2017年河北省沧州市中考数学模拟试卷(七)
河北沧州市2017年中考数学模拟试卷(九)及答案
2017年河北沧州市中考数学模拟试卷(九)一、选择题1.在数﹣2,﹣,1,3中,大小在﹣1和0之间的数是()A.﹣2 B.﹣C.1 D.32.用科学记数法表示的数3.61×108.它的原数是()A.36100000000 B.3610000000 C.361000000 D.361000003.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1 4.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,286.6.计算(﹣)÷的结果为()A.B.C.D.7.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.8.一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.B.C.D.9.化简:(a+)(1﹣)的结果等于()A.a﹣2 B.a+2 C.D.10.如图,AB是⊙O的直径,CD是弦,∠BCD=50°,则∠ABD的度数是()A.20°B.25°C.40°D.50°11.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π12.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A.36.21米B.37.71米C.40.98米D.42.48米13.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.14.如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()A.B.C D.二、填空题(本大题共5小题,每小题3分,共15分)15.比较大小:1(填“<”或“>”或“=”).16.一次考试中,甲组12人的平均分数为70分,乙组8人的平均分数为80分,那么这两组20人的平均分为.17.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.19.定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.写出y=﹣x2+3x﹣2函数的“旋转函数”.三、解答题(本题共7小题,共63分)20.(7分)计算:(3﹣π)0﹣(﹣)﹣1+×4sin60°.21.某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?21.(7分)为了解学生课余活动情况,某班对参加A组:绘画;B组:书法;C组:舞蹈;D组:乐器;这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了如图两幅不完整的统计图,请根据图中提供信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每位教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师.23.(9分)如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.(1)求证:AC是⊙O的切线;(2)求由弦C D、BD与弧BC所围成的阴影部分的面积.(结果保留π)25.(11分)问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A,C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF,A D.探究展示:(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形,图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.变式练习:(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接B D、AF,请判断线段BF、AD所在直线的位置关系,并证明你的判断.26.(13分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、选择题1.B.2.D3.C4.A5.B6.D7.C8.B9.B10.D 11.D12.C13.D14.C 二、填空题(本大题共5小题,每小题3分,共15分)15.<.16.317.3618.19.y=x2+3x+2三、解答题(本题共7小题,共63分)20.解:原式=1﹣(﹣3)+2×4×=4+12=16.21.解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个22.解:(1)根据题意得:=25(名),答:此次共调查了25名同学;(2)C组的人数是:25﹣6﹣12﹣5=2(人),补图如下:书法部分的圆心角的度数是:360°×=172.8°;(3)绘画需辅导教师1000×24%÷20=12(名);书法需辅导教师1000×÷20=24(名);舞蹈需辅导教师1000×÷20=4(名);乐器需辅导教师1000×÷20=10(名).23.(1)证明:根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)解:由(1)知,AC为⊙O的切线,∴OC⊥A C.∵AC∥BD,∴OC⊥B D.由垂径定理可知,MD=MB=BD=.在Rt△OBM中,∠COB=60°,OB===6.在△CDM与△OBM中,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM2).∴阴影部分的面积S阴影=S扇形BOC==6π(cm24.解:(1)①结论:BF=AD,BF⊥AD;理由:如图1中,延长BF交AD于H.∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∵四边形CDEF是正方形,∴CD=CF,∠FCD=90°,∴∠BCF=∠ACD,在△BCF和△ACD中,,∴△BCF≌△ACD(SAS),∴BF=AD,∠CBF=∠CAD,又∵∠BFC=∠AFH,∠CBF+∠BFC=90°,∴∠CAD+∠AFH=90°,∴∠AHF=90°,∴BF⊥AD;∴BF=AD,BF⊥AD;②BF=AD,BF⊥AD仍然成立,证明:如图2中,∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵四边形CDEF是正方形,∴CD=CF,∠FCD=90°,∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,在△BCF和△ACD中,,∴△BCF≌△ACD(SAS),∴BF=AD,∠CBF=∠CAD,又∵∠BHC=∠AHO,∠CBH+∠BHC=90°,∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD;(2)结论:BF⊥A D.证明:如图3中,∵四边形CDEF是矩形,∴∠FCD=90°,又∵∠ACB=90°,∴∠ACB=∠FCD∴∠ACB+∠ACF=∠FCD+∠ACF,即∠BCF=∠ACD,∵AC=4,BC=3,CD=,CF=1,∴==,∴△BCF∽△ACD,∴∠CBF=∠CAD,又∵∠BHC=∠AHO,∠CBH+∠BHC=90°∴∠CAD+∠AHO=90°,∴∠AOH=90°,∴BF⊥AD,25.解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AD×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。
2017年河北沧州市中考数学模拟试卷(十)含答案
2017年河北沧州市中考数学模拟试卷(十)(时间:120分 满分:120分)一、选择题(本大题共8小题,每题3分,共24分) 1.绝对值等于9的数是( ) A .9B .﹣9C .9或﹣9D .2、如果不等式组⎩⎪⎨⎪⎧ x >ax <2 恰有3个整数解,则 a 的取值范围是( ).A 、a ≤-1B 、a <-1C 、-2≤a <-1D 、-2<a ≤-13、 如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A 、10πB 、15πC 、20πD 、30π 4.对于非零实数m ,下列式子运算正确的是( )A .(m 3)2=m 9B .m 3•m 2=m 6C .m 2+m 3=m 5D .m ﹣2÷m ﹣6=m 45.如图,是由五个相同正方体组成的甲、乙两个几何体,它们的三视图中一致的( )A .主视图B .左视图C .俯视图D .三视图6.如图:二次函数2y ax bx c =++的图象所示,下列结论中:①abc >0; ②2a +b=0;③当m ≠1时,a +b >am 2+bm ;④a -b +c >0;⑤若ax 12+bx 1 =ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2,正确的个数为( ). A 、1个 B 、2个 C 、3个 D 、4个7.如图,AB 是⊙O 的直径,CD 是弦,∠BCD=50°,则∠ABD 的度数是( )A .20°B .25°C .40°D .50°8. 如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4,则四边形CODE 的周长( )A .4B .6C .8D .10二、填空题:(本大题共4小题,每小题3分,共12分) 9.分解因式:322a a a -+=_______ ___. 10、若关于x 的分式方程1131=-+-xx m 的解为正数,则m 的取值范围为_________ .11、如图,在平行四边形ABCD 中,E 是CD 上一点,DE :EC=1:3,连AE ,BE ,BD 且AE ,BD 交于F ,则S △DEF :S △EBF :S △ABF = .12、两个反比例函数k y x =(k >1)和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上, PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,BE ⊥x 轴于点E ,当点P 在ky x=的图象上运动时,以下结论:①BA 与DC 始终平行;②PA 与PB 始终相等;③四边形PAOB 的面积不会发生变化;④△OBA 的面积等于四边形ACEB 的面积. 其中一定正确的是__________(填写序号).三、解答题:(本大题共3小题,每小题10分,共30分,解答应写出文字说明,证明过程和演算步骤)13、0113tan 30(4)()2π--︒+--23441)211x x x x x x ++-+++÷=(2)先化简,再求值:(,其中14、如图,△ABC 内接于⊙O ,AD 是⊙O 直径,过点A 的切线与CB 的延长线交于点E .(1)求证:EA 2=EB•EC ; (2)若EA=AC ,,AE=12,求⊙O 的半径.15、如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BE,AC⊥CD,AC∥ED.从点A测得点D、E的俯角分别为64°和53°.已知ED=35cm,求椅子高AC约为多少?(参考数据:tan53°≈,sin53°≈,tan64°≈2,sin64°≈)四、解答题:(本大题共3小题,每小题8分,共24分,解答应写出文字说明,证明过程和演算步骤)16、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.17、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F。
2017年河北省沧州市中考数学模拟试卷及解析答案word版(七)
2017年河北省沧州市中考数学模拟试卷(七)一、选择题(共13小题)1.27的立方根是()A.3 B.﹣3 C.9 D.﹣92.设x是实数,y=|x﹣1|+|x+1|,下列结论正确的是()A.y没有最小值B.只有一个x使y取到最小值C.有有限多个x(不止一个)使y取到最小值D.有无穷多个x使y取到最小值3.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个4.函数y=x2+2x+1写成y=a(x﹣h)2+k的形式是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+C.y=(x﹣1)2﹣3 D.y=(x+2)2﹣15.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块7.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为()A.15°B.20°C.25°D.30°8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为()A.12分B.10分C.16分D.14分9.如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1﹣h2|等于()A.5 B.6 C.7 D.810.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC 的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.B.25 C. D.5611.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cmC.cm D.cm12.在我国股市交易中,每买、卖一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为()A.2000元B.1925元C.1835元D.1910元13.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对 C.5对 D.3对二、填空题(共7小题,每小题3分,满分21分)14.(3分)若双曲线的图象经过第二、四象限,则k的取值范围是.15.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.16.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为千瓦.17.(3分)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.18.(3分)用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式.19.(3分)如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP ⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.20.(3分)某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.三、解答题(共7小题,满分0分)21.计算:(﹣2011)0+()﹣1+|﹣2|﹣2cos60°.22.先化简,再求值:()÷(﹣1),其中a=2﹣.23.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当BC=时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.24.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表(1)在图1中,“7分”所在扇形的圆心角等于°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?25.已知:如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/秒的速度移动,点Q从点C 开始沿CB边向点B以2cm/秒的速度移动.如果P、Q分别从A、C同时出发.设移动的时间为t.求:(1)t为何值时,梯形PQCD是等腰梯形;(2)t为何值时,AB的中点E到线段PQ的距离为7cm.26.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB 是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD 的长是一元二次方程x2﹣kx+2=0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.27.把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时x的值;若不存在,说明理由.2017年河北省沧州市中考数学模拟试卷(七)参考答案与试题解析一、选择题(共13小题)1.27的立方根是()A.3 B.﹣3 C.9 D.﹣9【解答】解:∵3的立方等于27,∴27的立方根等于3.故选A.2.设x是实数,y=|x﹣1|+|x+1|,下列结论正确的是()A.y没有最小值B.只有一个x使y取到最小值C.有有限多个x(不止一个)使y取到最小值D.有无穷多个x使y取到最小值【解答】解:从数轴上可知,区间[﹣1,1]上的任一点x到点1与点﹣1的距离之和均为2;区间[﹣1,1]之外的点x 到点1与点﹣1的距离之和均大于2.所以函数y=|x﹣1|+|x+1|当﹣1≤x≤1时,取得最小值2.A、y在区间[﹣1,1]上取得最小值2;故本选项错误;B、y在区间[﹣1,1]上的任一点x到点1与点﹣1的距离之和均为2;故本选项错误;C、y在区间[﹣1,1]之外的点x 到点1与点﹣1的距离之和均大于2,且无限大,所以y在区间[﹣1,1]之外的点没有最大值;故本选项错误;D、y在区间[﹣1,1]上的任一点x到点1与点﹣1的距离之和均为最小值2,所以有无穷多个x使y取到最小值.故本选项正确;故选D.3.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.综合以上分析,不正确的命题包括①②③.故选C.4.函数y=x2+2x+1写成y=a(x﹣h)2+k的形式是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+C.y=(x﹣1)2﹣3 D.y=(x+2)2﹣1【解答】解:y=x2+2x+1=(x2+4x+4)﹣2+1=(x+2)2﹣1故选D.5.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.【解答】解:∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故选D.6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块【解答】解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.7.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为()A.15°B.20°C.25°D.30°【解答】解:∵∠A′BC=20°∴∠BA′C=70°∴∠DA′B=110°∴∠DAB=110°∴∠ABC=70°∴∠ABA′=∠ABC﹣∠A′BC=70°﹣20°=50°∴∠A′BD=∠ABA′=25°.故选C.8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为()A.12分B.10分C.16分D.14分【解答】解:根据函数图象可得:明明骑自行车去上学时,上坡路为1千米,速度为1÷6=千米/分,下坡路程为3﹣1=2千米,速度为2÷(10﹣6)=千米/分,放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,上坡路程为2千米,速度为千米/分,下坡路程为1千米,速度为千米/分,因此走这段路所用的时间为2÷+1÷=14分.故选:D.9.如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1﹣h2|等于()A.5 B.6 C.7 D.8【解答】解:设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴△AFH∽△ODH∽△BEH,∴即,即=,∴(AF﹣BE)=﹣2,∴|h1﹣h2|=|AF﹣BE|=6.故选B.10.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC 的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.B.25 C. D.56【解答】解:设三边分别为7a,24a,25a,则:(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,解得:a=,∴构成的三角形的三边分别是,16,,∴周长=+16=.故选:C.11.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cmC.cm D.cm【解答】解:连接OA、OB、OE,∵四边形ABCD是正方形,∴AD=BC,∠ADO=∠BCO=90°,∵在Rt△ADO和Rt△BCO中∵,∴Rt△ADO≌Rt△BCO,∴OD=OC,∵四边形ABCD是正方形,∴AD=DC,设AD=acm,则OD=OC=DC=AD=acm,在△AOD中,由勾股定理得:OA=OB=OE=acm,∵小正方形EFCG的面积为16cm2,∴EF=FC=4cm,在△OFE中,由勾股定理得:=42+,解得:a=﹣4(舍去),a=8,a=4(cm),故选C.12.在我国股市交易中,每买、卖一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为()A.2000元B.1925元C.1835元D.1910元【解答】解:(12﹣10)×1000﹣10×1000×(元),所以该投资者的实际盈利为1835元.故选C.13.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对 C.5对 D.3对【解答】解:令px﹣2=x+q,解得x=,因为交点在直线x=2右侧,即>2,整理得q>2p﹣4.把p=2,3,4,5分别代入即可得相应的q的值,有序数对为(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,5),又因为p≠q,故(2,2),(3,3)舍去,满足条件的有6对.故选:B.二、填空题(共7小题,每小题3分,满分21分)14.(3分)若双曲线的图象经过第二、四象限,则k的取值范围是k <.【解答】解:∵双曲线的图象经过第二、四象限,∴2k﹣1<0,∴k<,故答案为:k<.15.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.16.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 1.2×107千瓦.【解答】解:根据题意12 000 000用科学记数法表示为1.2×107千瓦.17.(3分)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为4或12cm2.【解答】解:本题有两种情况,(1)DE=1cm,EC=3cm.因为AE平分∠DAB,故∠DAE=45°,△ADE中,AD=DE=1,矩形面积为1×(1+3)=4cm2.(2)DE=3cm,EC=1cm.因为AE平分∠DAB,故∠DAE=45°,△ADE中,AD=DE=3,矩形面积为3×(1+3)=12cm2.故答案为4或12.18.(3分)用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式y=2(x+)2﹣.【解答】解:y=2x2+3x+1=2(x+)2﹣.故答案为:y=2(x+)2﹣.19.(3分)如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP ⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.【解答】解:由题意,得:S阴影=S半圆=π()2=π(cm2).20.(3分)某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为y=20(x+1)2.【解答】解:y与x之间的关系应表示为y=20(x+1)2.故答案为:y=20(x+1)2.三、解答题(共7小题,满分0分)21.计算:(﹣2011)0+()﹣1+|﹣2|﹣2cos60°.【解答】解:原式=1++2﹣﹣1=222.先化简,再求值:()÷(﹣1),其中a=2﹣.【解答】解:原式=[﹣]÷=•=•=,把a=2﹣代入得:原式=.23.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当BC=时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.【解答】解:(1)判断:直线FD与以AB为直径的⊙O相切.证明:如图,作以AB为直径的⊙O;∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,∴∠ADB=∠ACB=90°.∵O为AB的中点,连接DO,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.24.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表(1)在图1中,“7分”所在扇形的圆心角等于144°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【解答】解:(1)利用扇形图可以得出:“7分”所在扇形的圆心角=360°﹣90°﹣72°﹣54°=144°;(2)利用扇形图:10分所占的百分比是90°÷360°=25%,则总人数为:5÷25%=20(人),得8分的人数为:20×=3(人).如图;(3)根据乙校的总人数,知甲校得9分的人数是20﹣8﹣11=1(人).甲校的平均分:(7×11+9+80)÷20=8.3分;中位数为7分.由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得(10分)的有8人,而乙校得(10分)的只有5人,所以应选甲校.25.已知:如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/秒的速度移动,点Q从点C 开始沿CB边向点B以2cm/秒的速度移动.如果P、Q分别从A、C同时出发.设移动的时间为t.求:(1)t为何值时,梯形PQCD是等腰梯形;(2)t为何值时,AB的中点E到线段PQ的距离为7cm.【解答】解:如图1,过P作PN⊥BC于N,过D作DM⊥BC于M,∵AD∥BC,∠B=90°,DM⊥BC,∴四边形ABMD是矩形,AD=BM.∴MC=BC﹣BM=BC﹣AD=3.又∵QN=BN﹣BQ=AP﹣BQ=t﹣(21﹣2t)=3t﹣21.若梯形PQCD为等腰梯形,则QN=MC=3.得3t﹣21=3,t=8,即t=8秒时,梯形PQCD是等腰梯形.(2)如图2,过E作EF⊥PQ于F,连接PE,EQ,当EF=7cm时,∵AE=BE=AB=×14=7cm,∴AE=EF=BE,∵AD∥BC,∠B=90°,∴∠A=90°,∵PE=PE,EQ=EQ,∴△AEP≌△FEP,△BEQ≌△FEQ,∴PA=PF=t,BQ=FQ=21﹣2t,∴PQ=PF+FQ=21﹣t,在Rt△PQM中,PM=14,QM=3t﹣1,∵PM2+QM2=PQ2,∴142+(3t﹣21)2=(21﹣t)2,解得:t=3.5或t=7,∴当t为3.5或7时,AB的中点E到线段PQ的距离为7cm.26.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB 是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD 的长是一元二次方程x2﹣kx+2=0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【解答】(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2分)(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(5分)(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程x2﹣kx+2=0的两根(k为常数).∴AE•BD=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.27.把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时x的值;若不存在,说明理由.【解答】解:(1)在上述旋转过程中,BH=CK,四边形CHGK的面积不变.证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,∴△BGH≌△CGK(ASA),=S△CGK.∴BH=CK,S△BGH∴S=S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4,四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;即:S四边形CHGK(2)∵AC=BC=4,BH=x,∴CH=4﹣x,CK=x.=S四边形CHGK﹣S△CHK,由S△GHK得y=4﹣x(4﹣x),∴y=x2﹣2x+4.由0°<α<90°,得到BH最大=BC=4,∴0<x<4;(3)存在.根据题意,得x2﹣2x+4=×8,解这个方程,得x1=1,x2=3,即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa BE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。
沧州市数学中考模拟试卷(一)
沧州市数学中考模拟试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017七上·江津期中) 过度包装既浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为()A .B .C .D . 0.2. (2分)(2019·云南模拟) 下列运算正确的是()A . 3a+2a=5a2B . 3﹣3=C . 2a2•a2=2a6D . 60=03. (2分) (2017·曲靖模拟) 在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A . 2B . 3C . 4D . 54. (2分) (2015七下·石城期中) 在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B (1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A . (4,3)B . (3,4)C . (﹣1,﹣2)D . (﹣2,﹣1)5. (2分)(2017·曲靖模拟) 下面空心圆柱形物体的左视图是()A .B .C .D .6. (2分)(2019·云南模拟) 如图,下列哪个不等式组的解集在数轴上表示如图所示()A .B .C .D .7. (2分)(2017·曲靖模拟) 某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.52424.52525.5销售量(双)12252A . 25,25B . 24.5,25C . 25,24.5D . 24.5,24.58. (2分)(2019·云南模拟) 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A .B . 2C . 3D . 4二、填空题 (共6题;共6分)9. (1分)单项式8x2y2、12xy3、6x2y2的公因式是________.10. (1分)比较大小: ________3 .(填“>”、“<”、“=”)11. (1分)(2019·云南模拟) 若x、y为实数,且|x+3|+ =0,则的值为________.12. (1分)(2019·云南模拟) 如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是________(只需添加一个即可)13. (1分)(2019·云南模拟) 已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是________.14. (1分)(2017·曲靖模拟) 为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100 ,则3M=3+32+33+34+…+3101 ,因此,3M﹣M=3101﹣1,所以M= ,即1+3+32+33+…+3100= ,仿照以上推理计算:1+5+52+53+…+52015的值是________.三、解答题 (共9题;共85分)15. (5分) (2019七上·静安期末) 计算: .16. (5分)(2019·云南模拟) 已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17. (15分)(2019·云南模拟) 当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成5无所谓0.1反对400.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18. (5分)(2017·曲靖模拟) 学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19. (10分)(2017·曲靖模拟) 有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20. (10分)(2019·云南模拟) 某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y= 的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21. (10分)(2019·云南模拟) 如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作B E⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB= ,求线段OE的长.22. (10分)(2019·云南模拟) 如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F= ,⊙O的半径为4,求CD的长.23. (15分)(2019·云南模拟) 如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共85分)15-1、16-1、17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
2017年河北省沧州十一中中考数学模拟试卷(5)(解析版)
2017年河北省沧州十一中中考数学模拟试卷(5)一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣ D.2.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.145.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁6.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.610.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤011.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130° D.140°12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:=.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是.17.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).19.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.22.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.23.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD 垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l 向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE 重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt △A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.2017年河北省沧州十一中中考数学模拟试卷(5)参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣ D.【考点】2A:实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A2.下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定定理进行分析即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】4H:整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.4.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14【考点】L5:平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.5.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:(环)如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲B.乙C.丙D.丁【考点】W7:方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B6.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°【考点】M5:圆周角定理;KM:等边三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】8A:一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.9.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.6【考点】L5:平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】C3:不等式的解集.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D11.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130° D.140°【考点】PB:翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴AO=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:=12.【考点】75:二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【考点】AA:根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】MP:圆锥的计算.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.16.已知反比例函数y=(k≠0)的图象经过(3,﹣1),则当1<y<3时,自变量x的取值范围是﹣3<x<﹣1.【考点】G4:反比例函数的性质;G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数过点(3,﹣1)结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限内的函数图象都单增,分别代入y=1、y=3求出x值,即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(3,﹣1),∴k=3×(﹣1)=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限内均单增.当y=1时,x==﹣3;当y=3时,x==﹣1.∴1<y<3时,自变量x的取值范围是﹣3<x<﹣1.故答案为:﹣3<x<﹣1.17.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【考点】MO:扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.19.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机从箱子里取出1个球,则取出黄球的概率是多少?(2)随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:(1)∵在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出黄球的概率是:;(2)画树状图得:由树形图可知所有可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】L9:菱形的判定.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED ≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.21.为加快城市群的建设与发展,在A,B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】B7:分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.22.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】S9:相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首先得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.23.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD 垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l 向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE 重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt △A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】HF:二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∴D(6,4),(2)如图1,∵点F 是抛物线y=﹣x 2+x +4的顶点,∴F (3,),∴FH=,∵GH ∥A 1O 1,∴,∴, ∴GH=1,∵Rt △A 1O 1F 与矩形OCDE 重叠部分是梯形A 1O 1HG ,∴S 重叠部分=S △A1O1F ﹣S △FGH =A 1O 1×O 1F ﹣GH ×FH=×3×4﹣×1×=.(3)①当0<t ≤3时,如图2,∵C 2O 2∥DE ,∴,∴,∴O 2G=t ,∴S=S △OO2G =OO 2×O 2G=t ×t=t 2,②当3<t ≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),过G作GN⊥C2O2于N,∵△C2GD∽△A2GO且C2D=6﹣t,OA2=t﹣3,C2O2=4,∴,∴∴C2N=,∵C2H=,∴C2H=HN,∴△GNH≌△DC2H,∴GN=C2D=6﹣t=S△A2O2C2﹣S△C2GH∴S=S四边形A2O2HG=OA×OC﹣C2H×GN=×3×4﹣×(6﹣t)(6﹣t)=﹣t2+4t﹣6∴当0<t≤3时,S=t2,当3<t≤6时,S=﹣t2+4t﹣6.。
专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)
专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。
河北沧州市2017年中考数学模拟试卷(八)及答案
2017年河北沧州市中考数学模拟试卷(八)一、选择题(共14小题,每小题3分,满分42分)1.|﹣3|的相反数是()A.3 B.﹣3 C.D.﹣2.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0 B.a﹣b<0 C.a•b>0 D.>06.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小8.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.80°或100°C.100°D.160°或20°9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A.B.C.D.10.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500D.y=60﹣0.12x,0≤x≤50011.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1612.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1013.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个14.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点D作CD⊥x轴,垂足为D,且OA=AD,则以下结论:=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④方程2x2﹣2x﹣k=0①S△ADB有解.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)15.分解因式:a2b﹣4ab=.16.分式方程的解是.17.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是.18.如图,在四边形ABCD中,E,F分别是AB,AD的中点,若EF=2,BC=5,CD=3,则点D到直线BC的距离为.19.如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1,P2,P3,…,P n向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Q n,则点Q n的坐标为.三、解答题(共7小题,满分63分)20.(7分)计算:(3﹣π)0﹣(﹣)﹣1+×4sin60°.21.为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有8万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.22.(7分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).23.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O 上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.24.如图,反比例函数y=(k>0)与正比例函数y=ax相交于A(1,k),B(﹣k,﹣1)两点.(1)求反比例函数和正比例函数的解析式;(2)将正比例函数y=ax的图象平移,得到一次函数y=ax+b的图象,与函数y=(k>0)的图象交于C(x1,y1),D(x2,y2),且|x1﹣x2|•|y1﹣y2|=5,求b的值.25.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)结合图②,通过观察、测量、猜想:,并证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若AC=8,BD=6,直接写出的值.26.已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和∠ABC的度数;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠PAB,求点P的坐标.参考答案一、选择题(共14小题,每小题3分,满分42分)1.B.2.D.3.D.4.A.5.B.6.D.7.D.8.B.9.B.10.D.11.C.12.C.13.B.14.C.二、填空题(共5小题,每小题3分,满分15分)15.ab(a﹣4).16.3.17.(1﹣10%)(1+x)2=1.18..19.n2,n2).三、解答题(共7小题,满分63分)20.解:原式=1﹣(﹣3)+2×4×=4+12=16.21.1000人;54°;(3)100.(4)5.28(万人),22.解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=,∴BE=CE•cot30°=12×=12.在Rt△BDE中,由∠DBE=45°,得DE=BE=12.∴CD=CE+DE=12(+1)≈32.4.答:楼房CD的高度约为32.4m.23.(1)证明:连结O B、O D、OC,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)解:BE+CF的值是为定值.作DH⊥AB于H,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DH=DN,∠HDN=120°,∵∠EDF=120°,∴∠HDE=∠NDF,在△DHE和△DNF中,,∴△DHE≌△DNF,∴HE=NF,∴BE+CF=BH﹣EH+CN+NF=BH+CN,在Rt△DHB中,∵∠DBH=60°,∴BH=BD,同理可得CN=OC,∴BE+CF=OB+OC=BC,∵BD=OB•cos30°=,∴BC=2,∴BE+CF的值是定值,为.24.解:(1)据题意得:点A(1,k)与点B(﹣k,﹣1)关于原点对称,∴k=1,∴A(1,1),B(﹣1,﹣1),∴反比例函数和正比例函数的解析式分别为y=,y=x;(2)∵一次函数y=x+b的图象过点(x1,y1)、(x2,y2),∴,②﹣①得,y2﹣y1=x2﹣x1,∵|x1﹣x2|•|y1﹣y2|=5,∴|x1﹣x2|=|y1﹣y2|=,由得x2+bx﹣1=0,解得,x1=,x2=,∴|x1﹣x2|=|﹣|=||=,解得b=±1.25.(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°﹣∠BGO,∠EPO=90°﹣∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,∴△BOG≌△POE(ASA);(2)解:猜想=.证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OC B.∵∠OBC=∠OCB=45°,∴∠NBP=∠NP B.∴NB=NP.∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即=;故答案为;(3)如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°,在Rt △BOC 中,OC =AC =4,OB =BD =3,∴tan ∠ACB ==由(2)同理可得:BF =BM ,∠MBN =∠EPN ,∵∠BNM =∠PNE =90°,∴△BMN ∽△PEN .∴.在Rt △BNP 中,tan ∠ACB ==,∴=tan ∠ACB =.即=.∴=×=.26.解:(1)将点A 的坐标(﹣1,0),点C 的坐标(0,﹣3)代入抛物线解析式得:,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)由(1)得:0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,故B点坐标为:(3,0),设直线BC的解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣3,∵B(3,0),C(0,﹣3),∴BO=OC=3,∴∠ABC=45°;(3)过点P作PD⊥x轴于点D,∵∠ACB=∠PAB,∠ABC=∠PBA,∴△ABP∽△CBA,∴=,∵BO=OC=3,∴BC=3,∵A(﹣1,0),B(3,0),∴AB=4,∴=,解得:BP=,由题意可得:PD∥OC,∴DB=DP=,∴OD=3﹣=,则P(,﹣).。
2017年河北省中考数学试卷(含答案解析)
2017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表用水量(吨)4569户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。
河北省2017年中考数学模拟试卷(含解析)
2017年河北省中考数学一模试卷一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=23.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.45.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.86.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣329.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab211.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.2212.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.315.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于,第n个三角形的面积等于.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2017年河北省中考数学一模试卷参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形不是中心对称图形,不是轴对称图形,故A选项错误;B、此图形是中心对称图形,也是轴对称图形,故B选项错误;C、此图形是中心对称图形,不是轴对称图形,故C选项正确;D、此图形不是中心对称图形,是轴对称图形,故D选项错误.故选:C.2.下列计算正确的是()A.﹣2+|﹣2|=0 B.20÷3=0 C.42=8 D.2÷3×=2【考点】零指数幂.【分析】根据绝对值的规律,及实数的四则运算、乘法运算.【解答】解:A、﹣2+|﹣2|=﹣2+2=0,故A正确;B、20÷3=,故B错误;C、42=16,故C错误;D、2÷3×=,故D错误.故选A.3.有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看,茶叶盒可以看作是一个圆柱体,圆柱从正面看是长方形.故选:D.4.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【考点】点的坐标.【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.5.如图,DE是△ABC的中位线,若BC=8,则DE的长为()A.2 B.4 C.6 D.8【考点】三角形中位线定理.【分析】已知DE是△ABC的中位线,BC=8,根据中位线定理即可求得DE的长.【解答】解:∵DE是△ABC的中位线,BC=8,∴DE=BC=4,故选B.6.2016年4月6日22:20某市某个观察站测得:空气中PM2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A.2.3×10﹣7g B.23×10﹣6g C.2.3×10﹣5g D.2.3×10﹣4g【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:23μg=23÷1000000g=0.000 023g=2.3×10﹣5g.故选:C.7.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的()A.中位数B.众数C.平均数D.方差【考点】统计量的选择.【分析】由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义分析.【解答】解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入决赛了,故选:A.8.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于()A.28 B.﹣28 C.32 D.﹣32【考点】代数式求值.【分析】先求得代数式﹣2a+3b的值,然后将所求代数式变形为3(﹣2a+3b)+2,最后将﹣2a+3b的值整体代入求解即可.【解答】解:∵﹣2a+3b+8=18,∴﹣2a+3b=10.原式=3(﹣2a+3b)+2=3×10+2=32.故选:C.9.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高(1﹣)x=儿子在水中的身高(1﹣)y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.10.已知a=,b=,则=()A.2a B.ab C.a2b D.ab2【考点】算术平方根.【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解: ==××=a•b•b=ab2.故选D.11.如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为()A.11 B.16 C.19 D.22【考点】矩形的性质;翻折变换(折叠问题).【分析】首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS);∴EA=EC,∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,=AD+DE+EC+EA+EB′+B′C,=AD+DC+AB′+B′C,=3+8+8+3,=22,故选D.12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径【考点】作图—复杂作图;勾股定理的逆定理;圆周角定理.【分析】由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.【解答】解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.14.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.3【考点】等边三角形的性质.【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故选:C.15.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;故选:B.16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【考点】反比例函数综合题.【分析】作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F,易证△OAB≌△FDA≌△BEC,求得A、B 的坐标,根据全等三角形的性质可以求得C、D的坐标,从而利用待定系数法求得反比例函数的解析式,进而求得G的坐标,则a的值即可求解.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4).代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),∴CG=2.故选:B.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分.17.函数y=的自变量x的取值范围是x≤0.5且x≠﹣1 .【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.18.如图,m∥n,直角三角板ABC的直角顶点C在两直线之间,两直角边与两直线相交所形成的锐角分别为α、β,则α+β=90°.【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.19.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB上中线CD,得到第1个三角形ACD;DE ⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第2个三角形DEF;依次作下去…则第1个三角形的面积等于a2,第n个三角形的面积等于.【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,∴第一个三角形的面积为a2,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为a2,.三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【考点】整式的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)根据题意列出关系式,化简得到结果,验证即可.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.21.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.【考点】全等三角形的判定与性质.【分析】根据AB∥CD,得到∠B=∠C,推出△ABE≌△CDF,根据全等三角形的性质即可得到结论.【解答】解:添加条件为:∠A=∠D,理由:∵AB∥CD,∴∠B=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=DF.22.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).23.阅读对话,解答问题:(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2﹣ax+2b=0有实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)用列表法易得(a,b)所有情况;(2)看使关于x的一元二次方程x2﹣ax+2b=0有实数根的情况占总情况的多少即可.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)∵方程x2﹣ax+2b=0有实数根,∴△=a2﹣8b≥0.∴使a2﹣8b≥0的(a,b)有(3,1),(4,1),(4,2),∴.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.25.某手机店销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)该商店计划一次购进两种型号的手机共110部,其中A型手机的进货量不超过B型手机的2倍.设购进B型手机n部,这110部手机的销售总利润为y元.①求y关于n的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意列出方程组求解;(2)①据题意得,y=﹣50n+16500,②利用不等式求出n的范围,又因为y=﹣50x+16500是减函数,所以n取37,y取最大值;(3)据题意得,y=150+n,即y=(m﹣50)n+16500,分三种情况讨论,①当30<m<50时,y随n的增大而减小,②m=50时,m﹣50=0,y=16500,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,解得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)①设购进B型手机n部,则购进A型手机部,则y=150+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (n≥36);②∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)根据题意,得:y=150+n=(m﹣50)n+16500,其中,36≤n≤80,①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤80的整数时,均获得最大利润;③当50<m<100时,y随n的增大而增大,∴当n=80时,y取得最大值,即购进A型手机30部、B型手机80部时销售总利润最大.26.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点(2,2)的坐标代入抛物线解析式,即可求得m的值;(2)求出B、C、E点的坐标,进而求得△BCE的面积;(3)根据轴对称以及两点之间线段最短的性质,可知点B、C关于对称轴x=1对称,连接EC与对称轴的交点即为所求的H点,如答图1所示;(4)本问需分两种情况进行讨论:①当△BEC∽△BCF时,如答图2所示.此时可求得m=+2;②当△BEC∽△FCB时,如答图3所示.此时可以得到矛盾的等式,故此种情形不存在.【解答】解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,。
2017届河北省沧州第11中学中考模拟数学试卷(4)(带解析)
绝密★启用前2017届河北省沧州第11中学中考模拟数学试卷(4)(带解析)试卷副标题考试范围:xxx ;考试时间:83分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、计算:5x ﹣3x =( ) A .2xB .2x 2C .﹣2xD .﹣2【答案】A【解析】试题分析:根据合并同类项的法则,直接把系数相加,即可求得5x-3x=2x. 故选:A.2、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a 的小正方体,得到一个如图所示的零件,则这个零件的左视图是( )A .B .C .D .【答案】D试卷第2页,共17页【解析】根据从正面看得到的图形是主视图,可得答案.俯视图是从上面往下看到的图形,从上面往下看到的是大正方形的左下角有一个小正方形,故选择A.“点睛”自几何体的正前方向后投射,在正面投影面上得到的视图称为主视图;自几何体的左侧向右投射,在侧面投影面上得到的视图称为左视图;自几何体的上方向下投射,在水平投影面上得到的视图称为俯视图.看得见的棱用实现表示,被遮挡住的看不见的棱要用虚线表示.3、如图,抛物线y =ax 2+bx +c (a ≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P =a +b +c ,则P 的取值范围是( )A .﹣3<P <﹣1B .﹣6<P <0C .﹣3<P <0D .﹣6<P <﹣3【答案】B【解析】利用二次函数图象的开口方向和对称轴求出a >0,b <0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a ﹣6,求出2a ﹣6的范围即可. 解:∵抛物线y=ax 2+bx+c (c≠0)过点(﹣1,0)和点(0,﹣3), ∴0=a ﹣b+c ,﹣3=c , ∴b=a ﹣3,∵当x=1时,y=ax 2+bx+c=a+b+c , ∴P=a+b+c=a+a ﹣3﹣3=2a ﹣6, ∵顶点在第四象限,a >0, ∴b=a ﹣3<0, ∴a <3, ∴0<a <3, ∴﹣6<2a ﹣6<0, 即﹣6<P <0. 故选:B .“点睛”此题主要考查了二次函数图象的性质,根据图象过(﹣1,0)和点(0,﹣3)得出a 与b 的关系,以及当x=1时a+b+c=P 是解决问题的关键. 4、如图,以圆O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是弧上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)【答案】C【解析】过P 作PQ ⊥OB ,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标. 解:过P 作PQ ⊥OB ,交OB 于点Q , 在Rt △OPQ 中,OP=1,∠POQ=α, ∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P 的坐标为(cosα,sinα), 故选C .“点睛”此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.5、A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( ) A .B .C .D .【答案】B【解析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB 上的点与原点的距离就可以做出判断.解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B 选项的线段AB 符合,其余答案的线段都在原点0的同一侧,试卷第4页,共17页所以可以得出答案为B . 故选:B“点睛”本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.解题时要灵活运用数形结合的思想.6、不等式组的解集是( ) A .x >﹣1B .x >3C .﹣1<x <3D .x <3【答案】B【解析】分别求出各不等式的解集,再求出其公共解集即可.解: ,由①得,x >-1,由②得,x >3,故不等式组的解集为:x >3. 故答案为:x >3.“点睛”此题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.若a <b ,则有的解集是x >b ,即“同大取大”.7、在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是( )A .全B .明C .城D .国【答案】C【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”. 故选:C .“点睛”此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.二、选择题(题型注释)8、下列说法错误的是( )A .“伊利”纯牛奶消费者服务热线是4008169999,该十个数的中位数为7B .服装店老板最关心的是卖出服装的众数C .要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用全面调查D .条形统计图能够显示每组中的具体数据,易于比较数据之间的差别【答案】C . 【解析】试题分析:A .4008169999的中位数是7,正确; B .服装店老板最关心的是卖出服装的众数,正确;C .要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用抽样调查,错误;D .条形统计图能够显示每组中的具体数据,易于比较数据之间的差别,正确; 故选C .考点:1.中位数;2.全面调查与抽样调查;3.统计图的选择;4.众数.9、在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为( ) A .133×10B .1.33×103C .133×104D .133×105【答案】B【解析】试题分析:1330用科学记数法表示为1.33×103.故选B . 考点:科学记数法—表示较大的数.10、下列选项中,能使关于x 的一元二次方程ax 2﹣4x +c =0一定有实数根的是( ) A .a >0B .a =0C .c >0D .c =0【答案】D试卷第6页,共17页【解析】试题分析:根据题意得a≠0且△=,解得且a≠0.观察四个答案,只有c =0一定满足条件,故选D . 考点:根的判别式;一元二次方程的定义.11、已知点A (﹣1,m ),B (1,m ),C (2,m +1)在同一个函数图象上,这个函数图象可以是( )A .B .C .D .【答案】C【解析】试题分析:∵点A (-l ,m ),B ( l ,m )在同一个函数图象上,所以函数图象关于Y 轴对称,从而排除答案A 和答案B ,又∵B ( l ,m ),C ( 2,m +l )在同一个函数图象上,所以当1≤x≤2时,y 随x 增大而增大,故选C . 考点:函数的图象.12、如图,直线a ,b 被直线c 所截,∠1与∠2的位置关系是( )A .同位角B .内错角C .同旁内角D .对顶角【答案】B【解析】试题分析:如图所示,∠1和∠2两个角都在两被截直线直线b 和c 同侧,并且在第三条直线a (截线)的两旁,故∠1和∠2是直线b 、c 被a 所截而成的内错角.故选B .考点:同位角、内错角、同旁内角. 13、下列实数中的无理数是( ) A .0.7B .C .πD .-8【答案】C【解析】试题分析:A .是分数,是有理数,故A 选项错误; B .是分数,是有理数,故B 选项错误;C .是无理数,故C 选项正确;D .是整数,是有理数,故D 选项错误. 故选C . 考点:无理数.14、一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是( ) A .12B .9C .13D .12或9【答案】A【解析】试题解析:x 2-7x+10=0, (x-2)(x-5)=0, x-2=0,x-5=0, x 1=2,x 2=5,①等腰三角形的三边是2,2,5 ∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12. 故选A .考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质. 15、如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D ,若点C ,D 都在双曲线y =上(k >0,x >0),则k 的值为( )A .25B .18C .9D .9【答案】C试卷第8页,共17页【解析】试题分析:过点A 作AE ⊥OB 于点E ,如图所示.已知△OAB 为边长为10的正三角形,可得点A 的坐标为(10,0)、点B 的坐标为(5,5),点E 的坐标为(,).因CD ⊥OB ,AE ⊥OB ,可得CD ∥AE ,所以,设=n (0<n <1),所以点D 的坐标为(),点C 的坐标为(5+5n ,5﹣5n ).再由点C 、D 均在反比例函数y=图象上,可得,解得.故答案选C .考点:反比例函数综合题.16、如图,从一张腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A .10cmB .15cmC .10cmD .20cm【答案】D【解析】试题分析:如图,过O 作OE ⊥AB 于E ,由OA=OD=60cm ,∠AOB=120°,可得∠A=∠B=30°,根据等腰三角形的性质得到OE=OA=30cm ,所以弧CD 的长=,设圆锥的底面圆的半径为r ,则2πr=20π,解得r=10,利用勾股定理计算出圆锥的高为20.故答案选D.Array考点:圆锥的计算.试卷第10页,共17页第II 卷(非选择题)三、填空题(题型注释)17、分解因式:x 2﹣4=__.【答案】。
河北省沧州市中考数学模拟试卷含答案解析
河北省沧州市中考数学模拟试卷(3月份)一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣(﹣1)=4是否正确?()A.4﹣(﹣1) B.4+(﹣1)C.4×(﹣1)D.4÷(﹣1)2.下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a23.下了四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列各式中,能用平方差公因式分解的是()A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣15.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm26.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35°C.30°D.45°7.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,则下列结论中不正确的是()A.∠AOF=45° B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变11.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠113.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.15.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.计算﹣2sin45°的结果是.18.若(x﹣1)2=2,则代数式x2﹣2x+5的值为.19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为.20.如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4 A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.现规定=a﹣b+c﹣d,试计算,其中x=2,y=1.22.如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?24.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量(L)小于1.6 1.6 1.8 大于1.8轿车数量(辆)60 200 80 60按照上述的统计数据,通过计算估计:该市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.26.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.河北省沧州市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣(﹣1)=4是否正确?()A.4﹣(﹣1) B.4+(﹣1)C.4×(﹣1)D.4÷(﹣1)【考点】有理数的减法.【分析】根据被减数、减数、差三者之间的关系解答.【解答】解:可以用4+(﹣1)验证.故选B.【点评】本题主要考查了有理数的减法,熟记被减数=差+减数是解题的关键.2.下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A,C;根据合并同类项,可判断B;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、合并同类项系数相加字母部分不变,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.下了四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形,故正确;C、是轴对称图形,不是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列各式中,能用平方差公因式分解的是()A.x2+x B.x2+8x+16 C.x2+4 D.x2﹣1【考点】因式分解-运用公式法.【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A、x2+x=x(x+1),是提取公因式法分解因式,故此选项错误;B、x2+8x+16=(x+4)2,是公式法分解因式,故此选项错误;C、x2+4,无法分解因式,故此选项错误;D、x2﹣1=(x+1)(x﹣1),能用平方差公因式分解,故此选项正确.故选:D.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.5.如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm2【考点】由三视图判断几何体;圆柱的计算.【分析】首先判断出该几何体,然后计算其面积即可.【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为()A.40° B.35°C.30°D.45°【考点】切线的性质.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD 为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.【点评】本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.7.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【考点】实数大小比较.【专题】计算题.【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选A.【点评】此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,则下列结论中不正确的是()A.∠AOF=45° B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角【考点】垂线;余角和补角;对顶角、邻补角.【分析】根据垂线的定义和角平分线得出A正确;根据对顶角相等得出B正确;求出∠BOD的余角得出C不正确;根据邻补角关系得出D正确.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵OF平分∠AOE,∴∠AOF=∠AOE=45°,∴A正确;夜∠BOD和∠AOC是对顶角,∴∠BOD=∠AOC,∴B正确;∵∠BOD的余角=90°﹣15°30′=74°30′,∴C不正确;∵∠AOD+∠BOD=180°,∴∠AOD和∠BOD互为补角,∴D正确;故选:C.【点评】本题考查了垂线、余角以及对顶角、邻补角的定义;熟练掌握角的互余和互补关系是解题的关键.9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变【考点】动点问题的函数图象.【专题】数形结合.【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图象得反比例解析式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EF=10,而EM=5;由于EC•CF=x×y;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值.【解答】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF 都是直角三角形;观察反比例函数图象得x=3,y=3,则反比例解析式为y=;A、当x=3时,y=3,即BC=CD=3,所以CE=BC=3,CF=CD=3,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC=,EF=10,EM=5,所以B选项错误;C、因为EC•CF=x•y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选D.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.11.如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下【考点】一元一次不等式的应用.【专题】操作型.【分析】先求出剩余容量,然后分别除以3和4,就可知道球的体积范围.【解答】解:300﹣180=120,120÷3=40,120÷4=30故选:C.【点评】特别注意水没满与满的状态.12.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式和一元二次方程的定义可得4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有实数根,∴△≥0且k≠1,∴△=4﹣4(k﹣1)(﹣2)=8k﹣4≥0且k≠1,∴k≥且k≠1,故选:D.【点评】本题主要考查了根的判别式以及一元二次方程的定义的知识,解答本题的关键是掌握一元二次方程有实数根,则△≥0,此题难度不大.13.如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()A.B.C.D.【考点】概率公式;折线统计图.【专题】图表型.【分析】先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公式求解即可.【解答】解:∵由图可知,当1号到达时,停留的日子为1、2、3号,此时为(86,25,57),3天空气质量均为优;当2号到达时,停留的日子为2、3、4号,此时为(25,57,143),2天空气质量为优;当3号到达时,停留的日子为3、4、5号,此时为(57,143,220),1天空气质量为优;当4号到达时,停留的日子为4、5、6号,此时为(143,220,160),空气质量为污染;当5号到达时,停留的日子为5、6、7号,此时为(220,160,40),1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为(160,40,217),1天空气质量为优;当7号到达时,停留的日子为7、8、9号,此时为(40,217,160),1天空气质量为优;当8号到达时,停留的日子为8、9、10号,此时为(217,160,121),空气质量为污染∴此人在该市停留期间有且仅有1天空气质量优良的概率==.故选:C.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣3,1),即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选C.【点评】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【考点】正多边形和圆;弧长的计算.【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用含a、b的式子表示)()A.(a+b)2B.(a﹣b)2C.2ab D.ab【考点】整式的混合运算.【分析】用大正方形的面积减去4个小正方形的面积即可.【解答】解:()2﹣4×()2=﹣==ab,故选D.【点评】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.二、填空题:本大题共4小题,每小题3分,共12分,把答案写在题中横线上.17.计算﹣2sin45°的结果是.【考点】实数的运算;特殊角的三角函数值.【分析】利用二次根式的性质以及特殊角的三角函数值求出即可.【解答】解:﹣2sin45°=2﹣2×=.故答案为:.【点评】此题主要考查了实数运算等知识,正确掌握相关性质是解题关键.18.若(x﹣1)2=2,则代数式x2﹣2x+5的值为6.【考点】完全平方公式.【分析】根据完全平方公式展开,先求出x2﹣2x的值,然后再加上5计算即可.【解答】解:∵(x﹣1)2=2,∴x2﹣2x+1=2,∴x2﹣2x=1,两边都加上5,得x2﹣2x+5=1+5=6.故答案为:6.【点评】本题考查了完全平方公式,熟记公式是解题的关键,利用“整体代入”的思想使计算更加简便.19.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为6﹣2.【考点】正多边形和圆.【分析】如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,求得△ABC的高和底即可求出阴影部分的面积.【解答】解:如图,连接OB,OF,根据题意得:△BFO是等边三角形,△CDE是等腰直角三角形,∴BF=OB=2,∴△BFO的高为;,CD=2(2﹣)=4﹣2,∴BC=(2﹣4+2)=﹣1,∴阴影部分的面积=4S△ABC=4×()•=6﹣2.故答案为:6﹣2.【点评】本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.20.如图,所有正三角形的一边都与x轴平行,一顶点在y轴正半轴上,顶点依次用A1,A2,A3,A4…表示,坐标原点O到边A1A2,A4 A5,A7A8…的距离依次是1,2,3,…,从内到外,正三角形的边长依次为2,4,6,…,则A23的坐标是(8,﹣8).【考点】规律型:点的坐标.【分析】根据每一个三角形有三个顶点确定出A23所在的三角形,再求出相应的三角形的边长以及A23的纵坐标的长度,即可得解.【解答】解:∵23÷3=7…2,∴A23是第8个等边三角形的第2个顶点,第8个等边三角形边长为2×8=16,∴点A23的横坐标为×16=8,∵边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,∴点A23的纵坐标为﹣8,∴点A23的坐标为(8,﹣8).故答案为:(8,﹣8).【点评】此题考查点的坐标变化规律,主要利用了等边三角形的性质,确定出点A23所在三角形是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.现规定=a﹣b+c﹣d,试计算,其中x=2,y=1.【考点】整式的混合运算—化简求值.【专题】新定义;整式.【分析】原式利用题中的新定义化简,将x与y的值代入计算即可求出值.【解答】解:原式=(xy﹣3x2)﹣(﹣2xy)﹣2x2﹣(﹣5+xy)=xy﹣3x2+2xy﹣2x2+5﹣xy=﹣5x2+2xy+5,当x=2,y=1时,原式=﹣20+4+5=﹣11.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.【考点】平行四边形的性质;坐标与图形性质;平移的性质.【分析】(1)利用中心对称图形的性质得出C,D两点坐标;(2)利用平行四边形的性质以及结合平移的性质得出即可;(3)利用S ABCD的可以转化为边长为;5和4的矩形面积,进而求出即可.【解答】解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:绕点O旋转180°;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.【点评】此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出S ABCD的可以转化为矩形面积是解题关键.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;(2)利用二次函数的性质求出y的最大值,以及此时x的值即可.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,∴8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴y=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则y=﹣x2+30x(0<x<40);(2)∵y=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,y有最大值,最大值为300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.如图是根据某市国民经济和社会发展统计公报中的相关数据绘制的两幅统计图(不完整).根据图中信息解答下列问题:(1)该市私人轿车拥有量约是多少万辆?(精确到1万辆)(2)请补全折线统计图.(3)经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为1.6L的轿车,若一年行驶的路程为1万千米,则这一年该轿车的碳排放量约为2.7万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量(L)小于1.6 1.6 1.8 大于1.8轿车数量(辆)60 200 80 60按照上述的统计数据,通过计算估计:该市仅排量为1.6L的私人轿车(假定每辆车平均一年行驶的路程都为1万千米)的碳排放总量为多少万吨?【考点】折线统计图;条形统计图.【分析】(1)设该市私人轿车拥有量为x万辆,根据拥有量=拥有量×(1+的增长率)列出方程,解方程可得;(2)设增长率为m,根据拥有量×(1+增长率)=拥有量,列方程求解即可;(3)根据20私人轿车总量由14年1.6L的私人轿车占私人轿车拥有量的比例可得排量为1.6L的私人轿车数,再计算碳排放总量.【解答】解:(1)设该市私人轿车拥有量为x万辆,根据题意,得:(1+30%)x=108,解得:x=83,答:该市私人轿车拥有量约是83万辆;(2)设增长率为m,则60(1+m)=69,解得:m=0.15=15%,补全统计图如下图所示:(3)1.6L私人轿车的拥有量为:108×(200÷400)=54(万辆),所以该市仅排量为1.6L的私人轿车的碳排放总量为:540000×2.7=1458000(万吨),答:该市仅排量为1.6L的私人轿车的碳排放总量为1458000万吨.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.【考点】二次函数综合题.【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.(2)首先根据平移条件表示出移动后的函数解析式,从而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.(3)先在OA上取点N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,显然在y轴的正负半轴上都有一个符合条件的M点;以y轴正半轴上的点M为例,先证△ABN、△AMB相似,然后通过相关比例线段求出AM的长.【解答】解:(1)将A(0,﹣6)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:,解得.∴抛物线的解析式:y=x2﹣2x﹣6=(x﹣2)2﹣8,顶点D(2,﹣8);(2)由题意,新抛物线的解析式可表示为:y=(x﹣2+1)2﹣8+m,即:y=(x﹣2+1)2﹣8+m.它的顶点坐标P(1,m﹣8).由(1)的抛物线解析式可得:C(4,0).∴直线AB:y=﹣3x﹣6;直线AC:y=x﹣6.当点P在直线AB上时,﹣3﹣6=m﹣8,解得:m=﹣1;当点P在直线AC上时,﹣6=m﹣8,解得:m=;又∵m>0,∴当点P在△ABC内时,0<m<.(3)由A(0,﹣6)、C(6,0)得:OA=OC=6,且△OAC是等腰直角三角形.如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°.∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,即∠NBA=∠OMB.如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;由勾股定理,得AB2=(﹣2)2+(﹣6)2=40,又∵AN=OA﹣ON=6﹣2=4,∴AM1=40÷4=10,OM1=AM1﹣OA=10﹣6=4OM2=OM1=4AM2=OA﹣OM2=6﹣4=2.综上所述,AM的长为4或2.【点评】考查了二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质,勾股定理.26.在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.(1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【考点】四边形综合题.【专题】压轴题.【分析】(1)①根据OA=4,OC=2,可得点B的坐标;②利用相似三角形的判定和性质得出点的坐标;(2)根据平行四边形的性质,且分点在线段EF的延长线和线段上两种情况进行分析解答.【解答】解:(1)∵OA=4,OC=2,∴点B的坐标为(4,2);②如图1,过点P作PD⊥OA,垂足为点D,∵BQ:BP=1:2,点B关于PQ的对称点为B1,∴B1Q:B1P=1:2,∵∠PDB1=∠PB1Q=∠B1AQ=90°,∴∠PB1D=∠B1QA,∴△PB1D∽△B1QA,∴,∴B1A=1,∴OB1=3,即点B1(3,0);(2)∵四边形OABC为平行四边形,OA=4,OC=2,且OC⊥AC,∴∠OAC=30°,∴点C(1,),。
2017年河北省数学中考模拟试题(2)有答案
2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( ▲ )A . +30 mB .-30 mC . +40 mD .-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲ ) A .6.75×103吨 B . 6.75×104吨C .6.75×105吨D .6.75×10-4吨3. 已知点A (a ,2013)与点A ′(-2014,b )是关于原点O 的对称点,则b a +的值为( ▲ ) A . 1 B . 5 C . 6 D .4 4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512 C .135D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4 B .3,3.5 C . 3.5,3 D .4,3 6.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.A.4nB . 5n -4C .4n -3D . 3n -29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°ABCD10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ )A .4B .3C .2D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形 D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个 B.3个 C.4个 D.5个 13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a < B.2a = C.2a > D.2a ≥14.已知,△ABC 中,∠A =90°,∠ABC =30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( ) A .15个 B .13个 C .11个 D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=y a 则yx a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m +1)x +m 2=0有两个整数根,且12<m <60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 2015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.(第14题)(第15题)A B CD 图12.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是 ▲ .18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是 ▲ .19.如图,矩形ABCD 中,AB =8,AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA =OB =6,点C 在第一象限,∠A =30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ . 三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长. 22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2017年河北省数学中考模拟试题(1)有答案
2017年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2009)1(-的相反数是( ) A .1 B .1- C .2009 D .2009-2.函数y=+中自变量x 的取值范围是( )A.x ≤2B.x=3C.x 〈2且x ≠3D.x ≤2且x ≠33. 某校九年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ) A .中位数 B .众数 C .平均数 D .极差4.如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC AB CD BC=;④. 其中单独能够判定 ABC ACD △∽△的个数为( )A .1B .2C .3D .45. 某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八,九月份平均每月的增长率为x,那么x 满足的方程是( )A. 50+50(1+x 2)=196B. 50+50(1+x)+50(1+x)²=196C. 50(1+x 2)=196D.50+50(1+x)+50(1+2x)=1966.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小7. 2013年12月15日,嫦娥三号着陆器、巡视器顺利完成互拍,把成像从远在地球38万km 之外的月球传到地面,标志着我国探月工程二期取得圆满成功,将38万用科学记数法表示应为( )A.0.38×106B.0.38×105 C .3.8×104 D .3.8×1058.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D ,E ,F 分别是OA ,OB ,OC 的中点, 则△DEF 与△ABC 的面积比是( )A .1:2B .1:4C .1:5D .1:69. 已知二次函数y=ax 2+bx+c 的图像如图所示,下列五个结论中:①2a-b 〈0;②abc 〈0;③a+b+c 〈0;④a-b+c 〉0;⑤4a+2b+c 〉0,1 2 AC AD ·AB =x-3 - 2 x x yO AB6题 O y 第8题图 -1 1错误的有()A.1个B.2个C.3个D.4个10. 如图,在平面直角坐标系xOy 中,等腰梯形ABCD的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).A .(2010,2)B .(2012,-2 )C .(0,2)D .(2010,-2 ) 11.正方形ABCD 中,点P 是对角线AC 上的任意一点(不包括端点),以P 为圆心的圆与AB 相切,则AD 与P e 的位置关系是( B ) A .相离 B .相切 C .相交 D .不确定 12.已知ABC △的面积为36,将ABC △沿BC 平移到A B C '''△,使B '和C 重合,连结AC '交 A C '于D ,则C DC '△的面积为( D ) A .6 B .9 C .12 D .1813.给出三个命题:①点()P b a ,在抛物线21y x =+上;②点(13)A ,能在抛物线21y ax bx =++上;③点(21)B -,能在抛物线21y ax bx =-+上. 若①为真命题,则A .②③都是真命题B .②③都是假命题C .②是真命题,③是假命题D .②是假命题,③是真命题14.已知⊙O 1的半径是2cm ,⊙O 2的半径是3cm ,若这两圆相交,则圆心距d (cm )的取值范围是 ( ) A . d <1 B . 1≤d ≤5 C . d >5 D . 1<d <5 15.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC 是格点三角形(即顶点恰好是正方形的顶点),将△ABC 绕点A 逆时针旋转90°,则在△ABC 扫过的区域中(不含边界上的点),到点O 的距离为无理数的格点的个数是( )A. 3B. 4C. 5D. 616. 已知两直线11-+=k kx y 、k k x k y ()1(2++=为正整数),设这两条直线与x 轴所围成的三角形的面积为k S ,则1232013S S S S ++++L 的值是( )A .20122013 B .40242013 C .20142013 D .402820132015年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.总 分 核分人A BC (B ')D A ' C '(第9题)2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.当x ≤0时,化简1x--的结果是 .18. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .19.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ; 20.将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,为 cm 2.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
河北省沧州市东光县2017年中考数学一模试卷及参考答案
(1)
发现:
△CMP和△BPA是否相似,若相似给出证明,若不相似说明理由; (2)
思考:
线段AM是否存在最小值?若存在求出这个最小值,若不存在,说明理由; (3)
探究:
当△ABP≌△ADN时,求BP的值是多少? 26. 如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.
在实数范围内有意义,则实数x的取值范围是( )
A . x≥﹣1 B . x>2 C . x≠2 D . x≥﹣1且x≠2 5. 如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标 轴的垂线与两坐标轴围成的矩形的周长是( )
A . 5 B . 7.5 C . 10 D . 25 6. 如图,在平行四边形ABCD中,对角线AC⊥BD,且AC=8,BD=6,DH⊥AB于H,则AH等于( )
(1) 请求出“希望班”全班人数; (2) 请把折线统计图补充完整; (3) 欢欢和乐乐参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率. 24. 在一条笔直的公路的同侧依次排列着A,C,B三个村庄,某天甲、乙两车分别从A,B两地出发,沿这条公路匀速 行驶至C地停止,从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的
三、 解答题
20. 计算:
(1)
﹣10﹣1+
﹣5sin30°+(3.14﹣π)0
(2) 已知m2﹣5=3m,求代数式2m2﹣6m﹣1的值.
21. 已知直线l1∥l2∥l3 , 等腰直角△ABC的三个顶点A,B,C分别在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距离为1 ,l2 , l3的距离为3,求:
河北省沧州市2017届九年级上期末数学试卷含答案解析
河北省沧州市2017届九年级上期末数学试卷含答案解析一、相信你的选择(每小题3分,共48分,每小题只有一个正确的答案)1.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚平均的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段能够组成一个三角形2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10 D.124.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1 B.0 C.﹣1 D.25.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m6.关于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)7.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定8.“石家庄市改日降水概率是10%”,对此消息的下列说法正确的是()A.石家庄市改日将有10%的地区降水B.石家庄市改日将有10%的时刻降水C.石家庄市改日降水的可能性较小D.石家庄改日确信不降水9.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE 的是()A.∠C=∠E B.∠B=∠ADE C.D.10.边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.11.已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A.1.5cm2B.3cm2C.12cm2D.24cm212.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠513.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则那个圆锥的底面圆半径为()A.B.C.D.14.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C 三等分圆周,街心花园内除了沿圆周的一条要紧道路外还有通过圆心的三条道路,一天早晨,有甲、乙两位晨练者同时从A点动身,其中甲沿着圆走回原处A,乙沿着也走回原处,假设它们行走的速度相同,则下列结论正确的是()A.甲先回到A B.乙先回到A C.同时回到A D.无法确定16.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c通过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个 B.2个 C.3个 D.4个二、试试你的身手(本题4个小题,每小题3分,共12分)17.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弦CD的长是.18.如图是一张月历表,在此月历表上能够用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).假如圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是.19.将一副三角尺按如图所示的方式叠放在一起,边AD与BC相交于点E,则的值等于.20.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于.三、挑战你的技能(本大题6个小题,共60分)21.如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A (1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)依照图象直截了当写出反比例函数值大于一次函数值的x的取值范畴.22.如图,△ABC的顶点都在方格线的交点(格点)上.(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′.(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.23.四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问那个游戏规则公平吗?并说明理由.24.用长为32米的篱笆围成一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积最大的养鸡场?假如能,要求出其边长及最大面积;假如不能,请说明理由.25.如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.26.如图,已知抛物线y=ax2+bx(a≠0)通过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,直截了当写出点D的坐标.2021-2021学年河北省沧州市九年级(上)期末数学试卷参考答案与试题解析一、相信你的选择(每小题3分,共48分,每小题只有一个正确的答案)1.下列说法中,正确的是()A.买一张电影票,座位号一定是奇数B.投掷一枚平均的硬币,正面一定朝上C.从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性大D.三条任意长的线段能够组成一个三角形【考点】可能性的大小.【分析】依照可能性的大小分别对每一项进行判定即可.【解答】解:A、买一张电影票,座位号不一定是奇数,故本选项错误;B、投掷一枚平均的硬币,正面不一定朝上,故本选项错误;C、从1、2、3、4、5这五个数字中任意取一个数,取得奇数的可能性是,故本选项正确;D、三条任意长的线段不一定组成一个三角形,故本选项错误;故选C.2.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依照轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.3.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10 D.12【考点】圆的认识.【分析】依照圆中最长的弦为直径求解.【解答】解:因为圆中最长的弦为直径,因此弦长L≤10.故选D.4.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;代数式求值.【分析】一元二次方程的根确实是一元二次方程的解,确实是能够使方程左右两边相等的未知数的值;即用那个数代替未知数所得式子仍旧成立;将m代入原方程即可求m2﹣m的值.【解答】解:把x=m代入方程x2﹣x﹣1=0可得:m2﹣m﹣1=0,即m2﹣m=1;故选A.5.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【考点】相似三角形的应用.【分析】依照同时同地物高与影长成正比列式运算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.6.关于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.与x轴有两个交点D.顶点坐标是(1,2)【考点】二次函数的性质.【分析】依照抛物线的性质由a=1得到图象开口向上,依照顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判定抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:D.7.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定【考点】点与圆的位置关系.【分析】依照点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径)即可得到结论.【解答】解:∵OP=7>5,∴点P与⊙O的位置关系是点在圆外.故选C.8.“石家庄市改日降水概率是10%”,对此消息的下列说法正确的是()A.石家庄市改日将有10%的地区降水B.石家庄市改日将有10%的时刻降水C.石家庄市改日降水的可能性较小D.石家庄改日确信不降水【考点】概率的意义.【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件确实是随机事件,即可能发生也可能不发生的事件,发生的概率大于0同时小于1.【解答】解:“石家庄市改日降水概率是10%”,正确的意思是:石家庄市改日降水的机会是10%,改日降水的可能性较小.故选C.9.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE 的是()A.∠C=∠E B.∠B=∠ADE C.D.【考点】相似三角形的判定.【分析】先依照∠1=∠2求出∠BAC=∠DAE,再依照相似三角形的判定方法解答.【解答】解:∵∠1=∠2,∴∠DAE=∠BAC,A、添加∠C=∠E,可用两角法判定△ABC∽△ADE,故本选项错误;B、添加∠B=∠ADE,可用两角法判定△ABC∽△ADE,故本选项错误;C、添加=,可用两边及其夹角法判定△ABC∽△ADE,故本选项错误;D、添加=,不能判定△ABC∽△ADE,故本选项正确;故选D.10.边长为a的正六边形的内切圆的半径为()A.2a B.a C.D.【考点】正多边形和圆.【分析】解答本题要紧分析出正多边形的内切圆的半径,即为每个边长为a的正三角形的高,从而构造直角三角形即可解.【解答】解:边长为a的正六边形能够分成六个边长为a的正三角形,而正多边形的内切圆的半径即为每个边长为a的正三角形的高,因此正多边形的内切圆的半径等于.故选C.11.已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A.1.5cm2B.3cm2C.12cm2D.24cm2【考点】相似三角形的性质.【分析】依照题意求出两个三角形的周长比,依照相似三角形的性质解答即可.【解答】解:∵△ABC与△A′B′C′的周长比为2:1,△ABC∽△A′B′C′,∴△ABC与△A′B′C′的面积比为4:1,又△A′B′C′的面积为6,∴△ABC的面积=24,故选:D.12.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【分析】由方程有实数根可知根的判别式b2﹣4ac≥0,结合二次项的系数非零,可得出关于a一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:a≥1且a≠5.故选C.13.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则那个圆锥的底面圆半径为()A.B.C.D.【考点】圆锥的运算.【分析】设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr=,然后解方程即可.【解答】解:设圆锥底面的半径为r,依照题意得2πr=,解得:r=.故选D.14.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】先依照一次函数的性质判定出a取值,再依照反比例函数的性质判定出a的取值,二者一致的即为正确答案.【解答】解:A、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;B、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a<0,错误;C、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a<0,正确;D、由函数y=ax﹣a的图象可知m>0,﹣a<0,一次函数与y轴交与负半轴,相矛盾,故错误;故选:C.15.如图是一个圆形的街心花园,A、B、C是圆周上的三个娱乐点,且A、B、C 三等分圆周,街心花园内除了沿圆周的一条要紧道路外还有通过圆心的三条道路,一天早晨,有甲、乙两位晨练者同时从A点动身,其中甲沿着圆走回原处A,乙沿着也走回原处,假设它们行走的速度相同,则下列结论正确的是()A.甲先回到A B.乙先回到A C.同时回到A D.无法确定【考点】圆心角、弧、弦的关系.【分析】分别运算两个不同的路径后比较即可得到答案.【解答】解:设圆的半径为r,则甲行走的路程为2πr,如图,连接AB,作OD⊥AB交⊙O于点D,连接AD,BD,∵A、B、C三等分圆周,∴∠ADB=2∠ADO=120°,AD=OD=BD=r,∴弧AB的长==∴乙所走的路程为:=2πr,∴两人所走的路程相等.故选C.16.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c通过点(﹣1,﹣4),下列结论:①b2>4ac;②ax2+bx+c≥﹣6;③若点(﹣2,m),(﹣5,n)在抛物线上,则m>n;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】利用抛物线与x轴的交点个数可对①进行判定;利用抛物线的顶点坐标可对②进行判定;由顶点坐标得到抛物线的对称轴为直线x=﹣3,则依照二次函数的性质可对③进行判定;依照抛物线的对称性得到抛物线y=ax2+bx+c上的点(﹣1,﹣4)的对称点为(﹣5,﹣4),则可对④进行判定.【解答】解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,即b2>4ac,因此①正确;∵抛物线的顶点坐标为(﹣3,﹣6),即x=﹣3时,函数有最小值,∴ax2+bx+c≥﹣6,因此②正确;∵抛物线的对称轴为直线x=﹣3,而点(﹣2,m),(﹣5,n)在抛物线上,∴m<n,因此③错误;∵抛物线y=ax2+bx+c通过点(﹣1,﹣4),而抛物线的对称轴为直线x=﹣3,∴点(﹣1,﹣4)关于直线x=﹣3的对称点(﹣5,﹣4)在抛物线上,∴关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,因此④正确.故选C.二、试试你的身手(本题4个小题,每小题3分,共12分)17.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弦CD的长是2.【考点】垂径定理;勾股定理.【分析】在△ACE中,由勾股定理的逆定理可判定△ACE为直角三角形,再由垂径定理可求得CD的长.【解答】解:∵AC=2,AE=,CE=1,∴AE2+CE2=3+1=4=AC2,∴△ACE为直角三角形,∴AE⊥CD,∵AB为直径,∴CD=2CE=2,故答案为:2.18.如图是一张月历表,在此月历表上能够用一个矩形任意圈出2×2个位置上相邻的数(如2,3,9,10).假如圈出的4个数中最大数与最小数的积为128,则这4个数中最小的数是8.【考点】一元二次方程的应用.【分析】依照题意分别表示出最小数与最大数,进而利用最大数与最小数的积为128得出等式求出答案.【解答】解:设这4个数中最小数是x,则最大数为:x+8,依照题意可得:x(x+8)=128,整理得:x2+8x﹣128=0,(x﹣8)(x+16)=0,解得:x1=8,x2=﹣16,则这4个数中最小的数是8.故答案为:8.19.将一副三角尺按如图所示的方式叠放在一起,边AD与BC相交于点E,则的值等于.【考点】相似三角形的判定与性质;平行线的判定;含30度角的直角三角形;勾股定理.【分析】设AB=AC=1,依照勾股定理求出BC,求出AD=2AC=2,依照勾股定理求出DC,求出AB∥CD,得出相似△AEB∽△DEC,得出比例式,代入求出即可.【解答】解:设AB=AC=1,由勾股定理得:BC==,∵在Rt△ACD中,∠ACD=90°,AC=1,∠D=30°,∴AD=2AC=2,由勾股定理得:DC==,∵∠BAC+∠CD=90°+90°=180°,∴AB∥CD,∴△AEB∽△DEC,∴=,∴==,故答案为:.20.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于5.【考点】反比例函数系数k的几何意义.【分析】先设C(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数与的图象上,可得到A点坐标为(,b),B点坐标为(﹣,b),从而求出AB的长,然后依照三角形的面积公式运算即可.【解答】解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,=•AB•OC=••b=5.∴S△ABC故答案为:5.三、挑战你的技能(本大题6个小题,共60分)21.如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A (1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)依照图象直截了当写出反比例函数值大于一次函数值的x的取值范畴.【考点】反比例函数与一次函数的交点问题.【分析】(1)依照反比例函数y=与一次函数y=x +b 的图形在第一象限相交于点A (1,﹣k +4),能够求得k 的值,从而能够求得点A 的坐标,从而能够求出一次函数y=x +b 中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组能够求得点B 的坐标,进而能够求得△AOB 的面积;(3)依照函数图象能够解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x +b 的图形在第一象限相交于点A (1,﹣k +4), ∴,解得,k=2,∴点A (1,2),∴2=1+b ,得b=1, 即这两个函数的表达式分别是:,y=x +1;(2) 解得,或,即这两个函数图象的另一个交点B 的坐标是(﹣2,﹣1);将y=0代入y=x +1,得x=﹣1,∴OC=|﹣1|=1,∴S △AOB =S △AOC +S △BOC =,即△AOB的面积是;(3)依照图象可得反比例函数值大于一次函数值的x的取值范畴是x<﹣2或0<x<1.22.如图,△ABC的顶点都在方格线的交点(格点)上.(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′.(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是(2,﹣3).【考点】作图-旋转变换;作图-平移变换.【分析】(1)直截了当利用旋转的性质得出对应点位置进而得出答案;(2)直截了当利用平移的性质得出对应点位置进而得出答案;(3)利用关于原点对称点的性质直截了当得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:△A″B″C″,即为所求;(3)将△ABC绕原点O旋转180°,A的对应点A1的坐标是(2,﹣3).故答案为:(2,﹣3).23.四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问那个游戏规则公平吗?并说明理由.【考点】游戏公平性.【分析】先利用树状图展现所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情形,再依照概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判定游戏的公平性.【解答】解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情形,因此P(小亮获胜)==;P(小明获胜)=1﹣=,因为>,因此那个游戏规则不公平.24.用长为32米的篱笆围成一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积最大的养鸡场?假如能,要求出其边长及最大面积;假如不能,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)依照题意能够写出y关于x的函数关系式;(2)令y=60代入第一问求得的函数关系式,能够求得相应的x的值;(3)将第一问中的函数关系式化为顶点式,能够求得函数的最值,从而本题得以解决.【解答】解:(1)由题意可得,y=x=x(16﹣x)=﹣x2+16x,即y关于x的函数关系式是:y=﹣x2+16x(0<x<16);(2)令y=60,则60=﹣x2+16x,解得x1=6,x2=10.即当x为6米或10米时,围成的养鸡场面积为60平方米;(3)能围成面积最大的养鸡场,∵y=﹣x2+16x=﹣(x﹣8)2+64,∴当x=8时,y取得最大值,现在y=64,即当x=8时,围成的养鸡场的最大面积是64平方米.25.如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)欲证明PA为⊙O的切线,只需证明OA⊥AP;(2)通过相似三角形△ABC∽△PAO的对应边成比例来求线段AC的长度.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,依照勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.26.如图,已知抛物线y=ax2+bx(a≠0)通过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,直截了当写出点D的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法即可直截了当求得二次函数的解析式;(2)把二次函数化成顶点式的形式即可求得C的坐标;(3)分成OA是平行四边形的一边和OA是平行四边形的对角线两种情形进行讨论,依照平行四边形的性质即可求解.【解答】解:(1)依照题意得:,解得:,则抛物线的解析式是y=x2+2x;(2)y=x2+2x=(x+1)2﹣1,则C的坐标是(﹣1,﹣1);(3)抛物线的对称轴是直线x=﹣1,当OA是平行四边形的一边时,D和E一定在x轴的上方.OA=2,则设E的坐标是(﹣1,a),则D的坐标是(﹣3,a)或(1,a).把(﹣3,a)代入y=x2+2x得a=9﹣6=3,则D的坐标是(﹣3,3)或(1,3),E的坐标是(﹣1,3);当OA是平行四边形的对角线时,D一定是顶点,坐标是(﹣1,﹣1),则E的坐标是D的对称点(﹣1,1).2021年2月15日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河北省沧州市中考数学模拟试卷(七)一、选择题(共13小题)1.27的立方根是()A.3 B.﹣3 C.9 D.﹣92.设x是实数,y=|x﹣1|+|x+1|,下列结论正确的是()A.y没有最小值B.只有一个x使y取到最小值C.有有限多个x(不止一个)使y取到最小值D.有无穷多个x使y取到最小值3.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个4.函数y=x2+2x+1写成y=a(x﹣h)2+k的形式是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+C.y=(x﹣1)2﹣3 D.y=(x+2)2﹣15.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块7.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为()A.15°B.20°C.25°D.30°8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为()A.12分B.10分C.16分D.14分9.如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1﹣h2|等于()A.5 B.6 C.7 D.810.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC 的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.B.25 C. D.5611.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cmC.cm D.cm12.在我国股市交易中,每买、卖一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为()A.2000元B.1925元C.1835元D.1910元13.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对 C.5对 D.3对二、填空题(共7小题,每小题3分,满分21分)14.(3分)若双曲线的图象经过第二、四象限,则k的取值范围是.15.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.16.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为千瓦.17.(3分)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.18.(3分)用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式.19.(3分)如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP ⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.20.(3分)某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为.三、解答题(共7小题,满分0分)21.计算:(﹣2011)0+()﹣1+|﹣2|﹣2cos60°.22.先化简,再求值:()÷(﹣1),其中a=2﹣.23.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当BC=时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.24.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表(1)在图1中,“7分”所在扇形的圆心角等于°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?25.已知:如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/秒的速度移动,点Q从点C 开始沿CB边向点B以2cm/秒的速度移动.如果P、Q分别从A、C同时出发.设移动的时间为t.求:(1)t为何值时,梯形PQCD是等腰梯形;(2)t为何值时,AB的中点E到线段PQ的距离为7cm.26.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB 是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD 的长是一元二次方程x2﹣kx+2=0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.27.把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时x的值;若不存在,说明理由.2017年河北省沧州市中考数学模拟试卷(七)参考答案与试题解析一、选择题(共13小题)1.27的立方根是()A.3 B.﹣3 C.9 D.﹣9【解答】解:∵3的立方等于27,∴27的立方根等于3.故选A.2.设x是实数,y=|x﹣1|+|x+1|,下列结论正确的是()A.y没有最小值B.只有一个x使y取到最小值C.有有限多个x(不止一个)使y取到最小值D.有无穷多个x使y取到最小值【解答】解:从数轴上可知,区间[﹣1,1]上的任一点x到点1与点﹣1的距离之和均为2;区间[﹣1,1]之外的点x 到点1与点﹣1的距离之和均大于2.所以函数y=|x﹣1|+|x+1|当﹣1≤x≤1时,取得最小值2.A、y在区间[﹣1,1]上取得最小值2;故本选项错误;B、y在区间[﹣1,1]上的任一点x到点1与点﹣1的距离之和均为2;故本选项错误;C、y在区间[﹣1,1]之外的点x 到点1与点﹣1的距离之和均大于2,且无限大,所以y在区间[﹣1,1]之外的点没有最大值;故本选项错误;D、y在区间[﹣1,1]上的任一点x到点1与点﹣1的距离之和均为最小值2,所以有无穷多个x使y取到最小值.故本选项正确;故选D.3.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°.其中不正确的命题的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误;③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确.综合以上分析,不正确的命题包括①②③.故选C.4.函数y=x2+2x+1写成y=a(x﹣h)2+k的形式是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+C.y=(x﹣1)2﹣3 D.y=(x+2)2﹣1【解答】解:y=x2+2x+1=(x2+4x+4)﹣2+1=(x+2)2﹣1故选D.5.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.【解答】解:∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故选D.6.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块【解答】解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.7.如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为()A.15°B.20°C.25°D.30°【解答】解:∵∠A′BC=20°∴∠BA′C=70°∴∠DA′B=110°∴∠DAB=110°∴∠ABC=70°∴∠ABA′=∠ABC﹣∠A′BC=70°﹣20°=50°∴∠A′BD=∠ABA′=25°.故选C.8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为()A.12分B.10分C.16分D.14分【解答】解:根据函数图象可得:明明骑自行车去上学时,上坡路为1千米,速度为1÷6=千米/分,下坡路程为3﹣1=2千米,速度为2÷(10﹣6)=千米/分,放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,上坡路程为2千米,速度为千米/分,下坡路程为1千米,速度为千米/分,因此走这段路所用的时间为2÷+1÷=14分.故选:D.9.如图,AB是⊙O的直径,且AB=10,弦MN的长为8,若弦MN的两端在圆上滑动时,始终与AB相交,记点A、B到MN的距离分别为h1,h2,则|h1﹣h2|等于()A.5 B.6 C.7 D.8【解答】解:设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴△AFH∽△ODH∽△BEH,∴即,即=,∴(AF﹣BE)=﹣2,∴|h1﹣h2|=|AF﹣BE|=6.故选B.10.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC 的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A.B.25 C. D.56【解答】解:设三边分别为7a,24a,25a,则:(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,解得:a=,∴构成的三角形的三边分别是,16,,∴周长=+16=.故选:C.11.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cmC.cm D.cm【解答】解:连接OA、OB、OE,∵四边形ABCD是正方形,∴AD=BC,∠ADO=∠BCO=90°,∵在Rt△ADO和Rt△BCO中∵,∴Rt△ADO≌Rt△BCO,∴OD=OC,∵四边形ABCD是正方形,∴AD=DC,设AD=acm,则OD=OC=DC=AD=acm,在△AOD中,由勾股定理得:OA=OB=OE=acm,∵小正方形EFCG的面积为16cm2,∴EF=FC=4cm,在△OFE中,由勾股定理得:=42+,解得:a=﹣4(舍去),a=8,a=4(cm),故选C.12.在我国股市交易中,每买、卖一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,该投资者的实际赢利为()A.2000元B.1925元C.1835元D.1910元【解答】解:(12﹣10)×1000﹣10×1000×(元),所以该投资者的实际盈利为1835元.故选C.13.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对 C.5对 D.3对【解答】解:令px﹣2=x+q,解得x=,因为交点在直线x=2右侧,即>2,整理得q>2p﹣4.把p=2,3,4,5分别代入即可得相应的q的值,有序数对为(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,5),又因为p≠q,故(2,2),(3,3)舍去,满足条件的有6对.故选:B.二、填空题(共7小题,每小题3分,满分21分)14.(3分)若双曲线的图象经过第二、四象限,则k的取值范围是k <.【解答】解:∵双曲线的图象经过第二、四象限,∴2k﹣1<0,∴k<,故答案为:k<.15.(3分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.16.(3分)据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 1.2×107千瓦.【解答】解:根据题意12 000 000用科学记数法表示为1.2×107千瓦.17.(3分)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为4或12cm2.【解答】解:本题有两种情况,(1)DE=1cm,EC=3cm.因为AE平分∠DAB,故∠DAE=45°,△ADE中,AD=DE=1,矩形面积为1×(1+3)=4cm2.(2)DE=3cm,EC=1cm.因为AE平分∠DAB,故∠DAE=45°,△ADE中,AD=DE=3,矩形面积为3×(1+3)=12cm2.故答案为4或12.18.(3分)用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式y=2(x+)2﹣.【解答】解:y=2x2+3x+1=2(x+)2﹣.故答案为:y=2(x+)2﹣.19.(3分)如图,矩形ABCD的长AB=6cm,宽AD=3cm.O是AB的中点,OP ⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是cm2.【解答】解:由题意,得:S阴影=S半圆=π()2=π(cm2).20.(3分)某工厂有一种产品现在的年产量是20万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,那么y与x之间的关系应表示为y=20(x+1)2.【解答】解:y与x之间的关系应表示为y=20(x+1)2.故答案为:y=20(x+1)2.三、解答题(共7小题,满分0分)21.计算:(﹣2011)0+()﹣1+|﹣2|﹣2cos60°.【解答】解:原式=1++2﹣﹣1=222.先化简,再求值:()÷(﹣1),其中a=2﹣.【解答】解:原式=[﹣]÷=•=•=,把a=2﹣代入得:原式=.23.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当BC=时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.【解答】解:(1)判断:直线FD与以AB为直径的⊙O相切.证明:如图,作以AB为直径的⊙O;∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,∴∠ADB=∠ACB=90°.∵O为AB的中点,连接DO,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.24.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表(1)在图1中,“7分”所在扇形的圆心角等于144°.(2)请你将图2的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?【解答】解:(1)利用扇形图可以得出:“7分”所在扇形的圆心角=360°﹣90°﹣72°﹣54°=144°;(2)利用扇形图:10分所占的百分比是90°÷360°=25%,则总人数为:5÷25%=20(人),得8分的人数为:20×=3(人).如图;(3)根据乙校的总人数,知甲校得9分的人数是20﹣8﹣11=1(人).甲校的平均分:(7×11+9+80)÷20=8.3分;中位数为7分.由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.(4)因为选8名学生参加市级口语团体赛,甲校得(10分)的有8人,而乙校得(10分)的只有5人,所以应选甲校.25.已知:如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿AD边向点D以1cm/秒的速度移动,点Q从点C开始沿CB边向点B以2cm/秒的速度移动.如果P、Q分别从A、C同时出发.设移动的时间为t.求:(1)t为何值时,梯形PQCD是等腰梯形;(2)t为何值时,AB的中点E到线段PQ的距离为7cm.【解答】解:如图1,过P作PN⊥BC于N,过D作DM⊥BC于M,∵AD∥BC,∠B=90°,DM⊥BC,∴四边形ABMD是矩形,AD=BM.∴MC=BC﹣BM=BC﹣AD=3.又∵QN=BN﹣BQ=AP﹣BQ=t﹣(21﹣2t)=3t﹣21.若梯形PQCD为等腰梯形,则QN=MC=3.得3t﹣21=3,t=8,即t=8秒时,梯形PQCD是等腰梯形.(2)如图2,过E作EF⊥PQ于F,连接PE,EQ,当EF=7cm时,∵AE=BE=AB=×14=7cm,∴AE=EF=BE,∵AD∥BC,∠B=90°,∴∠A=90°,∵PE=PE,EQ=EQ,∴△AEP≌△FEP,△BEQ≌△FEQ,∴PA=PF=t,BQ=FQ=21﹣2t,∴PQ=PF+FQ=21﹣t,在Rt△PQM中,PM=14,QM=3t﹣1,∵PM2+QM2=PQ2,∴142+(3t﹣21)2=(21﹣t)2,解得:t=3.5或t=7,∴当t为3.5或7时,AB的中点E到线段PQ的距离为7cm.26.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB 是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD 的长是一元二次方程x2﹣kx+2=0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【解答】(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2分)(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(5分)(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程x2﹣kx+2=0的两根(k为常数).∴AE•BD=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.27.把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK 是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时x的值;若不存在,说明理由.【解答】解:(1)在上述旋转过程中,BH=CK,四边形CHGK的面积不变.证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,在△BGH与△CGK中,∴△BGH≌△CGK(ASA),=S△CGK.∴BH=CK,S△BGH∴S=S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4,四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;即:S四边形CHGK(2)∵AC=BC=4,BH=x,∴CH=4﹣x,CK=x.=S四边形CHGK﹣S△CHK,由S△GHK得y=4﹣x(4﹣x),∴y=x2﹣2x+4.由0°<α<90°,得到BH最大=BC=4,∴0<x<4;(3)存在.根据题意,得x2﹣2x+4=×8,解这个方程,得x1=1,x2=3,即:当x=1或x=3时,△GHK的面积均等于△ABC的面积的.。