2020年六年级数学培优题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年六年级数学培优题
一、培优题易错题
1.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.
(1)用含的代数式表示点对应的数:________;
(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.
①用含的代数式表示点在由到过程中对应的数:________ ;
②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);
③当PQ=3 时,求 t的值.________
【答案】(1)
(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,
【解析】(1)点所对应的数为:
( 2 )①
② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒
当时,:,:
,解之得
当时,:,:
,解之得
【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.
2.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.
(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是________,第n个“正方形数”是________.
(2)除“1”以外,请再写一个既是“三角形数”,又是“正方形数”的数________.
(3)经探究我们发现:任何一个大于1的“正方形数”都可以看做两个相邻“三角形数”之和. 例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…请写出上面第4个和第5个等式.
(4)在(3)中,请探究n2=________+________。
【答案】(1)15;;25;n2
(2)36
(3)25=10+15;36=15+21
(4)2n;1
【解析】【解答】解:(1)15,,25,n2;(2)1+2+3+4+5+6+7+8=36,62=36,所以36是三角形数,也是正方形数。
(3)25=10+15,36=15+21;(4)
,
∵右边=
=
=n2+2n+1=(n+1)2=左边,
∴原等式成立.
故答案为15,,25,n2;25=10+15,36=15+21.
【分析】(1)由“三角形数”得意义可得规律:第n个数为,把n=5代入计算即可求解;根据“正方形数”的意义可得:第n个数为,把n=5代入计算即可求解;
(2)通过计算可知,36既是三角形数,也是正方形数;
(3)由题意可得④25=10+15,⑤36=15+21;
(4)由(3)中的计算可得:;,,。
3.学校举行“创客节”,明明的创客作品模型中需要用到一种花瓣图案(如下图),花瓣图案的各个小圆半径都是1cm。
明明打算从一块长10cm,宽8cm的长方形纸板上剪花瓣图案。
(注:花瓣图案不能使用胶水、胶带等剪拼)
(1)这块长方形纸板的面积是多大?
(2)这个花瓣图案的面积是多大?(π取3.14)
(3)明明还能从这块长方形纸板的剩余部分再剪出1个花瓣图案吗?如果能,如何剪?请你画一画、写一写;如果不能,请说明理由。
【答案】(1)10×8=80(平方厘米)
答:这块长方形纸板的面积是80平方厘米。
(2)如图:
1×1×16+3.14×12
=16+3.14
=19.14(平方厘米)
答:花瓣图案的面积是19.14平方厘米。
(3)
【解析】【分析】(1)用长乘宽求出长方形纸板的面积;
(2)花瓣中间是4个正方形,每个花瓣处组合后刚好是3个正方形和1个圆,这样总面积就是16个正方形和1个圆的面积;
(3)在纸板的右上角剪下同样的花瓣图案。
4.一件工程,甲单独做要小时,乙单独做要小时,如果接甲、乙、甲、乙...顺序交替工作,每次小时,那么需要多长时间完成?
【答案】解:交替干活2小时完成:,
甲、乙各干3小时完成:,
还剩下:,
甲先干1小时还剩:,
乙再干:(小时)=20(分钟),
3×2+1=7(小时)
答:需要7小时20分钟完成整个工程。
【解析】【分析】甲1小时完成整个工程的,乙1小时完成整个工程的,把两队的工作效率相加就是两队交替干活时两个小时完成的工作量。
根据实际情况甲、乙先各干
3小时,计算出3小时完成的工作量和还剩下的工作量,剩下的工作量甲先干1小时,还有剩余的工作量,这个剩余的工作量由乙来做,求出乙再做的时间即可求出完成这项工程一共需要的时间。
5.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相
当甲、乙每天工作效率和的.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?
【答案】解:甲的工作效率:,
丙的工作效率:,
乙的工作效率:,
乙独做的时间:1÷=24(天)。
答:乙一人单独抄需要24天才能完成。
【解析】【分析】已知甲、乙、丙合抄一天完成书稿的,又已知甲每天抄写量等于
乙、丙两人每天抄写量之和,因此甲两天抄写书稿的,即甲每天抄写书稿的;由于
丙抄写5天相当于甲乙合抄一天,从而丙6天抄写书稿的,即丙每天抄写书稿的,这样用三人的工作效率和减去甲、丙的工作效率即可求出乙的工作效率,进而求出乙单独完成需要的时间。
6.打印一份书稿,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成.如果甲、乙合做2天,剩下的由乙独做,那么刚好在规定时间内完成.甲、乙两人合做需要几天完成?
【答案】解:乙独做需要的天数:(天),甲独做需要:15-5=10(天),
合做需要:(天)。
答:甲、乙两人合做需要6天完成。
【解析】【分析】根据“甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成.如果甲、乙合做2天,剩下的由乙独做,那么刚好在规定时间内完成”,可知甲做2天的工作量等于乙做3天的工作量,所以完成这项工作甲、乙所用的时间比是.另外,由于甲、乙单独做,乙用的时间比甲多天,这样就可以先求出乙独做需要的天
数,进而求出甲独做需要的天数。
用总工作量除以工作效率和即可求出合做完成的时间。
7.一件工程甲单独做小时完成,乙单独做小时完成.现在甲先做小时,然后乙做小时,再由甲做小时,接着乙做小时……两人如此交替工作,完成任务共需多少小时?
【答案】解:假设两队交替做4次,甲的工作量:,
乙的工作量:,
还剩下的工作量:,
甲还要做:(小时),
总时间:(1+3+5+7)+(2+4+6+8)+=(小时)。
答:完成任务共要小时。
【解析】【分析】交替4次,甲工作的时间是1、3、5、7小时,乙工作的时间是2、4、6、8小时。
用每队的工作效率乘各自的工作时间求出各自完成的工作量,用1减去两队分别完成的工作量即可求出剩下的工作量。
剩下的工作量该甲做了,因此用剩下的工作量除以甲的工作效率就是甲还需要做的时间。
然后把两队工作的总时间相加即可求出共需要的时间。
8.甲、乙、丙三队要完成,两项工程,工程的工作量是工程工作量再增加,如果让甲、乙、丙三队单独做,完成工程所需要的时间分别是天,天,天.现在让甲队做工程,乙队做工程,为了同时完成这两项工程,丙队先与乙队合做工程若干天,然后再与甲队合做工程若干天.问丙队与乙队合做了多少天?
【答案】解:三队合作完成两项工程所用的天数为:
(天),
18天里,乙队一直在完成工作,因此乙的工作量为:,
剩下的工作量应该是由丙完成,因此丙在工程上用了:(天)。
答:丙队与乙队合做了15天。
【解析】【分析】这个问题当中有两个不同的工程,三个不同的人,因此显得很难解决,数学中化归的思想很重要,即以一个为基准,把其他的量转化为这个量,然后进行计算,
我们不妨设工程的工作总量为单位“1”,那么工程的工作量就是“”。
用两项工程总工作量除以三队的工作效率和即可求出共同完成的时间。
用乙的工作效率乘共同完成的时间即可求出乙完成的工作量,那么B工程剩下的工作量就由丙来做,这样用丙帮助乙完成的工作量除以丙的工作效率即可求出丙队帮助乙的时间,也就是丙与乙合做的天数。
9.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的
倍.上午去甲工地的人数是去乙工地人数的倍,下午这批工人中有的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需名工人再做天,那么这批工人有多少人?
【答案】解:设这批工人有12x人。
上午去甲工地的人数:12x÷(3+1)×3=9x(人),去乙工地的人数:12x-9x=3x(人);
下午去甲工地的人数:12x×=7x(人),去乙工地的人数:12x-7x=5x(人);
甲工地:(9x+7x)÷2=8x(人),乙工地:(3x+5x)÷2=4x(人);
假设甲工地的工作量是3份,那么乙工地的工作量是2份,
8x人一整天完成3份,4x人一整天完成份,
乙工地还剩下:(份),
(人),即8x=24,x=3,
12×3=36(人)。
答:这批工人有36人。
【解析】【分析】“ 下午这批工人中有的人去甲工地”,所以这批工人的人数一定是12的倍数,所以设这批工人有12x人。
根据人员分配确定上午去两个工地的人数和下午去两个工地的人数,这样就可以求出甲工地相当于8x人做一整天,乙工地相当于4x人做一整天;根据甲乙两个工地工作量的倍数关系假设甲工地有3份,乙工地的工作量是2份。
然后求出乙工地还剩下的工作量,求出甲工地做一整天需要的人数,然后求出x的值,就可以求出工人的总人数。
10.一项工程,甲单独做天完成,乙单独做天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了天.乙请假多少天?
【答案】解:
=
=6(天)
16-6=10(天)
答:乙请假10天。
【解析】【分析】乙请假了,甲没有请假,所以甲一共工作了16天,用甲的工作效率乘16求出甲的工作量,用1减去甲的工作量即可求出乙的工作量。
用乙的工作量除以乙的工作效率求出乙工作的时间,用16减去乙的工作时间即可求出乙请假的天数。