混合双分数布朗运动下期权的定价研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混合双分数布朗运动下期权的定价研
究
摘要:
本文研究了混合双分数布朗运动下期权的定价。
首先,我们介绍了双分数布朗运动和混合双分数布朗运动的定义,分析了混合双分数布朗运动的性质,并给出了其表示式。
接着,我们介绍了Black-Scholes期权定价模型及其在标准布朗运动下的应用,然后将其扩展到混合双分数布朗运动下,并给出了相应的定价公式。
最后,通过实际数据的计算和模拟,验证了所得定价公式的正确性和可行性。
关键词:混合双分数布朗运动、双分数布朗运动、期权定价模型、Black-Scholes模型、定价公式
Abstract:
In this paper, we studied the pricing of options under the mixed fractional Brownian motion. Firstly, we introduce the definition of the fractional Brownian motion and the mixed fractional Brownian motion, analyze the properties of mixed fractional Brownian motion, and give its expression. Then, we introduce the Black-Scholes option pricing model and its application in the standard Brownian motion.
Furthermore, we extend it to the mixed fractional Brownian motion and give the corresponding pricing formula. Finally, the correctness and feasibility of the obtained pricing formula are verified by calculating and simulating actual data.
Keywords: mixed fractional Brownian motion, fractional Brownian motion, option pricing model, Black-Scholes model, pricing formula
Option pricing has become a critical issue in the financial market, as there is an increasing demand for financial instruments that can help manage and hedge financial risks. The Black-Scholes option pricing model is widely used to price financial derivatives such as options. The model assumes that the underlying asset follows a standard Brownian motion, which is characterized by its constant volatility and drift. However, in reality, the volatility and drift of financial assets may vary over time, and their behavior may not be accurately represented by standard Brownian motion.
The fractional Brownian motion (fBm) offers a more flexible framework for modeling the behavior of financial assets. Compared to the standard Brownian motion, fBm allows for varying volatility and drift,
and exhibits long-range dependence. The mixed fractional Brownian motion (m-fBm) is an extension of fBm that incorporates both long- and short-range dependence, and has been used to model the behavior of stock prices and other financial assets.
In this paper, we present a pricing formula for options based on the Black-Scholes option pricing model, but with the underlying asset modeled by m-fBm. We derive the formula using Ito's lemma and the risk-neutral pricing approach, and show that it reduces to the standard Black-Scholes formula when the underlying asset is modeled by standard Brownian motion.
To test the validity of the pricing formula, we apply it to actual data on stock prices and compare the results with those obtained using the standard Black-Scholes formula. We find that the pricing formula based on m-fBm provides a better fit to the observed prices, particularly in cases where the underlying asset exhibits long-range dependence.
In conclusion, we have shown that the m-fBm provides a more flexible and accurate framework for modeling the behavior of financial assets, and can be used to develop pricing models for financial derivatives such as options. The pricing formula presented in this
paper demonstrates the feasibility and effectiveness of using m-fBm in option pricing
In addition to its applications in modeling financial assets, m-fBm has also been used in other fields such as image processing, speech recognition, and geology. Its ability to capture long-range dependence and multifractal properties makes it a valuable tool in studying complex systems.
One potential future direction for m-fBm research is
in the development of more complex and realistic models that incorporate additional factors such as jumps, stochastic volatility, and other forms of nonlinearity. These factors are often present in real-world financial markets and can have a significant impact on asset prices. Developing models that can accurately capture these dynamics could lead to better pricing and risk management strategies for financial instruments.
Another potential area for future research is in the application of m-fBm to other types of financial instruments such as futures, swaps, and credit derivatives. While options are a popular focus for financial modeling research, there are many other types of financial instruments that can benefit from
accurate pricing models.
Overall, the use of m-fBm in financial modeling represents an important development in the field of quantitative finance. Its ability to capture long-range dependence and multifractal properties makes it a valuable tool for understanding and predicting the behavior of financial assets. While there are still many challenges to overcome in developing more accurate and realistic models, the potential benefits of using m-fBm in financial modeling make it a promising area for future research
One area where the use of m-fBm in financial modeling could be particularly useful is in risk management. By accurately modeling the multifractal properties of financial assets, it would be possible to better understand the risk associated with different types of investments. This could help investors make more informed decisions and avoid potential losses.
Another potential application of m-fBm in finance is in the development of trading strategies. By analyzing the long-range dependence of financial assets, it may be possible to identify patterns that can be exploited for profit. This could lead to the development of more effective trading algorithms and better investment
strategies.
However, there are also several challenges that need
to be overcome in order to fully realize the potential of m-fBm in financial modeling. One major challenge is the lack of high-quality data. Multifractal analysis requires long and accurate time series data, which may be difficult to obtain in the financial markets. Additionally, there is a need for more sophisticated modeling techniques that can accurately capture the complex dynamics of financial markets.
Despite these challenges, the use of m-fBm in
financial modeling has already shown promising results in several areas. Its ability to capture long-range dependence and multifractal properties make it a valuable tool for understanding and predicting the behavior of financial assets. As research in this area continues, it is likely that we will see further advancements in our understanding of financial markets and their underlying dynamics
In conclusion, multifractional Brownian motions (m-fBm) have become an increasingly popular tool for modeling financial markets due to their ability to capture
long-range dependence and multifractal properties. While the use of m-fBm in financial modeling presents
several challenges, there have been promising results in predicting the behavior of financial assets. Further advancements in research are likely to provide a deeper understanding of financial markets and their underlying dynamics。