大城镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大城镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()
A. 63
B. 58
C. 60
D. 55
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,
由题意得:,
由①得:y-x=34-z,
由②得:x-y=92-z,
即34-z+92-z=0,
解得z=63;
即桌子的高度是63.
故答案为:A.
【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。
2、(2分)下列图形中,1与2是对顶角的有()
A. B. C. D.
【答案】A
【考点】对顶角、邻补角
【解析】【解答】解:A、此图形中的∠1与∠2是两条直线相交所形成的角,它们是对顶角,故A符合题意;
B、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故B不符合题意;
C、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故C不符合题意;
D、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故D不符合题意;
故答案为;A
【分析】根据两条直线相交,具有公共的顶点,角的两边互为反向延长线,这样的两个角是对顶角,对各选项逐一判断即可。
3、(2分)不等式3x+2<2x+3的解集在数轴上表示正确的是()
A. B.
C. D.
【答案】D
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式
【解析】【解答】解:3x-2x<3-2
解之:x<1
故答案为:D
【分析】先求出不等式的解集,再根据不等式的解集作出判断即可。
注意:小于向左边画,用空心圆圈。
4、(2分)x的5倍与它的一半之差不超过7,列出的关系式为()
A.5x-x≥7
B.5x-x≤7
C.5x-x>7
D.5x-x<7
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,
故答案为:B.
【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.
5、(2分)已知关于x、y的方程组的解满足3x+2y=19,则m的值为()
A. 1
B.
C. 5
D. 7
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得x=7m,
①﹣②得y=﹣m,
依题意得3×7m+2×(﹣m)=19,
∴m=1.
故答案为:A.
【分析】观察方程组,可知:x的系数相等,y的系数互为相反数,因此将两方程相加求出x、将两方程相减求出y,再将x、y代入方程3x+2y=19,建立关于m的方程求解即可。
6、(2分)当0<x<1时,、x、的大小顺序是()
A.
B.
C.
D.
【答案】A
【考点】实数大小的比较,不等式及其性质
【解析】【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<<x,在不等式0<x<1的两边都除以x,可得0<1<,
又∵x<1,∴、x、的大小顺序是:,
故答案为:A.
【分析】先在不等式根据不等式的性质②先把不等式0<x<1 两边同时乘以x,再把不等式0<x<1 两边同时除以x,最后把所得的结果进行比较即可作出判断。
7、(2分)如图,工人师傅在工程施工中需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()
A. AB∥BC
B. BC∥CD
C. AB∥DC
D. AB与CD相交
【答案】C
【考点】平行线的判定
【解析】【解答】解:∵∠ABC=150°,∠BCD=30°
∴∠ABC+∠BCD=180°
∴AB∥DC
故答案为:C
【分析】根据已知可得出∠ABC+∠BCD=180°,根据平行线的判定,可证得AB∥DC。
8、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∵∠C=50°,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.
9、(2分)三元一次方程组的解为()
A. B. C. D.
【答案】C
【考点】三元一次方程组解法及应用
【解析】【解答】解:
②×4−①得2x−y=5④
②×3+③得5x−2y=11⑤
④⑤组成二元一次方程组得,
解得,
代入②得z=−2.
故原方程组的解为.
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
10、(2分)在表示某种学生快餐营养成分的扇形统计图中,如图所示,表示维生素和脂肪的扇形圆心角的度数和是()
A. 54°
B. 36°
C. 64°
D. 62°
【答案】A
【考点】扇形统计图
【解析】【解答】解:由图可知,维生素和脂肪占总体的百分比为:5%+10%=15%,
故其扇形圆心角的度数为15%×360°=54°.
故答案为:A
【分析】先根据扇形统计图得出维生素和脂肪占总体的百分比,然后乘以360°可得对应的圆心角的度数.
11、(2分)已知是方程组的解,则a+b+c的值是()
A. 3
B. 2
C. 1
D. 无法确定
【答案】A
【考点】三元一次方程组解法及应用
【解析】【解答】解:将代入方程得
,
①+②+③得4(a+b+c)=12,
∴a+b+c=3,
故答案为:A.
【分析】将x、y、z的值代入方程组中,再观察方程组中各未知数的系数特点:相同字母的系数之和都为4,因此由(①+②+③)÷4,就可求得a+b+c的值。
12、(2分)下列说法中错误的是()
A.中的可以是正数、负数或零
B.中的不可能是负数
C.数的平方根有两个
D.数的立方根有一个
【答案】C
【考点】平方根,立方根及开立方
【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;
B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;
C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;
D选项中任何数都有立方根,所以正确。
故答案为:C
【分析】正数有两个平方根,零的平方根是零,负数没有平方根,任何一个数都有一个立方根,A选项中被开方数a可以是正数,负数或零,B选项中的被开方数只能是非负数,不能是负数,C选项中只有非负数才有平方根,而a有可能是负数,D选项中任何一个数都有一个立方根。
二、填空题
13、(3分)的平方根是________,的算术平方根是________,-216的立方根是________.
【答案】±
;
;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。
14、(1分)已知,那么=________。
【答案】-11
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:∵,且,
∴,
∴,
∴m=-3,n=-8,
∴m+n=-11.
故答案是:-11
【分析】根据几个非负数之和为0的性质,可建立关于m、n的方程组,再利用加减消元法求出方程组的解,然后求出m与n的和。
15、(3分)同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a ________c .若a∥b,b∥c,则a ________c .若a∥b,b⊥c,则a ________c.
【答案】∥;∥;⊥
【考点】平行公理及推论
【解析】【解答】解:∵a⊥b,b⊥c,
∴a∥c;
∵a∥b,b∥c,
∴a∥c;
∵a∥b,b⊥c,
∴a⊥c.
故答案为:∥;∥;⊥.
【分析】根据垂直同一条直线的两条直线平行可得a∥c;
根据平行于同一条直线的两条直线平行可得a∥c;
根据垂直同一条直线的两条直线平行逆推即可.
16、(1分)如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.
【答案】垂线段最短
【考点】垂线段最短
【解析】【解答】解:依题可得:
垂线段最短.
故答案为:垂线段最短.
【分析】根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短.
17、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。
18、(1分)已知一个数的平方根是和,则这个数的立方根是________.
【答案】4
【考点】平方根,立方根及开立方
【解析】【解答】解:依题可得:
(3a+1)+(a+11)=0,
解得:a=-3,
∴这个数为:(3a+1)2=(-9+1)2=64,
∴这个数的立方根为:=4.
故答案为:4.
【分析】一个数的平方根互为相反数,依此列出方程,解之求出a,将a值代入求出这个数,从而得出对这个
数的立方根
三、解答题
19、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。
排球25
篮球50
乒乓球75
足球100
其他50
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。
20、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
21、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
22、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的
实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
成绩等级A B C D
人数60x y10
百分比30%50%15%m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;
(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;
(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.
23、(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
24、(5分)在数轴上表示下列各数,并用“<”连接。
3, 0,,,.
【答案】解:数轴略,
【考点】实数在数轴上的表示,实数大小的比较
【解析】【解答】解:∵=-2,(-1)2=1,
数轴如下:
由数轴可知:<-<0<(-1)2<3.
【分析】先画出数轴,再在数轴上表示各数,根据数轴左边的数永远比右边小,用“<”连接各数即可.
25、(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.
26、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.。