蜀山区外国语学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蜀山区外国语学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )
A .2015
B .2016
C .2116
D .2048
2. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( ) A .{x|x <1} B .{x|﹣1≤x ≤2} C .{x|﹣1≤x ≤1} D .{x|﹣1≤x <1}
3. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范
围是( )
A .(0,1)
B .(1,+∞)
C .(﹣1,0)
D .(﹣∞,﹣1)
4. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,
,A=60°,则满足条件的三角形
个数为( ) A .0
B .1
C .2
D .以上都不对
5. 若关于的不等式
2043
x a
x x +>++的解集为31x -<<-或2x >,则的取值为( )
A .
B .12
C .1
2
- D .2-
6. 直线x+y ﹣1=0与2x+2y+3=0的距离是( )
A .
B .
C .
D .
7. 双曲线

=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的
离心率为( )
A .2
B .
C .4
D .
8. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8
B .10
C .6
D .4
9. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A .
B .(4+π)
C .
D .
10.已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有
成立,下列结论中错误的是( )
A .f (3)=0
B .直线x=﹣6是函数y=f (x )的图象的一条对称轴
C .函数y=f (x )在[﹣9,9]上有四个零点
D .函数y=f (x )在[﹣9,﹣6]上为增函数
11.如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,
),则f (x )的图象的一个对
称中心是( )
A .(﹣,0)
B .(﹣,0)
C .(,0)
D .(,0)
12.将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8
π
个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )
43π ( B ) 83π (C ) 4
π (D ) 8
π
二、填空题
13.数列{a n }是等差数列,a 4=7,S 7= .
14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数
()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________.
15.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .
16.【泰州中学2018届高三10月月考】设函数()()21x
f x e
x ax a =--+,
其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是
17.已知函数f (x )=
,若f (f (0))=4a ,则实数a= .
18.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .
三、解答题
19.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x 年后游艇的盈利为y 万元. (1)写出y 与x 之间的函数关系式;
(2)此游艇使用多少年,可使年平均盈利额最大?
20.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线1C 的极坐标方程是2=
ρ,曲线2C 的参数方程是
θππθθ],2,6[,0(21
sin 2,
1∈>⎪⎩

⎨⎧+==t t y x 是参数). (Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;
(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.
21.已知集合
A={x|
>1,x ∈R},B={x|x 2
﹣2x ﹣m <0}.
(Ⅰ)当m=3时,求;A ∩(∁R B );
(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.
22.已知平面直角坐标系xoy
中的一个椭圆,它的中心在原点,左焦点为,右顶点为D (2,
0),设点A (1
,). (1)求该椭圆的标准方程;
(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程;
(3)过原点O 的直线交椭圆于B ,C 两点,求△ABC 面积的最大值,并求此时直线BC 的方程.
23.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y 的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
24.已知抛物线C:y2=2px(p>0)过点A(1,﹣2).
(Ⅰ)求抛物线C的方程,并求其准线方程;
(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的
距离等于?若存在,求直线L的方程;若不存在,说明理由.
蜀山区外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图.
2. 【答案】D
【解析】解:A ∩B={x|﹣1≤x ≤2}∩{x|x <1}={x|﹣1≤x ≤2,且x <1}={x|﹣1≤x <1}. 故选D .
【点评】本题考查了交集,关键是理解交集的定义及会使用数轴求其公共部分.
3. 【答案】A
【解析】解:函数f (x )=
的图象如下图所示:
由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A
4. 【答案】B 【解析】解:∵a=3,
,A=60°,
∴由正弦定理可得:sinB===1,
∴B=90°,
即满足条件的三角形个数为1个. 故选:B .
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.
5. 【答案】D 【解析】
试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程
2
043
x a
x x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.
考点:不等式与方程的关系. 6. 【答案】A
【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:
=

故选:A .
7. 【答案】D
【解析】解:双曲线

=1(a >0,b >0)的一条渐近线方程为bx+ay=0,
∵渐近线被圆M :(x ﹣8)2+y 2
=25截得的弦长为6,

=4,
∴a 2=3b 2, ∴c 2=4b 2,
∴e==.
故选:D .
【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.
8.【答案】A
【解析】解:由题意,p=2,故抛物线的准线方程是x=1,
∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点
∴|AB|=2﹣(x1+x2),
又x1+x2=﹣6
∴∴|AB|=2﹣(x1+x2)=8
故选A
9.【答案】D
【解析】解:由三视图知,几何体是一个组合体,
是由半个圆锥和一个四棱锥组合成的几何体,
圆柱的底面直径和母线长都是2,
四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=,
∴几何体的体积是=,
故选D.
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
10.【答案】D
【解析】解:对于A:∵y=f(x)为R上的偶函数,且对任意x∈R,均有f(x+6)=f(x)+f(3),
∴令x=﹣3得:f(6﹣3)=f(﹣3)+f(3)=2f(3),
∴f(3)=0,故A正确;
对于B:∵函数y=f(x)是以6为周期的偶函数,
∴f(﹣6+x)=f(x),f(﹣6﹣x)=f(x),
∴f(﹣6+x)=f(﹣6﹣x),
∴y=f(x)图象关于x=﹣6对称,即B正确;
对于C:∵y=f(x)在区间[﹣3,0]上为减函数,在区间[0,3]上为增函数,且f(3)=f(﹣3)=0,
∴方程f(x)=0在[﹣3,3]上有2个实根(﹣3和3),又函数y=f(x)是以6为周期的函数,
∴方程f(x)=0在区间[﹣9,﹣3)上有1个实根(为﹣9),在区间(3,9]上有一个实根(为9),
∴方程f(x)=0在[﹣9,9]上有4个实根.故C正确;
对于D :∵当x 1,x 2∈[0,3]且x 1≠x 2时,有

∴y=f (x )在区间[0,3]上为增函数,又函数y=f (x )是偶函数,
∴y=f (x )在区间[﹣3,0]上为减函数,又函数y=f (x )是以6为周期的函数, ∴y=f (x )在区间[﹣9,﹣6]上为减函数,故D 错误. 综上所述,命题中正确的有A 、B 、C . 故选:D .
【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题.
11.【答案】 B
【解析】解:由函数图象可知:A=2,由于图象过点(0,),
可得:2sin φ=,即sin φ=
,由于|φ|<

解得:φ=

即有:f (x )=2sin (2x+).
由2x+
=k π,k ∈Z 可解得:x=
,k ∈Z ,
故f (x )的图象的对称中心是:(,0),k ∈Z
当k=0时,f (x )的图象的对称中心是:(,0),
故选:B .
【点评】本题主要考查由函数y=Asin (ωx+φ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题.
12.【答案】B
【解析】将函数()()sin 20y x ϕϕ=+>的图象沿
x 轴向左平移
8
π
个单位后,得到一个偶函数
sin 2sin 28
4
[()]()y x x π
π
ϕϕ=+
+=+
+的图象,可得
42
ππ
ϕ+=
,求得ϕ的最小值为 4
π
,故选B .
二、填空题
13.【答案】49
【解析】解:
=
=7a4
=49.
故答案:49.
【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解.14.【答案】2
【解析】
15.【答案】34 5
【解析】
考点:点关于直线对称;直线的点斜式方程.
16.【答案】
【解析】试题分析:设,由题设可知存在唯一的整数
x,使得在直线
的下方.因为,故当时,,函数单调递减;
当时,,函数单调递增;故,而当
时,,故当且,解之得,应填答案
3,12e ⎡⎫
⎪⎢⎣⎭
. 考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线
的下方.然后再借助导数的知识求出函数的最小值,依
据题设建立不等式组求出解之得.
17.【答案】 2 .
【解析】解:∵f (0)=2, ∴f (f (0))=f (2)=4+2a=4a , 所以a=2 故答案为:2.
18.【答案】 [1,)∪(9,25] .
【解析】解:∵集合

得 (ax ﹣5)(x 2
﹣a )<0,
当a=0时,显然不成立, 当a >0时,原不等式可化为


时,只需满足

解得;

,只需满足

解得 9<a ≤25, 当a <0时,不符合条件,
综上,
故答案为[1
,)∪(9,25].
【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.
三、解答题
19.【答案】 【解析】解:(1)(x ∈N *
) (6)
(2)盈利额为…
当且仅当
即x=7时,上式取到等号 (11)
答:使用游艇平均7年的盈利额最大. (12)
【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.
20.【答案】
【解析】 【解析】(Ⅰ)曲线1C 的直角坐标方程是22
2
=+y x ,
曲线2C 的普通方程是)2
1
221(1+≤≤+
=t y t x …………5分 (Ⅱ)对于曲线1:C 22
2=+y x ,令1x =,则有1y =±.
故当且仅当0011
12-122t t t t >>⎧⎧⎪⎪
⎨⎨+>+<⎪⎪⎩⎩或时,1C ,2C 没有公共点, 解得1
2
t >.……10分
21.【答案】
【解析】解:(1)当m=3时,由x 2
﹣2x ﹣3<0⇒﹣1<x <3,

>1⇒﹣1<x <5,
∴A∩B={x|﹣1<x<3};
(2)若A∩B={x|﹣1<x<4},
∵A=(﹣1,5),
∴4是方程x2﹣2x﹣m=0的一个根,
∴m=8,
此时B=(﹣2,4),满足A∩B=(﹣1,4).
∴m=8.
22.【答案】
【解析】解;(1)由题意可设椭圆的标准方程为,c为半焦距.
∵右顶点为D(2,0),左焦点为,
∴a=2,,.
∴该椭圆的标准方程为.
(2)设点P(x0,y0),线段PA的中点M(x,y).
由中点坐标公式可得,解得.(*)
∵点P是椭圆上的动点,∴.
把(*)代入上式可得,可化为.
即线段PA的中点M的轨迹方程为一焦点在x轴上的椭圆.
(3)①当直线BC的斜率不存在时,可得B(0,﹣1),C(0,1).
∴|BC|=2,点A到y轴的距离为1,∴=1;
②当直线BC的斜率存在时,设直线BC的方程为y=kx,B(x1,y1),C(﹣x1,﹣y1)(x1<0).
联立,化为(1+4k2)x2=4.解得,
∴.
∴|BC|==2=.
又点A到直线BC的距离d=.
∴==,
∴==,
令f(k)=,则.
令f′(k)=0,解得.列表如下:
又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.
而当x→+∞时,f(x)→0,→1.
综上可得:当k=时,△ABC的面积取得最大值,即.
【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.
23.【答案】
24.【答案】
【解析】解:(I)将(1,﹣2)代入抛物线方程y2=2px,
得4=2p,p=2
∴抛物线C的方程为:y2=4x,其准线方程为x=﹣1
(II)假设存在符合题意的直线l,其方程为y=﹣2x+t,
由得y2+2y﹣2t=0,
∵直线l与抛物线有公共点,
∴△=4+8t≥0,解得t≥﹣
又∵直线OA与L的距离d==,求得t=±1
∵t≥﹣
∴t=1
∴符合题意的直线l存在,方程为2x+y﹣1=0
【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.。

相关文档
最新文档