-1=4n2+4n+1-1=4n(n+1),4n(n+1)8=n(n+1)2,是整数,即4n(n+1)是8的倍数,∴m是“发达数”;(2)由题意知s=10y+x,∴s+t=10y+x+10x+y=11x+11y=11(x+y),又∵1≤x≤y≤9,∴2≤x+y≤18,要使11(x+y)是发达数,则x+y是发达数,∴x+y=8或x+y=16,当x+y=8时,x=1,y=7,t=17,x=2,y=6,t=26,x=3,y=5,t=35,x=4,y=4,t=44,当x+y=16时,x =7,y =9,t =79,x =8,y =8,t =88,故所有符合条件的两位正整数t 有17,26,35,44,79,88.6. 解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1),K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧m 1=5m 2=2, ∴⎩⎨⎧K 1=228K 2=39. 7. 解:(1)∵一个三位数a 1b (其中a >b >1)的差数T (a 1b )=792,∴a=9,∵三位数a1b(其中a>b>1)的各数位上的数字之和为一个完全平方数,∴1+a+b=n2,10<1+a+b≤19,∴n=4,∴b=16-9-1=6,∴这个三位数是916;(2)∵一个三位数ab2(其中a、b都不为0)能被4整除,∴b=1或3或5或7或9,∵将新数个位数字移到百位得到另一个新数b2a被4除余2并且a<5,∴a=2,∴所有小于500的4的“闺蜜数”t是212,232,252,272,292,T(t)的最大值是922-229=693.8. (1)证明:设M=xyz(x≠y≠z≠0),则M的友谊数是yxz,∴xyz-yxz=(100x+10y+z)-(100y+10x+z)=90x-90y=90(x-y)=15×6(x -y),∵6(x-y)是整数,∴xyz-yxz能被15整除.故M 与其“友谊数”的差能被15整除;(2)解:由团结数定义可知,N 的团结数为:(20+a )+(20+b )+(10a +2)+(10a +b )+(10b +2)+(10b +a )=22a +22b +44,∵N 的团结数与N 之差为24,∴(22a +22b +44)-(200+10a +b )=24,即a =15-74b ,∵a 、b 为整数,1≤a ≤9,1≤b ≤9,a ≠b ,∴⎩⎨⎧a =8b =4或⎩⎨⎧a =1b =8, ∴N =284或218.9. 解:(1)4;(2)∵正整数abcd 能被6整除,∴d 能被2整除.设d =2k ( k 为自然数),则d +4(a +b +c )=2k +4(a +b +c )=2[k +2(a +b +c )].∴d +4(a +b +c )能被2整除;(3)小明的说法正确.理由如下:∵四位正整数abcd能被6整除,∴a+b+c+d能被3整除.设a+b+c+d=3m(m为自然数),则d+4(a+b+c)=(a+b+c+d)+3(a+b+c)=3m+3(a+b+c).∴d+4(a+b+c)既能被2整除,也能被3整除,∴也能被6整除.10.解:(1)根据精巧数的定义,得123k能被4整除,则1230+k能被4整除,∵1230+k=1228+(2+k),∴2+k能被4整除,又∵0≤k≤9,且k为整数,∴k=2或6;(2)∵2ab是“精巧数”,∴a为偶数,且2+a+b是3的倍数,∵a<10,b<10,∴2+a+b<22,∵2ab各位数字之和为一个完全平方数,∴2+a+b=32=9,∴当a=0时,b=7,当a=2时,b=5,当a=4时,b=3,当a=6时,b=1,∴所有满足条件的三位“精巧数”有:207,225,243,261.11. (1)证明:设三位数abc是一个半和数,则a+b+c=2b,∴a+c=b.∵这个三位数为100a+10b+c=100a+10(a+c)+c=110a+11c=11(10a+c),且10a+c为整数,∴这个三位数是11的倍数,能被11整除.(2)解:∵四位数abbc是欢喜数,∴10a+b=2(10b+c),∴10a-19b-2c=0①.∵bmc是半和数,∴b+c=m.∵bmc是平方差数,∴m =b 2-c 2=(b +c )(b -c ),∴b -c =1,∴b =1+c ②,②代入①得a =21c +1910, ∵a 是1~9的正整数,∴c =1,∴b =2,∴m =2+1=3.12. (1)证明:由题意得,t 按上述方法可得新数:n 0n ,nn 0,∵|n +2×0-n |=0,|n +2n -0|=3n ,0<3n ,∴n 0n 是t 的“幸福美满数”,K (t )=n 2+2×02-n 2=0;(2)解:s =100+10x +y ,s ′=100+10y +x ,19s +8s ′=3888,即19(100+10x +y )+8(100+10y +x )=3888.得到2x +y =12,∵x <y ,且均为自然数,∴⎩⎨⎧x =2y =8或⎩⎨⎧x =3y =6, ∴“梦想成真数”为128或136,通过计算,K (128)=-55,K (136)=-17或-25,又∵-55<-25<-17,∴K(s)的最大值为-17.13.解:(1)依照2阶6位循环数的定义,可任意写出3个2阶6位循环数:131313;272727;868686.任意一个2阶6位循环数能被7整除,理由如下:结合数字的特点可得知:2阶6位循环数为任意的一个两位数×10101得出的.∵10101÷7 =1443.∴任意一个2阶6位循环数能被7整除;(2)结合(1)的规律可知:2阶4位循环数为任意的一个两位数×101得出的.∵101为质数.∴xy为13的倍数,又∵0<x<5,∴y=3x.∵当x=4时,y=3×4=12,当x=5时,y=3×5=15均不符合题意.∴0<x<4,且x为整数,∴y与x之间的函数关系为y=3x(x=1,2,3).14.解:(1)根据题意知t=100(x+y)+10y+x,∴h=100y+10x+x+y,∴q=t-h=(100x+100y+10y+x)-(100y+10x+x+y)=90x+9y,∴f(m)=q9=90x+9y9=10x+y.∵0不能在百位,∴t的十位和百位均不可以为0,∴x的最小值为0,y的最小值为1,∴f(m)的最小值为1,此时“加成数”t为110;(2)∵f(m)是24的倍数,∴10x+y=24n(n=1,2,3,…),∵0≤x≤8,1≤y≤9,且1≤x+y≤9,∴当n=1时,10x+y=24,x=2,y=4,当n=3时,10x+y=72,x=7,y=2;综上,这样的“节气数”有2个,分别为24,72.15. (1)证明:∵三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,∴重新排序后,其中两个数位上数字的和是另一个数位上的数字的2倍,∴a+c-2b=0,∴F(t)=0;(2)解:∵m=200+10x+y是“善雅数”,∴x为偶数,且2+x+y是3的倍数,∵x<10,y<10,∴2+x+y<30,∵m的各位数字之和为一个完全平方数,∴2+x+y=32=9,∴当x=0时,y=7,当x=2时,y=5,当x=4时,y=3,当x=6时,y=1,∴所有符合条件的“善雅数”有:207,225,243,261,∴所有符合条件的“善雅数”中F(m)的最大值是|2-3|-|3-4|=0.16. (1)解:是.理由如下:∵(12+2)2+(12-2)=14+2+2+12-2=114,是有理数; (12+2)+(12-2)2=12+2+14-2+2=114,是有理数. ∴(12+2,12-2)是“完美数对”; (2)证明:∵(a ,b )是“完美数对”, ∴a 2+b 与a +b 2都是有理数,∴(a 2+b )-(a +b 2)=(a -b )(a +b -1)是有理数. 设t =(a -b )(a +b -1)=(a -b )×(2-1)=a -b , ∴t =a -b 是有理数. 解⎩⎨⎧a +b =2a -b =t ,得⎩⎪⎨⎪⎧a =1+t2b =1-t 2,∵t 是有理数,∴a ,b 都是有理数. 17. 解:(1)2;8;证明:假设P (n )的质数为a ,b ,c , 由P (n )=0可知,a =b =c ,∴P(n)=a+a+a=3a,∴3a÷3=a,为整数,∴若P(n)=0,n必定能被3整除;(2)(x+y)×8+10x+y=99,∴2x+y=11;∵1≤x≤y≤9,∴期盼数:35,27,19,35=11+11+13;27=7+7+13;19=7+7+5;P(35)=2,P(27)=6,P(19)=2,∴P(t)max=6.18. (1)证明:设原来的三位数为:100a+10b+c,其兄弟数为:100b+10c+a,则(100a+10b+c)-(100b+10c+a)=99a-90b-9c=9(11a-10b-c),∵(11a-10b-c)为整数,∴一个三位数与其兄弟数之差一定可以被9整除.(2)解:设这个六位数的前4位是M,后2位是N,则这个数可表示为:(100M+N),其兄弟数可表示为:(10000N+M),∴4×(100M+N)=10000N+M,∴化简得19M=476N,∴N一定是19的倍数,∵N是2位数,∴满足条件的N=19,38,57,76,95;又∵M是4位数,∴N=19,38都不满足条件,舍去;∴N=57,76,95,相应的:M=1428,1904,2380,∴满足条件的六位数有三个142857,190476,238095.19. (1)证明:∵3×14=42≠41,∴41不是希望数.假设存在两位数是希望数,记为ab,∴ab=3ba.∵3b为一位数,且b是3a的个位数,∴b=1,2,3.当b=1时,a=7,3×17=51≠71;当b=2时,a=4,3×24=72≠42;当b=3时,a=1,3×31=93≠13.综上可知:假设不成立,即任意两位数都不可能是“希望数”;(2)解:∵abcd=3·cbad,∴3d的个位是d,∴d=0或5.当d=0时,∵3a的个位是c,c=2,∴a=4,此时3c=6>4,不合适;当d=5时,∵3a的个位+1是c,c=2,∴a=7,又∵abcd=3·cbad,∴3b+2=10+b,解得:b=4.∴这个四位“希望数”为7425.20. (1)解:123的百位与十位数字组成的数为12,21,百位与个位数字组成的数为13,31, 十位与个位数字组成的数为23,32,则各数和为12+21+13+31+23+32=132≠123,显然不是公主数;(2)证明:∵xyz是一个公主数,∴(10x+y+10y+x)+(10x+z+10z+x)+(10y+z+10z+y) =100x+10y+z,∴78x=12y+21z①;∵xyz是一个伯伯数,∴y=x+z②,代入①得66x=33z,∴z=2x;(3)解:设这个伯伯数为xyz,则y=x+z,∴100x+10y+z=110x+11z.∵110x+11z+132=11(10x+z+12),∵能被13整除,∴10x+z+12是13的倍数.当10x +z +12=26时,x =1,z =4,y =5,这个数为154; 当10x +z +12=39时,x =2,z =7,y =9,这个数为297; 当10x +z +12=52时,x =4,z =0,y =4,这个数为440; 当10x +z +12=65时,x =5,z =3,y =8,这个数为583; 当10x +z +12=78时,x =6,z =6,y =12,不符合; 当10x +z +12=91时,x =7,z =9,y =16,不符合. 故满足条件的数有154,297,440,583. 21. 解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴132不是“1阶倒差数”. 第5个“2阶倒差数”为15-17=235.(2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =12x -1-12x +1=2x +1-(2x -1)(2x +1)(2x -1)=24x 2-1. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =24y 2-1,d =24z 2-1, ∵1d -1c =22,∴4z 2-12-4y 2-12=22, 即z 2-y 2=11, ∴(z +y )(z -y )=11>0, ∴z >y . ∵11=1×11,∴⎩⎨⎧z +y =11z -y =1,解得⎩⎨⎧y =5z =6, ∴c =24×52-1=299,d =24×62-1=2143.22. (1)证明:设A =xy ,则其“诚勤数”为x 2y ,“立达数”为10x +y +2, ∴x 2y -(10x +y +2)=100x +20+y -10x -y -2=90x +18=6(15x +3), ∵15x +3为整数, ∴6(15x +3)能被6整除,即对任意一个两位正整数A ,其“诚勤数”与“立达数”之差能被6整除; (2)解:设B =10a +b ,1≤a ≤9,0≤b ≤9(13加上2后各数字之和变小,说明个位发生了进位),B +2=10a +b +2,则B 的“立达数”为10(a +1)+(b +2-10),a +1+b +2-10=12(a +b ), 整理得:a +b =14, ∵1≤a ≤9,0≤b ≤9,∴⎩⎨⎧a =8(舍)b =6、⎩⎨⎧a =6b =8,⎩⎨⎧a =9(舍)b =5、⎩⎨⎧a =5b =9,经检验:86和95不符合题意舍去,∴所求两位数为68或59.23. (1)证明:设m =10t +8,1≤t ≤9,且t 为整数.∴m 2-64=(10t +8)2-64=100t 2+160t +64-64=20(5t 2+8t ). ∵1≤t ≤9,t 为正整数, ∴5t 2+8t 是正整数. ∴m 2-64一定为20的倍数;(2)解:∵m =p 2-q 2,p ,q 为正整数,∴10t +8=(p +q )(p -q ), 当t =1时,18=1×18=2×9=3×6,没有满足条件的p ,q . 当t =2时,28=1×28=2×14=4×7.其中满足条件的p ,q 的数对有(8,6),即28=82-62,∴H (28)=68=34.当t =3时,38=1×38=2×19,没有满足条件的p ,q . 当t =4时,48=1×48=2×24 =3×16=4×12=6×8. 满足条件的p ,q 的数对为⎩⎨⎧p -q =2p +q =24或⎩⎨⎧p -q =4p +q =12或⎩⎨⎧p -q =6p +q =8,解得⎩⎨⎧p =13q =11或⎩⎨⎧p =8q =4或⎩⎨⎧p =7q =1. 即48=132-112=82-42=72-12. ∴H (48)=1113或H (48)=48=12或H (48)=17. ∵1113>34>12>17, ∴H (m )的最大值为1113.24. 解:(1)∵m ,n 都是四位“格调数”,则设m =a (a +1)(a +2)(a +3),n =b (b +1)(b +2)(b +3), 即m =1000a +100(a +1)+10(a +2)+(a +3)=1111a +123, n =1000b +100(b +1)+10(b +2)+(b +3)=1111b +123, ∴m -n =1111a +123-(1111b +123)=1111(a -b )=3333,∴a-b=3,即a=b+3.∵m是四位“格调数”,∴1≤a≤6,∴1≤b+3≤6,∴1≤b≤3,∴b为1,2或3,则a为4,5或6,∴m为4567,5678或6789;(2)q是“发财数”.∵t=100a+10(a+1)+(a+2)=111a+12,∴k=100(a+2)+10(a+1)+a=111a+210,∴q=k-t=(111a+210)-(111a+12)=210-12=198,∵198÷18=11,∴198是18的整倍数,即198是“发财数”,∴q是“发财数”.25. 解:(1)7;证明:设这个四位“两头蛇数”为1ab1,由题意得:1ab 1-3ab =1001+100a +10b -30a -3b =1001+70a +7b =7(143+10a +b ) ∵a 、b 为整数, ∴143+10a +b 为整数,∴一个四位的“两头蛇数”与它去掉两头后得到的两位数的三倍能被7整除; (2)∵16的真因数有:1,2,4,8. ∴1+2+4+8=15, ∵15=1+3+11, ∴16的“亲和数”为33.设这个五位“两头蛇数”为1x 4y 1, 由题意得:1x4y133为整数,∴315+30x +10x +10y +633为整数,∴10x +10y +6=66, ∴x +y =6,∵0≤x ≤9,0≤y ≤9,且为整数,x <y ∴⎩⎨⎧x =0y =6或⎩⎨⎧x =1y =5或⎩⎨⎧x =2y =4.∴这个五位“两头蛇数”为10461或11451或12441.26.解:(1)22;17+5m.【解法提示】将3个数:2,8,7,做一次“差变增数列”,得到的数字为2,6,8,-1,7,所有数字的和为2+6+8+(-1)+7 =22;∵将数串a,b,c做一次“差变增数列”得到a,b-a,b,c-b,c,所有数字和的增加量M=(a+b-a+b+c-b+c)-(a+b+c)=c-a,∴将一个数串每做一次“差变增数列”,所有数字的和的增加量相同,均为原数最后一个数与第一个数的差∵数串2,8,7中,7-2=5.∴每做一次“差变增数列”,所有数字的和增加5,∴做m次“差变增数列”后,所得数字的和为2+8+7+5m,即17 +5m. (2)∵数串:x,8,y,∴做100次“差变增数列”,所得数字的和为x+8+y+100(y-x)=-99x+101y+8,根据题意得-99x+101y+8 =216,即y=208+99x101,∵y是整数,∴208+99x是101的正整数倍,。

中考数学专题-新定义与阅读理解创新型问题-(解析版)

中考数学专题-新定义与阅读理解创新型问题-(解析版)

新定义与阅读理解创新型问题一、单选题1.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .4【答案】C 【分析】根据题目中所给的运算法则,分两种情况进行求解即可. 【详解】 令(),y min a b =,当2123x x x +≤-++时,即220x x --≤时,1y x =+, 令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0), ∴当0w ≤时,12x -≤≤, ∴1y x =+(12x -≤≤), ∴y 随x 的增大而增大, ∴当x =2时,3y =最大;当2123x x x +>-++时,即220x x -->时,2y x 2x 3=-++, 令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0), ∴当0w >时,2x >或1x <-, ∴2y x 2x 3=-++(2x >或1x <-), ∴2y x 2x 3=-++的对称轴为x =1, ∴当2x >时,y 随x 的增大而减小, ∴当x =2时,2y x 2x 3=-++=3, ∴当2x >时,y <3;当1x <-,y 随x 的增大而增大, ∴当x =-1时,2y x 2x 3=-++=0; ∴当1x <-时,y <0;综上,()2min 123y x x x =+-++,的最大值为3. 故选C . 【点睛】本题是新定义运算与二次函数相结合的题目,解题时要注意分情况讨论,不要漏解.2.(广东省2021年中考真题数学试卷)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =.这个公式也被称为海伦-秦九韶公式.若5,4p c ==,则此三角形面积的最大值为( )A B .4C .D .5【答案】C 【分析】由已知可得a +b =6,5S ab ==-,把b =6-a 代入S 的表达式中得:256S a a -+S 的最大值.【详解】 ∴p =5,c =4,2a b cp ++= ∴a +b =2p -c =6∴55S ab ==-由a +b =6,得b =6-a ,代入上式,得:25(6)5565S a a a a =--=-+-设2+65y a a =--,当2+65y a a =--取得最大值时,S 也取得最大值 ∴22+65(3)4y a a a =--=--+ ∴当a =3时,y 取得最大值4∴S =故选:C . 【点睛】本题考查了二次函数的性质,关键是由已知得出a +b =6,把面积最大值问题转化为二次函数的最大值问题. 3.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3 B .[]2,3-C .[]2,3-D .[]2,3--【答案】D 【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m ,根据特征数的定义即可求解. 【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++, ∴直线23y x m =-++与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称, ∴点A ,B ,O 在同一直线上, ∴直线23y x m =-++经过原点, ∴m +3=0, ∴m =-3,∴一次函数2y x m =-+的解析式为23y x =--, ∴一次函数2y x m =-+的特征数是[]2,3--. 故选:D 【点睛】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A ,B 关于原点对称得到平移后直线经过原点是解题关键.4.(江苏省无锡市2021年中考数学真题)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b≤≤时,总有1211y y -£-£恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论:①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①① B .①① C .①① D .①①【答案】A 【分析】分别求出12y y -的函数表达式,再在各个x 所在的范围内,求出12y y -的范围,逐一判断各个选项,即可求解. 【详解】解:∴∴15y x =-,232y x =+,∴()()1253227y y x x x -=--+=--,当12x ≤≤时,12119y y -£-£-, ∴函数5y x =-,32y x =+在12x ≤≤上不是“逼近函数”;∴∴15y x =-,224y x x =-,∴()()12225554x y y x x x x --=--=-+-,当34x ≤≤时,1211y y -£-£,函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”;∴∴211y x =-,222y x x =-, ∴()()22122112x x x y y x x -=--=-+--,当01x ≤≤时,12314y y -£-£-, ∴01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”;∴∴15y x =-,224y x x =-,∴()()12225554x y y x x x x --=--=-+-,当23x ≤≤时,12514y y £-£, ∴23x ≤≤不是函数5y x =-,24y x x =-的“逼近区间”. 故选A 【点睛】本题主要考查一次函数与二次函数的性质,掌握一次函数与二次函数的增减性,是解题的关键. 5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b ≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是( ) A .1x >或13x < B .113x -<<C .1x >或1x <-D .13x >或1x <- 【答案】C 【分析】根据新定义运算规则,分别从212x x +≥-和212x x +<-两种情况列出关于x 的不等式,求解后即可得出结论. 【详解】解:由题意得,当212x x +≥-时, 即13x ≥时,(21)(2)21x x x +*-=+, 则213x +>, 解得1x >,∴此时原不等式的解集为1x >; 当212x x +<-时, 即13x <时,(21)(2)2x x x +*-=-, 则23x ->, 解得1x <-,∴此时原不等式的解集为1x <-;综上所述,不等式(21)(2)3x x +*->的解集是1x >或1x <-. 故选:C . 【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x 的不等式.6.(2021·广西中考真题)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N =.已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1 B .0C .1D .2【答案】C 【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可. 【详解】解:∴集合B 的元素1,ba a,a ,可得, ∴0a ≠, ∴10≠a,0b a =,∴0b =,当11a =时,1a =,{}1,0,1A =,{}1,1,0B =,不满足互异性,情况不存在, 当1a a=时,1a =±,1a =(舍),1a =-时,{}1,0,1A =-,{}1,1,0B =-,满足题意, 此时,=1b a -. 故选:C 【点睛】本题考查集合的互异性、确定性、无序性。

阅读理解及新定义问题

阅读理解及新定义问题

例题1
阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫作虚数单
位,把形如a+bi(a,b为实数)的数叫作复数,其中a叫作这个复数的实
部,b叫作这个复数的虚部,它的加、减、乘法运算与整式的加、减、
乘法运算类似.
例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;
专题突破一
阅读理解及新定义型问题
阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,
实现自主探索主动发展的基础.
阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别
致.这类问题,主要考查解题者的心理素质、自学能力和阅读理解能力,
考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括
点拨


x2+x+1 1 y= = x + + 1 ≥ 2 x x
1 x· + 1 = 3 , x
1 当 x= x,即 x=1 时,y 的最小值为 3.
(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家 庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险
n +n 费等各类费用共计0.4万元,n年的保养、维护费用总和为 万 10
由 “ 等宽曲线 ” 的定义知 AB = BC = AC = 2cm ,即可得
∠BAC=∠ABC=∠ACB=60°,再根据弧长公式计算.
解 如图 3,由题意知:AB=BC=AC=2cm, ∴∠BAC=∠ABC=∠ACB=60° , ∴ AB 在以点 C 为圆心,2cm 为半径的圆上, 60·π·2 2π ∴ AB 的长= 180 = 3 , 2π ∴莱洛三角形的周长为 3 ×3=2π(cm). 故答案为:2π.

初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)

初中数学中考复习 第6关 以新定义与阅读理解问题为背景的选择填空题(原卷版)

第6关 以新定义与阅读理解问题为背景的选择填空题【考查知识点】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力. 阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题.【解题思路】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.【典型例题】【例1】(2019·湖南中考真题)从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【名师点睛】本题考查了规律型:数字的变化类,找出i i a b +共有几个不同的值是解题的关键.【例2】(2020·四川绵阳实中、绵阳七中初三月考)阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=;22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【名师点睛】本题考查有理数的混合运算,解题的关键是读懂题意,掌握有理数的混合运算.【例3】(2019·湖南中考真题)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【名师点睛】本题考查新定义,二次函数的性质,特殊四边形的性质;熟练掌握平行四边形,菱形,二次函数的图象及性质,将广义菱形的性质转化为已学知识是求解的关键.【例4】(2018新疆中考)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).【名师点睛】本题考查了一次函数的性质、二次函数的性质、一次函数图象上点的坐标特征以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.【方法归纳】阅读试题提供新定义、新定理,根据所给的内容类比解决新问题 ;阅读相关信息,通过归纳探索,发现规律,得出结论阅读试题信息,借助已有数学思想方法解决新问题;阅读理解型问题是指通过阅读材料,理解材料中所提供新的方法或新的知识,并灵活运用这些新方法或新知识,去分析、解决类似的或相关的问题。

专题6 新定义与阅读理解型问题

专题6 新定义与阅读理解型问题

a
+ax ≥0,从而 x+xa ≥2 a (当 x= a 时取等号).
设函数 y=x+xa (a>0,x>0),由上述结论可知:当 x=
a 时,该函数有最小值为 2 a .
应用举例 已知函数为 y1=x(x>0)与函数 y2=4x (x>0),则当 x=
4 =2 时,y1+y2=x+4x 有最小值为 2 4 =4. 解决问题
①当n=4,m=2时,如图4,y=________;当n=5, m=________时,y=9; ②对于一般的情形,在n边形内画m个点,通过归纳猜 想,可得y=________(用含m,n的代数式表示).请对同 一个量用算两次的方法说明你的猜想成立.
解:(1)直角长分别为a,b斜边为c的直角三角形中a2+ b2=c2. (2)n行n列的棋子排成一个正方形棋子个数为n2,每层 棋子分别为1,3,5,7,…,2n-1.由图形可知:n2= 1+3+5+7+…+2n-1.
P(3,-3)到直线 y=-23
x+53
的距离为
8 13
13

3.(2019·湘潭)阅读材料:运用公式法分解因式,除了 常用的平方差公式和完全平方公式以外,还可以应用 其他公式,如立方和与立方差公式,其公式如下:
立方和公式:x3+y3=(x+y)(x2-xy+y2);
立方差公式:x3-y3=(x-y)(x2+xy+y2).
解:(1)yy21 =(x+x+3)32+9 =(x+3)+x+9 3 , ∴当 x+3=x+9 3 时,yy21 有最小值, ∴x=0 或-6(舍去)时,有最小值=6; (2)设该设备平均每天的租赁使用成本为 w 元. 则 w=490+200xx+0.001x2 =4x90 +0.001x+200, ∴当4x90 =0.001x 时,w 有最小值,∴x=700 或-700(舍 去)时,w 有最小值,最小值=201.4 元.

阅读型题目——新定义

阅读型题目——新定义

解答这类问题,只有在理解有关阅读材料 的内容基础上,才能进行正确解答.学会数学阅 读尤为重要,学习过程中要加强数学三种语言 相互转化能力的训练.
新定义
方法提炼:
解决此类问题必须理解清楚有关 概念定义),公式,规律,方法等 等,明确几何元素之间的数量关系和 位置关系,在没有明确确定几何元素 的数量关系或涉及运动变化时,要全 面考虑问题,必要时进行分类讨论.
【2019年滚动迁移】中考专题复习资料
阅读型题目--新定义
阅读型题目
【专题解读】
这类题目给学生呈现没有学过的数学知识、 数学规律、数学方法等情境,要求考生通过自 主阅读、自主操作、独立思考等方式进行即时 学习,然后进行概括、归纳、抽象,并运用所 学知识解决相关的问题.
试题旨在考查通过数学阅读获取知识,从 已有的知识出发,建构新的知识的能力.

题库-新定义与阅读理解题

题库-新定义与阅读理解题

新定义与阅读理解题类型一 新法则、运算学习型1.我们规定:若(,),(,),m a b n c d ==则.m n ac bd =+如(1,2),(3,5),m n ==则13+25=13.m n =⨯⨯(1)已知(2,4),(2,-3),m n ==求m n ;(2)已知(,1),(,1)m x a n x a x =-=-+求,y m n =问,y m n =的函数图象与一次函数1y x =-的图象是否相交,请说明理由.解:(1)22+4(3)=8;m n =⨯⨯--(2)不相交,理由如下:2()(1)m n x a x =-++=22(21)1x a x a --++,∴22(21)1y x a x a =--++,与一次函数y=x-1联立得:22(21)11,x a x a x --++=-化简得22220,x ax a -++=∵2224(2)4(2)80,b ac a a -=--+=-<∴方程无实数解,两函数图象无交点.2.对x ,y 定义一种新运算 T ,规定:T (x,y )=2ax by x y++(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,;例如T (0,1)=01201a b b ⨯+⨯=⨯+.已知T (1,-1) =-2,T (4,2)=1. (1)求a,b 的值;(2)若T (m ,m +3) =-1,求m 的值.解:(1)(1,1)2,21a b T --==--即a -b =-2 ,T (4,2)=42182a b +=+,即2a +b =5 ,解得a=1,b=3;(2)根据题意得3(3)12(3)m mm m++=-++,解得127m=-,经检验,127m=-是方程的解.3.定义新运算:(a,b)⊗(c,d)=(ac,b d),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-b d .(1)求(1,2)*(3,-4)的值;(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(3)在(2)的条件下,求(1,2)⊕(p,q)的结果;(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.解:(1)∵(a,b)*(c,d)=a2+c2-bd,∴(1,2)*(3,-4)=12+32-2×(-4) =1+9+8 =18;(2)∵(a,b)⊗(c,d)=(ac,bd),∴(1,2)⊗(p,q)=(p,2q),∵(1,2)⊗(p,q)=(2,-4),∴p=2,2q=-4,∴q=-2;(3)∵q=-2,p=2,(a,b)⊕(c,d)=(a+c,b+d),∴(1,2)⊕(p,q) =(1,2)⊕(2,-2) =(3,0);(4)∵x2+2xy+y2=5,x2-2xy+y2=1,∴x2+y2=3,xy=1,∵(a,b)*(c,d)=a2+c2-bd,∴(x,5)*(y,xy) =x2+y2-5xy =3-5 =-2.4. 我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad A =BC AB=底边腰,容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解答下列问题:(1)sad 60°= ___________,sad 90°=____________;(2)如图②,已知sin A =35,其中∠A 为锐角,试求sad A 的值.第4题图解:(1)1,2;(2)∵sin A =35,BC ⊥AC,∴设AB =5a ,BC =3a ,则AC =4a ,如解图,在AB 上取AD =AC =4a ,作DE ⊥AC 于点E ,则DE =AD ·sin A =4a ·35=125a ,AE =AD ·cos a =4a ·45=165a,CE =4a 165-a =45a ,CD =2222412410()()555a a CE DE a +=+=,∴sad A =105CD AC =.第4题解图类型二 新概念学习型1.观察下表我们把某格中字母和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x +y ,回答下列问题:(1)第3格的“特征多项式”为_________,第4格的“特征多项式”为_________,第n 格的“特征多项式”为_________;(2)若第1格中的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16. ①求x ,y 的值;②在①的条件下,第n 格的“特征多项式”是否有最小值?若有,求出最小值和相应的n 值,若没有,请说明理由.解:(1)16x +9y ,25x +16y ,(n +1)2x +n 2y ;(2)①依题意得4109416x y x y +=-⎧⎨+=-⎩, 解得247267x y ⎧=-⎪⎪⎨⎪=⎪⎩. ②有,理由如下:设最小值为W ,依题意得:22222426(1)(1)77W n x n y n n =++=-++ 224824777n n =-- 22312(12)77n =--, ∴有最小值3127-,相应的n 值为12.2.已知抛物线21111y a x b x c =++,22222y a x b x c =++,且满足111222(0,1)a b c k k a b c ===≠,则抛物线12,y y 互为“友好抛物线”. (1)若y 2有最大值8,则y 1也有最大值,这样的说法对吗,为什么?(2)结合二次函数的特点和你对“友好抛物线”的理解,写出至少2条结论.解:(1)不对.理由如下: 如果y 2的最值是m ,则y 1的最值是221112221244844a c b a c b k k a a --==, 当k>0时,y 1有最大值为8k ;当k<0时,y 1有最小值为8k .(2)①当a 1与a 2符号相反时其开口方向相反,当12a a ≠时,两抛物线开口大小不同,②y 1与y 2的对称轴相同; ③如果1y 与x 轴有2个不同的交点,则y 2与x 轴也有两个不同的交点.(写出2条合理结论即可)3.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y =x 2-2x -3,AB 为半圆的直径,求这个“果圆”被y 轴截得的弦CD 的长.第3题图解:如解图,连接AC ,BC ,第3题解图∵抛物线的解析式为y=x2-2x-3,∴点D的坐标为(0,-3),∴OD=3,设y=0,则0=x2-2x-3,解得:x=-1或x=3,∴A(-1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=3,∴CD=CO+OD=3+3.4.定义:如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假;(请在真命题后的括号内打“√”,假命题后的括号内打“×”)①等腰直角三角形一定不存在匀称中线. ( )②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线. (2)已知:如图①,在Rt△ABC中,∠C=90°,AC>BC,若△ABC是“匀称三角形”,求BC:AC:AB的值;(3)拓展应用:如图②,△ABC是O的内接三角形,AB>AC,∠BAC=45°,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,连接CD交O于M,连接AM.①请根据题意用实线在图②中补全图形;②若△ADC是“匀称三角形”,求tan∠AMC的值.第4题图解:(1)①√;②√.(2)∵∠C=90°,AC>BC,如解图①,由(1)可知△ABC的匀称中线是AC边上的中线,设D为AC的中点,则BD为匀称中线.设AC=2a,则CD=a,BD=2a.∵∠C=90°,∴BC=3a,∴AB=22a a a+=,(2)(3)7∴BC:AC:AB=3:2:7;第4题解图①(3)①根据题意补全图形如解图②;第4题解图②②∵△ABC 绕点A 逆时针旋转45°得到△ADE ,∴∠DAE =∠BAC =45°,AD =AB ,∴∠DAC =90°,AD>AC ,∵△ADC 是匀称三角形,∴AD :AC =2:3,即AB :AC =2:3,如解图③,过点C 作CH ⊥AB 于点H ,第4题解图③则∠AHC =∠BHC =90°,设AC =3k ,则AH =CH =26322kk =,AB=2k , ∴BH =646222k k k --=, ∴tan B =632625462k CH BH k +==-, 在O 中,由∠AMC =∠B 得tan ∠AMC =tan B=3265+. 类型三 新解题方法型 1.如果我们要计算231222++++++99100…22的值,我们可以用如下的方法:解:设231222++S =++++99100…22,①等式两边同乘以2,则有:231012222+++2S =+++99100…22,②②-①得,101221,S S -=-即231011222++21++++=-99100…22.【理解运用】计算:(1)231333++++++99100…33;(2)2313333+-+-+-99100…3.解:(1)设231333++S =++++99100…33,①等式两边同乘以3,得:231013333+++3S =+++99100…33,②②-①得,101231,S =- 即101312S -=, 则原式=101312-. (2)设2313333+S =-+-+-99100…3,①等式两边同乘以3,得:23433333S =-+-+100101…-3+3,②②+①得,101431,S =+ 即101314S +=, 则原式=101314+. 2. 阅读材料:已知方程210a a +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为x ,则x =2a , ∴2xa =, 把2x a =代入210a a +-=,得2()()1022x x +-=,化简得2240x x +-=,所以所求方程为2240x x +-=.这种代换法求新方程的方法,我们称为“换根法”.根据以上阅读材料,解决下列问题:(1)已知方程220a a +-=,求关于m 的一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为___________;(2)已知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.解:(1)220m m --=;【解法提示】设所求方程的根为m ,则m =-a ,∴a =-m ,把a =-m 代入220a a --=中,得2()20m m ---=,所以所求方程为220m m --=;(2)设所求方程的根为n ,则1(0)n x x=≠, 所以1(0)x n n =≠, 把1x n =代入2ax bx c ++=0中, 得211()()a b c n n++=0, 化简得:20cn bn a ++=,当c =0时,20ax bx +=,方程20ax bx +=有一个根为0(0没有倒数,舍去),所以c ≠0,∴所求方程为20(0)cn bn a c ++=≠.3. 在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图 所示,这样不需求△ABC 的高,而借用网格就能计算出它的面积.第3题图(1)△ABC 的面积等于___________;思维拓展:(2)我们把上述求△ABC 面积的方法叫做构图法,若△ABC 三边的长分别为5217(0)a a a a >、2、,请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积;探索创新(3)若△ABC 三边的长分别为2216m n +、2294m n +、2244m n +(0,0,m n >>且m n =),试运用构图法求出这个三角形的面积. 解:(1)72;(2)画图如解图①:第3题解图①21112422243222ABC S a a a a a a a a a =⨯-⨯⨯-⨯⨯-⨯=;(3)构造△ABC 如解图②所示,第3题解图11134432225222ABC S m n m n m n m n mn =⨯-⨯⨯-⨯⨯-⨯⨯=. 4. 阅读下列材料:已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦(HerOn,约公元50年)解决了这个问题,在他的著作《度量》一书中给出了计算公式------海伦公式:()()()S p p a p b p c =---(其中A ,B ,C 是三角形的三边长,2a b c p ++=,S 为三角形的面积),并给出了证明.例如:在△ABC 中,a =3,b =4,c =5,那么它的面积可以这样计算:∵a =3,b =4,c =5, ∴62a b c p ++==, ∴()()()63216S p p a p b p c =---=⨯⨯⨯=.事实上,对于已知任意三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.根据上述材料,解答下列问题:如图,△ABC 中,BC =5,AC =6,AB =9.(1)用海伦公式求△ABC 的面积;(2)求△ABC 得内切圆半径r .第4题图解:(1)∵BC =5,AC =6,AB =9, ∴(569)102p ++==, ∴10(105)(106)(109)102S =⨯---=;(2)如解图,连接AO ,BO ,CO ,第4题解图∵ABC AOB BOC AOC S S S S =++, ∴111102956222r r r =⨯+⨯+⨯, 即956()102222r ++=, ∴10102r =, 解得2r =,∴△ABC 的内切圆半径为2.。

新定义及阅读理解题

新定义及阅读理解题

新定义及阅读理解题1.有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的表达式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的表达式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得表达式的值,如由-①②可得42x y -=-,由2+´①②可得7519x y +=.这样的解题思想就是通常所说的“整体思想”,解决问题:(1)已知二元次方程组327233x y x y +=ìí+=î则x y -=______,x y +=______.(2)某班级组织活动购买小奖品,买13支铅笔、5块橡皮、2本日记本共需35元,买25支铅笔、9块橡皮、3本日记本共需55元,则购买3支铅笔、3块橡皮、3本日记本共需多少元?【答案】(1)4,2;(2)45元【详解】(1)解:327233x y x y +=ìí+=î①②,①-②得:4x y -=,①+②得:5510x y +=,2x y \+=,故答案为:4,2;(2)购买1支铅笔需a 元,1块橡皮需b 元,1本日记本共需c 元,由题意得:135235259355a b c a b c ++=ìí++=î①②,①2´-②得:15a b c ++=,∴33345a b c ++=答:购买3支铅笔、3块橡皮、3本日记本共需45元.2.阅读下面解题过程,再解题.已知a b >,试比较-2023a+1与-2023b+1的大小.解:因为a b >,①所以-2023a >-2023b ,②所以-2023a+1>-2023b+1.③问:(1)上述解题过程中,从第________步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.【答案】任务一:22x -<<;330x x £ìí+³î;33x -≤≤;66a -££;任务二:(1)08k <£;(2)12-【详解】解:任务一:回顾:∵13x -<<,1y x =-,∴212x -<-<,∴22y -<<,探究:∵3x y -+=,3a x y =+-,∴3y x =+,∴3332a x y x x x =+-=++-=,∵3x £,0y ³,∴可得关于x 的一元一次不等式组330x x £ìí+³î,解该不等式组得到x 的取值范围为33x -≤≤,∴626x -££,∴a 的取值范围是66a -££,故答案为:22x -<<;330x x £ìí+³î;33x -≤≤;66a -££;任务二:(1)∵2x y -=,k x y =+,∴2x y =+,∴22k x y y =+=+,∵1x >,3y £,∴可得关于y 的一元一次不等式组213y y +>ìí£î,解该不等式组得13y -<£,∴0228y <+£,∴k 的取值范围为08k <£;(2)∵28164x y z =+=,b y z x =+-,∴48x y =+,24z y =+,∴()24484b y y y y =++-+=--,∵0x >,1y ³-,8z <,∴可得关于y 的一元一次不等式组4801248y y y +>ìï³-íï+<î,的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差变形,利用差的符号确定它们的大小.即要比较代数式A 、B 的大小,只要算A B -的值,若0A B ->,则A B >;若0A B -=,则A B =;若0A B -<,则A B <.【知识运用】:(1)请用上述方法比较下列代数式的大小(直接在空格中填写答案):①1x +__________3x -;②当x y >时,35x y +__________26x y +;③若0a b <<,则3a __________2ab ;(2)试比较与22(31)x x ++与2543x x +-的大小,并说明理由;【类比运用】:(3)图1是边长为4的正方形,将正方形一边保持不变,另一组对边增加22a +()0a >得到如图2所示的新长方形,此长方形的面积为1S ;将正方形的边长增加1a +,得到如图3所示的新正方形,此正方形的面积为2S ;则1S 与2S 大小的大小关系为:1S 2S ;(4)已知2002020023A =´,2002120022B =´,试运用上述方法比较A 、B 的大小,并说明理由.【答案】(1)>;>;<;(2)()22231543x x x x ++>+-;(3)<;(4)A B <,理由见解析【详解】解:(1)①∵()()131340x x x x +--=+-+=>,∴13x x +>-;②∵()()35263526x y x y x y x y x y +-+=+--=-,又∵x y >,∴0x y ->,∴3526x y x y +>+;③∵()()()3222a ab a a b a a b a b -=-=+-,又∵0a b <<,∴0a b +<,0a b -<,∴()()0a a b a b +-<,∴32a ab <;故答案为:>;>;<;(2)()()22231543x x x x ++-+-141212OB AE S OB S ODOD AE ×==×Q 12OB CF S OB ×问题3:运用上述两个问题的发现我们一起探究如何作一条直线平分多边形面积:(1)如图3:在四边形ABCD,小孙同学的辅助线:D E A C交BC的延长线于①连接对角线AC,②作∥(2)如图4:在四边形ABCD,小悟同学的辅助线:①连接对角线AC和BD;②取BD的中点O问题4:小空同学运用类比和转化的数学思想作了一条直线平分五边形(保作图痕迹并写出作图方法)【答案】【问题1】见解析;点B作BM∥AC,交即为所求.【详解】【问题1】证明:如图,过点∴1,2ABDS BD AP S V=´∵AD是△ABC的中线,∴BD CD=,∴S S=;∴1,2ABC BCD S BC AK S=´V V∵AD BC∥,∴AK DL=,S S=【问题4】解:①连接对角线AC 和N ;③取MN 的中点H ,则直线∵BM∥AC ,EN ∥AD ,∴ABC AMC S S =V V ,ADE ADN S S =V V ∴ABC AHC AMC AHC S S S S +=+V V V V ∴AHM ABCH S S =V 四边形,AHN S =V ∵点H 为MN 的中点,∴AHM AHN S S =V V ,【答案】【初步思考】(1)60;(2)见解析;【综合运用】时,3902CQD aÐ=-°.【详解】[初步思考](1)解:根据题意可知AÐQ DA CP∥,A B DPC a Ð=Ð=Ð=,由(2)可知ADP CGB Ð=Ð设ADP CGB x Ð=Ð=,DPC Ð()1180GCF x a \Ð=°--(1)如图2,延长△ABC 的边BC 到点D ,使CD BC =,连接DA .若ACD V 的面积为1S ,则1S =(用含代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD BC =,AE CA =,连接DE .若△DEC 面积为2S ,则2S =(用含a 的代数式表示);Q 延长△ABC 的边BC 到点\12ACD AED ECD S S S D D D ==,22ECD ABC S S a D D \==,即22S a =;(3)由(2)得2ECD S S D =同理:22EFA ABC S S a D D ==,36ECD EFA BFD S S S S D D D \=++=(4)2BEF S a =△,理由如下:理由:∵点E 是线段AD 的中点,∴ABE BDE S S =V V ,ACE S S =△△(1)如图1,△ABC 中,若AD 是BC 边上的中线,则ABD △的面积______△ACD “=”);(2)如图2,若CD 、BE 分别是△ABC 的AB 、AC 边上的中线,求四边形ADOE 连接AO ,由AD DB =得ADO BDO S S =V V ,同理,可得CEO AEO S S =V V .AD Q 是△ABC 的BC 边上的中线,:1:3AD DB =Q ,13ADO BDO S S \=V V ,:2:3CE AE =Q ,23CEO AEO S S \=V V ,②因为6x >,从数轴上(如下图)可以看出只有小于-6的数和大于解集为6x <-或6x >.(1)3x <的解集为,3x >的解集为;245x y m -=-∴1020a a ->ìí+>î,解得a 的取值范围是1a >;(2)解:∵4a b -=,∴4a b =+,∵1a >,∴41b +>,∴3b >-,∵2b <,∴b 的取值范围是32b -<<.24.阅读材料:如果x 是一个有理数,我们把不超过x 的最大整数记作[]x .例如,[]3.23=,[]55=,[]2.13-=-.请你解决下列问题:(1)[]3.7=_______;[]4.5-=_______;(2)如果[]3x =,那么x 的取值范围是________;(3)如果[]3221x x -=+,求x 的值.【答案】(1)3,5-;(2)34x £<;(3)3或3.5【详解】(1)解:由题意得:[]3.73=,[]4.55-=-,故答案为:3,5-.(2)解:[]3x =Q ,34x \£<,故答案为:34x £<.(3)解:[]3221x x -=+Q ,213232211x x x x +£-ì\í-<++î,解得34x £<,7219x \£+<,又21x +Q 为整数,217x \+=或218x +=,3x \=或 3.5x =.25.阅读下列材料,解答下面的问题:我们知道方程3424x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解.【初步应用】如图③,点D ,E 分别是△ABC 的边AB AC ,延长线上一点,(1)若60110A CBD Ð=°Ð=°,,则ACB =∠______°;(2)若60110A CBD Ð=°Ð=°,,则CBD BCE Ð+Ð=______°;(3)若A m Ð=°,则CBD BCE Ð+Ð=______°.【拓展延伸】【新知探究】(1)如图②,过点A 画出△(2)如图③,直线12l l ∥,A 、B 是2l 上的两点,P 、Q 是1l 交于点O .设APO △的而积为1S ,BQO △的面积为2S ,则【拓展提高】(1)如图④,点M 是△ABC 中BC 边上的一点,CM BM <(2)∵12l l ∥,∴APQ BPQ S S =V V ,∴12APQ POQ S S S S S ==-=V V V 故答案为:=;(2)过D 作DP AE ∥交BC 延长线于取BP 中点E ,连接AE ,与(1)同理可得,AE 即为四边形【概念理解】(1)若△ABC为开心三角形,(2)若△ABC为开心三角形,Ð是开心△ABC (3)已知A【应用拓展】(4)如图,AD平分△ABC。

专题6 新定义与阅读理解型问题

专题6 新定义与阅读理解型问题

专题6新定义与阅读理解型问题一、选择题1.(2019·柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是( )A.-6 B.6 C.5 D.-52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=x1+x22,y=y1+y22.如图,已知点O为坐标原点,点A(-3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b 满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( )A.m2+n2=9B.(m-32)2+(n2)2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=93.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+ 5 -3- 5 ,设x=3+ 5 -3- 5 ,易知3+ 5 >3- 5 ,故x>0,由x2=(3+ 5 -3- 5 )2=3+ 5 +3- 5 -2(3+5)(3-5)=2,解得x= 2 ,即3+ 5 -3- 5 = 2 .根据以上方法,化简3-23+2+6-3 3 -6+3 3 后的结果为( )A.5+3 6 B.5+ 6C.5- 6 D.5-3 6二、填空题4.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为____.5.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=____.6.(2019·贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是____.三、解答题7.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=________,②min{sin 30°,cos 60°,tan 45°}=________;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为________;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.8.(2019·荆州)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y =ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y =x2+1是y=x+1的伴随函数.(1)若y=x2-4是y=-x+p的伴随函数,求直线y=-x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x +n与x轴两个交点间的距离为4,求m,n的值.9.(2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ 是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400 km,求这两个观测点之间的距离即⊙O上AB的长.(π取3.1)专题6新定义与阅读理解型问题一、选择题1.(2019·柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是( C )A.-6 B.6 C.5 D.-52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=x1+x22,y=y1+y22.如图,已知点O为坐标原点,点A(-3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b 满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( D )A.m2+n2=9B.(m-32)2+(n2)2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=93.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+ 5 -3- 5 ,设x=3+ 5 -3- 5 ,易知3+ 5 >3- 5 ,故x>0,由x2=(3+ 5 -3- 5 )2=3+ 5 +3- 5 -2(3+5)(3-5)=2,解得x= 2 ,即3+ 5 -3- 5 = 2 .根据以上方法,化简3-23+2+6-3 3 -6+3 3 后的结果为( D )A.5+3 6 B.5+ 6C.5- 6 D.5-3 6二、填空题4.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为__x=1__.5.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=__1.1__.6.(2019·贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是__4__.三、解答题7.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=________,②min{sin 30°,cos 60°,tan 45°}=________;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为________;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.解:(1)①M{(-2)2,22,-22}=43,②min{sin 30°,cos 60°,tan 45°}=12; (2)∵min (3-2x ,1+3x ,-5}=-5,∴⎩⎨⎧3-2x≥-5,1+3x≥-5,解得-2≤x ≤4; (3)∵M {-2x ,x 2,3}=2,∴-2x +x 2+33=2,解得x =-1或3;(4)∵M {2,1+x ,2x }=min {2,1+x ,2x },又∵2+1+x +2x 3 =x +1,∴⎩⎨⎧x +1≤2,x +1≤2x ,解得1≤x ≤1,∴x =1.8.(2019·荆州)若二次函数y =ax 2+bx +c (a ≠0)图象的顶点在一次函数y =kx +t (k ≠0)的图象上,则称y =ax 2+bx +c (a ≠0)为y =kx +t (k ≠0)的伴随函数,如:y =x 2+1是y =x +1的伴随函数.(1)若y =x 2-4是y =-x +p 的伴随函数,求直线y =-x +p 与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x +n与x轴两个交点间的距离为4,求m,n的值.解:(1)∵y=x2-4,∴其顶点坐标为(0,-4),∵y=x2-4是y=-x+p的伴随函数,∴(0,-4)在一次函数y=-x+p的图象上,∴-4=0+p.∴p=-4,∴一次函数为:y=-x-4,∴一次函数与坐标轴的交点分别为(0,-4),(-4,0),∴直线y=-x+p与两坐标轴围成的三角形的面积为:12×4×4=8;(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=-2,x1x2=n,∴|x1-x2|=(x1x+x2)2-4x1x2=4-4n ,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴4-4n =4,解得,n=-3,∴函数y=x2+2x+n为:y=x2+2x-3=(x+1)2-4,∴其顶点坐标为(-1,-4),∵y=x2+2x+n是y=mx-3(m≠0)的伴随函数,∴-4=-m-3,∴m=1.9.(2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ 是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400 km,求这两个观测点之间的距离即⊙O上AB的长.(π取3.1)解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°-67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°-23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB-∠POA=67°-31°=36°,∴AB=36×π×6400180=3968(km).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题6新定义与阅读理解型问题一、选择题1.(2019·柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是( )A.-6 B.6 C.5 D.-52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=x1+x22,y=y1+y22.如图,已知点O为坐标原点,点A(-3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b 满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( )A.m2+n2=9B.(m-32)2+(n2)2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=93.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+ 5 -3- 5 ,设x=3+ 5 -3- 5 ,易知3+ 5 >3- 5 ,故x>0,由x2=(3+ 5 -3- 5 )2=3+ 5 +3- 5 -2(3+5)(3-5)=2,解得x= 2 ,即3+ 5 -3- 5 = 2 .根据以上方法,化简3-23+2+6-3 3 -6+3 3 后的结果为( )A.5+3 6 B.5+ 6C.5- 6 D.5-3 6二、填空题4.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为____.5.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=____.6.(2019·贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是____.三、解答题7.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=________,②min{sin 30°,cos 60°,tan 45°}=________;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为________;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.8.(2019·荆州)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y =ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y =x2+1是y=x+1的伴随函数.(1)若y=x2-4是y=-x+p的伴随函数,求直线y=-x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x +n与x轴两个交点间的距离为4,求m,n的值.9.(2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ 是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400 km,求这两个观测点之间的距离即⊙O上AB的长.(π取3.1)专题6新定义与阅读理解型问题一、选择题1.(2019·柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=-1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i-9=-8+6i,因此,(1+3i)2的实部是-8,虚部是6.已知复数(3-mi)2的虚部是12,则实部是( C )A.-6 B.6 C.5 D.-52.(2019·百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=x1+x22,y=y1+y22.如图,已知点O为坐标原点,点A(-3,0),⊙O经过点A,点B为弦P A的中点.若点P(a,b),则有a,b 满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是( D )A.m2+n2=9B.(m-32)2+(n2)2=9C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=93.(2019·随州)“分母有理化”是我们常用的一种化简的方法,如:2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3 ,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3+ 5 -3- 5 ,设x=3+ 5 -3- 5 ,易知3+ 5 >3- 5 ,故x>0,由x2=(3+ 5 -3- 5 )2=3+ 5 +3- 5 -2(3+5)(3-5)=2,解得x= 2 ,即3+ 5 -3- 5 = 2 .根据以上方法,化简3-23+2+6-3 3 -6+3 3 后的结果为( D )A.5+3 6 B.5+ 6C.5- 6 D.5-3 6二、填空题4.定义:a*b=ab,则方程2*(x+3)=1*(2x)的解为__x=1__.5.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=__1.1__.6.(2019·贵港)我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是__4__.三、解答题7.(2019·黔东南州)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}=1+2+93=4,min{1,2,-3}=-3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(-2)2,22,-22}=________,②min{sin 30°,cos 60°,tan 45°}=________;(2)若min(3-2x,1+3x,-5}=-5,则x的取值范围为________;(3)若M{-2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.解:(1)①M{(-2)2,22,-22}=43,②min{sin 30°,cos 60°,tan 45°}=12; (2)∵min (3-2x ,1+3x ,-5}=-5,∴⎩⎨⎧3-2x≥-5,1+3x≥-5,解得-2≤x ≤4; (3)∵M {-2x ,x 2,3}=2,∴-2x +x 2+33=2,解得x =-1或3;(4)∵M {2,1+x ,2x }=min {2,1+x ,2x },又∵2+1+x +2x 3 =x +1,∴⎩⎨⎧x +1≤2,x +1≤2x ,解得1≤x ≤1,∴x =1.8.(2019·荆州)若二次函数y =ax 2+bx +c (a ≠0)图象的顶点在一次函数y =kx +t (k ≠0)的图象上,则称y =ax 2+bx +c (a ≠0)为y =kx +t (k ≠0)的伴随函数,如:y =x 2+1是y =x +1的伴随函数.(1)若y =x 2-4是y =-x +p 的伴随函数,求直线y =-x +p 与两坐标轴围成的三角形的面积;(2)若函数y=mx-3(m≠0)的伴随函数y=x2+2x +n与x轴两个交点间的距离为4,求m,n的值.解:(1)∵y=x2-4,∴其顶点坐标为(0,-4),∵y=x2-4是y=-x+p的伴随函数,∴(0,-4)在一次函数y=-x+p的图象上,∴-4=0+p.∴p=-4,∴一次函数为:y=-x-4,∴一次函数与坐标轴的交点分别为(0,-4),(-4,0),∴直线y=-x+p与两坐标轴围成的三角形的面积为:12×4×4=8;(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=-2,x1x2=n,∴|x1-x2|=(x1x+x2)2-4x1x2=4-4n ,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴4-4n =4,解得,n=-3,∴函数y=x2+2x+n为:y=x2+2x-3=(x+1)2-4,∴其顶点坐标为(-1,-4),∵y=x2+2x+n是y=mx-3(m≠0)的伴随函数,∴-4=-m-3,∴m=1.9.(2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A在图1所示的⊙O上,现在利用这个工具尺在点A处测得α为31°,在点A所在子午线往北的另一个观测点B,用同样的工具尺测得α为67°.PQ 是⊙O的直径,PQ⊥ON.(1)求∠POB的度数;(2)已知OP=6400 km,求这两个观测点之间的距离即⊙O上AB的长.(π取3.1)解:(1)设点B的切线CB交ON延长线于点E,HD⊥BC于D,CH⊥BH交BC于点C,如图所示:则∠DHC=67°,∵∠HBD+∠BHD=∠BHD+∠DHC=90°,∴∠HBD=∠DHC=67°,∵ON∥BH,∴∠BEO=∠HBD=67°,∴∠BOE=90°-67°=23°,∵PQ⊥ON,∴∠POE=90°,∴∠POB=90°-23°=67°;(2)同(1)可证∠POA=31°,∴∠AOB=∠POB-∠POA=67°-31°=36°,∴AB=36×π×6400180=3968(km).。

相关文档
最新文档