江苏省连云港市八年级上学期期末质量自测数学试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省连云港市八年级上学期期末质量自测数学试题 一、选择题 1.4的平方根是( )
A .2
B .2±
C .2
D .2±
2.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )
A .平行
B .相交
C .垂直
D .平行、相交或垂直
3.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )
A .22320m mn n -++=
B .2220m mn n +-=
C .22220m mn n -+=
D .2230m mn n --= 4.若2149
x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13
± 5.如图,在△ABC 中,分别以点A ,B 为圆心,大于 12
AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...
的是
A .AM =BM
B .AE =BE
C .EF ⊥AB
D .AB =2CM
6.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )
A .x >2
B .x <2
C .x >﹣1
D .x <﹣1
7.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )
A .4.7
B .5.0
C .5.4
D .5.8
8.下列各式中,属于分式的是( )
A .x ﹣1
B .2m
C .3b
D .34
(x+y ) 9.估算x =5值的大小正确的是( )
A .0<x <1
B .1<x <2
C .2<x <3
D .3<x <4
10.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )
A .﹣2
B .﹣12
C .2
D .12
二、填空题
11.1﹣π的相反数是_____.
12.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.
132(5)-=_____.
14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三
角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是___.
15.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.
16.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .
17.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.
18.当x =_____时,分式22x x x
-+值为0. 19.如图,△ABC 中,BD 平分∠ABC ,交AC 于D ,DE ⊥AB 于点E ,△ABC 的面积是42cm 2,AB =10cm ,BC =14cm ,则DE =_____cm .
20.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.
三、解答题
21.如图,四边形ABCD 中,AC=5,AB=4,CD=12,AD=13,∠B=90°.
(1)求BC 边的长;
(2)求四边形ABCD 的面积.
22.计算与求值:
(1)计算:()203120195274
+-+--. (2)求x 的值:24250x -=
23.如图,已知直角三角形ABC 中,ABC ∠为直角,12AB =、16BC =,三角形ACD 为等腰三角形,其中503
AD DC ==,且//AB CD ,E 为AC 中点,连接ED 、BE 、BD ,则三角形BDE 的面积为___________.
24.在长方形纸片ABCD 中,点E 是边CD 上的一点,将△AED 沿AE 所在的直线折叠,使点D 落在点F 处.
(1)如图1,若点F 落在对角线AC 上,且∠BAC =54°,则∠DAE 的度数为 °. (2)如图2,若点F 落在边BC 上,且AB =6,AD =10,求CE 的长.
(3)如图3,若点E 是CD 的中点,AF 的沿长线交BC 于点G ,且AB =6,AD =10,求CG 的长.
25.在平面直角坐标系中,直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,直线l 2:y =kx +2(k >0)与坐标轴交于点C ,D ,直线l 1,l 2与相交于点E .
(1)当k=2时,求两条直线与x轴围成的△BDE的面积;
(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的
面积为23
3
时.
①求k的值;
②若m=a+b,求m的取值范围.
四、压轴题
26.如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足a6b80
-+-=.
(1)a= ;b= ;直角三角形AOC的面积为.
(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4,3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.
(3)在(2)的条件下,若∠DOC=∠D CO,点G是第二象限中一点,并且y轴平分
∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOD,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180).
27.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?
28.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.
(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.
①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;
②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:
点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .
①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;
②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.
29.阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC的度数可以求出来.”
小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”
(1)求∠DFC的度数;
(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;
(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.
30.在等腰Rt△ABC中,AB=AC,∠BAC=90°
(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF
①求证:△AED≌△AFD;
②当BE=3,CE=7时,求DE的长;
(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据平方根的定义直接作答.
【详解】
解:4的平方根是2
±
故选:D
【点睛】
本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.A
解析:A
【解析】
【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.
【详解】∵∠AOB=60°,OA=OB,
∴△OAB是等边三角形,
∴OA=AB,∠OAB=∠ABO=60°
①当点C在线段OB上时,如图1,
∵△ACD是等边三角形,
∴AC=AD,∠CAD=60°,
∴∠OAC=∠BAD,
在△AOC和△ABD中,
OA BA
OAC BAD AC AD
=


∠=∠

⎪=


∴△AOC≌△ABD,
∴∠ABD=∠AOC=60°,
∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;
②当点C在OB的延长线上时,如图2,
∵△ACD是等边三角形,
∴AC=AD,∠CAD=60°,
∴∠OAC=∠BAD,
在△AOC和△ABD中,
OA BA
OAC BAD AC AD
=


∠=∠

⎪=


∴△AOC≌△ABD,
∴∠ABD=∠AOC=60°,
∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,
∴BD∥OA,
故选A.
【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出
∠ABD=60°是解本题的关键.
3.B
解析:B
【解析】
【分析】
作图,根据等腰三角形的性质和勾股定理可得22
20
m mn n
+-=,整理即可求解
【详解】
解:如图,
2
22
m m n m,
222
22
m n mn m,
22
20
m mn n
+-=.
故选:B.
【点睛】
考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.
4.C
解析:C
【解析】
【分析】
本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.
【详解】
由完全平方式的形式(a±b)2=a2±2ab+b2可得:
kx=±2•2x•1
3

解得k=±4
3

故选:C
【点睛】
本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.
5.D
解析:D
【解析】
【分析】
由作图可知EF 是AB 的垂直平分线,据此对各项进行分析可得答案.
【详解】
解:由作图可知EF 是AB 的垂直平分线,
所以AM =BM ,AE =BE ,EF ⊥AB ,即选项A,B,C 均正确,
CM 是AB 边上的中线,AB =2CM 错误.
故选:D
【点睛】
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
6.D
解析:D
【解析】
因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.
7.B
解析:B
【解析】
【分析】
先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值.
【详解】
解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t , 则 2.71.5v s vt s
=⎧⎨=⎩ 解得,t =1.8
∴a =3.2+1.8=5(小时),
故选B .
【点睛】
本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.
8.B
解析:B
【解析】
【分析】
利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.
【详解】
解:2
m
是分式,
故选:B.
【点睛】
此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.9.C
解析:C
【解析】
【分析】
.
【详解】
∴23,
故选:C.
【点睛】
此题主要考查无理数的估值,熟练掌握,即可解题.
10.B
解析:B
【解析】
【分析】
将点(﹣2,1)代入y=kx即可求出k的值.
【详解】
解:∵正比例函数y=kx的图象经过点(﹣2,1),
∴1=﹣2k,
解得k=﹣1
2

故选:B.
【点睛】
本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.
二、填空题
11.π﹣1.
【解析】
【分析】
根据相反数的定义即可得到结论.
【详解】
1﹣π的相反数是.
故答案为:π﹣1.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号. 解析:π﹣1.
【解析】
【分析】
根据相反数的定义即可得到结论.
【详解】
1﹣π的相反数是()1
1ππ=﹣﹣﹣. 故答案为:π﹣1.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.
12.x≥1.
【解析】
【分析】
把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.
【详解】
解:∵与直线:相交于点,
∴把y=2代入y=x+1中,解得x=1,
∴点P 的坐标为(1,2
解析:x≥1.
【解析】
【分析】
把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.
【详解】
解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,
∴把y=2代入y=x+1中,解得x=1,
∴点P 的坐标为(1,2);
由图可知,x≥1时,1x mx n +≥+.
故答案为:x≥1.
【点睛】
本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小.
13.5
【解析】
根据二次根式的性质知:5.
解析:5
【解析】
根据二次根式的性质知:2(5)-=5.
14.10
【解析】
试题分析:如图,根据勾股定理的几何意义,可得A 、B 的面积和为S1,C 、D 的面积和为S2,S1+S2=S3,
∵正方形A 、B 、C 、D 的面积分别为2,5,1,2,
∵最大的正方形E 的面
解析:10
【解析】
试题分析:如图,根据勾股定理的几何意义,可得A 、B 的面积和为S 1,C 、D 的面积和为S 2,S 1+S 2=S 3,
∵正方形A 、B 、C 、D 的面积分别为2,5,1,2,
∵最大的正方形E 的面积S 3=S 1+S 2=2+5+1+2=10.
15.【解析】
【分析】
由题意,可知点A 坐标为(1,),点B 坐标为(2,0),由直线与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.
【详解】

解析:231b -<<-
【解析】 【分析】
由题意,可知点A 坐标为(1,3),点B 坐标为(2,0),由直线y x b =+与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.
【详解】
解:如图,过点A 作AE ⊥x 轴,
.∵△ABC 是等边三角形,且边长为2,
∴OB=OA=2,OE=1, ∴22213AE -=
∴点A 为(13B 为(2,0);
当直线y x b =+经过点A (13ABC 边界只有一个交点,
则13b +=31b =, ∴点D 的坐标为(31);
当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,
则20b +=,解得:2b =-,
∴点C 的坐标为(0,2-);
∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,
∴实数b 的范围是:231b -<<
; 故答案为:231b -<<
.
【点睛】
本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论. 16.70°或40°
【解析】
【分析】
分顶角是70°和底角是70°两种情况求解即可.
【详解】
当70°角为顶角,顶角度数即为70°;
当70°为底角时,顶角=180°-2×70°=40°.
答案为:
解析:70°或40°
【解析】
【分析】
分顶角是70°和底角是70°两种情况求解即可.
【详解】
当70°角为顶角,顶角度数即为70°;
当70°为底角时,顶角=180°-2×70°=40°.
答案为: 70°或40°.
【点睛】
本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 17.130°或90°.
【解析】
分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.
详解:∵在△ABC中,AB=AC,∠BAC=100°,
∴∠B=∠C=40°
解析:130°或90°.
【解析】
分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.
详解:∵在△ABC中,AB=AC,∠BAC=100°,
∴∠B=∠C=40°,
∵点D在BC边上,△ABD为直角三角形,
∴当∠BAD=90°时,则∠ADB=50°,
∴∠ADC=130°,
当∠ADB=90°时,则
∠ADC=90°,
故答案为130°或90°.
点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.
18.2
【解析】
【分析】
分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.
【详解】
要使分式有意义,则分母不为0,即x2+x=x
解析:2
【解析】
【分析】
分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.
【详解】
要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;
而分式值为0,即分子2﹣x=0,解得:x=2,符合题意
故答案为:2.
【点睛】
此题主要考查分式有意义的条件,熟练掌握,即可解题.
19.【解析】
【分析】
作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到×10×DE+×14×DF=42,则5DE+7DE=42,从而可求出DE的长.
【详解】
作D
解析:7 2
【解析】
【分析】
作DF⊥BC于F,如图,根据角平分线的性质得到DE=DF,再利用三角形面积公式得到
1 2×10×DE+
1
2
×14×DF=42,则5DE+7DE=42,从而可求出DE的长.
【详解】
作DF⊥BC于F,如图所示:
∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,
∵S△ADB+S△BCD=S△ABC,
∴1
2
×10×DE+
1
2
×14×DF=42,
∴5DE+7DE=42,
∴DE=7
2(cm).
故答案为7
2

【点睛】
此题主要考查角平分线的性质,解题关键是利用三角形面积公式构建方程,即可解题. 20.x<1.
【解析】
【分析】
结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.
【详解】
∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),

解析:x<1.
【解析】
【分析】
结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围即可.
【详解】
∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),
∴当x<1时,y1>y2,
∴不等式kx﹣1<ax+3的解集为x<1.
故答案为:x<1.
【点睛】
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
三、解答题
21.(1)3;(2)36.
【解析】
【分析】
(1)先根据勾股定理求出BC的长度;
(2)根据勾股定理的逆定理判断出△ACD是直角三角形,四边形ABCD的面积等于△ABC 和△ACD的面积和,再利用三角形的面积公式求解即可.
【详解】
解:(1)∵∠ABC=90°,AC=5,AB=4
∴3=,
(2)在△ACD 中,AC 2+CD 2= 52+122=169
AD 2 =132=169,
∴AC 2+CD 2= AD 2,
∴△ACD 是直角三角形,
∴∠ACD=90°;
由图形可知:S 四边形ABCD =S △ABC +S △ACD = 12AB•BC+ 12
AC•CD , =
12×3×4+ 12
×5×12, =36.
【点睛】 本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.
22.(1)
52;(2)52x =±. 【解析】
【分析】
(1)分别计算零指数幂,利用平方根的性质化简,计算立方根和算术平方根,然后把所得的结果相加减;
(2)依次移项,系数化为1,两边同时开平方即可.
【详解】
解:(1)原式=115(3)2++--
=52
; (2)移项得:2425x =,
系数化为1得:2
254
x =, 两边同时开平方得:52
x =±. 【点睛】
本题考查实数的混合运算和利用平方根解方程.(1||a =,
2(0)a a =≥;(2)中需注意的是方程右边的常数项(正数)有正负两个平方根,不要漏解.
23.563
【解析】
【分析】
过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,分别求出EG 、EH 的长,利用BDE ABC BEC EDC S S S S ∆∆∆∆=--求解即可.
【详解】
过E 点分别作EG ⊥BC ,FH ⊥DC ,垂足分别为G ,H ,如图所示,
∵△ABC 是直角三角形,AB=12,BC=16,
∴222AC AB BC =+,即2222121620AC AB BC +=+=, ∵点C 为斜边AC 的中点,
∴BE=CE=
12AC=120102⨯= ∴CG=1116822
BC =⨯=, 在Rt △EGC 中,22221086EC CG --=,
∵AB ∥CD ,∠ABC=90° ∴∠DCB=90° ∵ EG ⊥BC ,FH ⊥DC ,
∴∠EGC=∠DCB=∠EHC=90°
∴四边形EGCH 为矩形,
∴EH=GC=6,
∴BDE ABC BEC EDC S S S S ∆∆∆∆=--=
111222BC CD BC EG EH DC -- =
150115016166823223⨯⨯-⨯⨯-⨯⨯, =563
. 【点睛】
本题主要考查了勾股定理以及等腰三角形的性质,正确作出辅助线是解题的关键.
24.(1)18;(2)CE的长为8
3
;(3)CG的长为
9
10

【解析】
【分析】
(1)由矩形的性质可知∠BAD=90°,易知∠DAC的度数,由折叠的性质可知∠DAE=
1
2
∠DAC,计算可得∠DAE的度数.
(2)由矩形四个角都是直角及对边相等的性质及折叠后图形对应边相等的性质,结合勾股定理可得BF长,由CF=BC﹣BF可求出CF长,设CE=x,则EF=ED=6﹣x,在Rt△CEF 中,根据勾股定理求出x值即可;
(3)连接EG,由中点及折叠的性质利用HL定理可证Rt△CEG≌△FEG,结合全等三角形对应边相等的性质可设CG=FG=y,可用含y的代数式表示出AG、BG,在Rt△ABG中,根据勾股定理求解即可.
【详解】
解:(1)∵四边形ABCD是矩形,
∴∠BAD=90°,
∵∠BAC=54°,
∴∠DAC=90°﹣54°=36°,
由折叠的性质得:∠DAE=∠FAE,
∴∠DAE=1
2
∠DAC=18°;
故答案为:18;
(2)∵四边形ABCD是矩形,
∴∠B=∠C=90°,BC=AD=10,CD=AB=6,
由折叠的性质得:AF=AD=10,EF=ED,
∴BF8,
∴CF=BC﹣BF=10﹣8=2,
设CE=x,则EF=ED=6﹣x,
在Rt△CEF中,由勾股定理得:22+x2=(6﹣x)2,
解得:x=8
3

即CE的长为8
3

(3)连接EG,如图3所示:
∵点E是CD的中点,
∴DE=CE,
由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,
在Rt△CEG和△FEG中,
EG EG CE FE =⎧⎨=⎩
, ∴Rt △CEG ≌△FEG (HL ),
∴CG =FG ,
设CG =FG =y ,
则AG =AF +FG =10+y ,BG =BC ﹣CG =10﹣y ,
在Rt △ABG 中,由勾股定理得:62+(10﹣y )2=(10+y )2,
解得:y =
910
, 即CG 的长为910.
【点睛】
本题考查了四边形的折叠问题,涉及了矩形的性质、折叠的性质、直角三角形的判定、勾股定理,灵活利用矩形与折叠的性质是解题的关键.
25.(1)△BDE 的面积=8;(2)①k =4;②﹣
12
<m <2. 【解析】
【分析】
(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;
(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.
【详解】
解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,
∴当y =0时,得x =3,当x =0时,y =6;
∴A (0,6)B (3,0);
当k =2时,直线l 2:y =2x +2(k ≠0),
∴C (0,2),D (﹣1,0)
解2622y x y x =-+⎧⎨=+⎩得14
x y =⎧⎨=⎩, ∴E (1,4),
4BD ∴=,点E 到x 轴的距离为4,
∴△BDE 的面积=12
×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),
∵S 四边形OBEC =S △EOC +S △EOB ,
∴12×2×n +12×3×(﹣2n +6)=233
, 解得n =23
, ∴E (23,143
), 把点E 代入y =kx +2中,
143=23k +2, 解得k =4.
②∵直线y =4x +2交x 轴于D ,
∴D (﹣12
,0), ∵P (a ,b )在第二象限,即在线段CD 上,
∴﹣12
<a <0, ∵点P (a ,b )在直线y =kx +2上
∴b =4a +2,
∴m =a +b =5a +2,
15222
a -<+< ∴﹣12
<m <2.
【点睛】
本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.
四、压轴题
26.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析
【解析】
【分析】
(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;
(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;
(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.
【详解】
解:(1) 解:(1)∵
b 80-=, ∴a-6=0,b-8=0,
∴a=6,b=8,
∴A (0,6),C (8,0);
∴S △ABC=6×8÷2=24,
故答案为(0,6),(8,0); 6;8;24
(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322
ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =
∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等
(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:
∵x 轴⊥y 轴,
∴∠AOC=∠DOC+∠AOD=90°
∴∠OAC+∠ACO=90°
又∵∠DOC=∠DCO
∴∠OAC=∠AOD
∵y 轴平分∠GOD
∴∠GOA=∠AOD
∴∠GOA=∠OAC
∴OG ∥AC ,
如图,过点H 作HF ∥OG 交x 轴于F ,
∴HF ∥AC
∴∠FHC=∠ACE
同理∠FHO=∠GOD ,
∵OG ∥FH ,
∴∠GOD=∠FHO ,
∴∠GOD+∠ACE=∠FHO+∠FHC
即∠GOD+∠ACE=∠OHC,
∴2∠GOA+∠ACE=∠OHC.
∴∠GOD+∠ACE=∠OHC.
【点睛】
此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.
27.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)
15
4
;(4)经过
80
3
s点P 与点Q第一次相遇.
【解析】
【分析】
(1)速度和时间相乘可得BP、CQ的长;
(2)利用SAS可证三角形全等;
(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;
(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.
【详解】
解:(1)BP=3×1=3㎝,
CQ=3×1=3㎝
(2)∵t=1s,点Q的运动速度与点P的运动速度相等
∴BP=CQ=3×1=3cm,
∵AB=10cm,点D为AB的中点,
∴BD=5cm.
又∵PC=BC﹣BP,BC=8cm,
∴PC=8﹣3=5cm,
∴PC=BD
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
PC BD
B C
BP CQ
=


∠=∠

⎪=

∴△BPD≌△CQP(SAS)
(3)∵点Q 的运动速度与点P 的运动速度不相等,
∴BP 与CQ 不是对应边,
即BP≠CQ
∴若△BPD ≌△CPQ ,且∠B=∠C ,
则BP=PC=4cm ,CQ=BD=5cm ,
∴点P ,点Q 运动的时间t=
433BP =s , ∴154
Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得
154x=3x+2×10, 解得80x=
3 ∴经过803
s 点P 与点Q 第一次相遇. 【点睛】
本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.
28.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334
k -≤<-
【解析】
【分析】
(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;
②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);
(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明
△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;
②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.
【详解】
解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,
故答案为点P ;
②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)
(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.
∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,
∴点B 的坐标为3(0,3),(,0)B A k
-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,
∴∠ABC=90°,BC=BA ,
∴∠1+∠2=90°,
∵∠AOB=90°,
∴∠2+∠3=90°,
∴∠1=∠3.
∴△BFC ≌△AOB ,
∴3FC OB ==,
可得OE =3.
∵点A 在x 轴的正半轴上且3OA <,
0C x ∴<,
∴点C 的横坐标C x 的值为-3.
②因为△BFC ≌△AOB ,3(,0)A k
-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +
点3(3,3)C k -+,如图2, -1<C y ≤2,
即:-1<33k
+ ≤2, 则334k -≤<-
. 【点睛】
本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.
29.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.
【解析】
【分析】
(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;
(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;
(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.
【详解】
解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,
又△ABE为等边三角形,
∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,
在△ACE中,2α+60°+2β=180°,
∴α+β=60°,
∴∠DFC=α+β=60°;
(2)EF=AF+FC,证明如下:
∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,
∵∠CFD=60°,则∠DCF=30°,
∴CF=2DF,
在EC上截取EG=CF,连接AG,
又AE=AC,
∴∠AEG=∠ACF,
∴△AEG≌△ACF(SAS),
∴∠EAG=∠CAF,AG=AF,
又∠CAF=∠BAD,
∴∠EAG=∠BAD,
∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,
∴△AFG为等边三角形,
∴EF=EG+GF=AF+FC,
即EF=AF+FC;
(3)补全图形如图所示,
结论:AF=EF+2DF.证明如下:
同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,
∴∠CAE=180°-2β,
∴∠BAE=2α+180°-2β=60°,∴β-α=60°,
∴∠AFC=β-α=60°,
又△ABE为等边三角形,∴∠ABE=∠AFC=60°,
∴由8字图可得:∠BAD=∠BEF,
在AF上截取AG=EF,连接BG,BF,
又AB=BE,
∴△ABG≌△EBF(SAS),
∴BG=BF,
又AF垂直平分BC,
∴BF=CF,
∴∠BFA=∠AFC=60°,
∴△BFG为等边三角形,
∴BG=BF,又BC⊥FG,∴FG=BF=2DF,
∴AF=AG+GF=BF+EF=2DF+EF.
【点睛】
本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.
30.(1)①见解析;②DE=29
7
;(2)DE的值为517
【解析】
【分析】
(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;
(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.
【详解】
(1)①如图1中,
∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,
∴AE=AF,∠BAE=∠CAF,
∵∠BAC=90°,∠EAD=45°,
∴∠CAD+∠BAE=∠CAD+∠CAF=45°,
∴∠DAE=∠DAF,
∵DA=DA,AE=AF,
∴△AED≌△AFD(SAS);
②如图1中,设DE=x,则CD=7﹣x.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵∠ABE=∠ACF=45°,
∴∠DCF=90°,
∵△AED≌△AFD(SAS),
∴DE=DF=x,
∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,
∴x2=(7﹣x)2+32,
∴x=29
7

∴DE=29
7

(2)∵BD=3,BC=9,
∴分两种情况如下:
①当点E在线段BC上时,如图2中,连接BE.
∵∠BAC=∠EAD=90°,
∴∠EAB=∠DAC,
∵AE=AD,AB=AC,
∴△EAB≌△DAC(SAS),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,
∴DE=
综上所述,DE的值为.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。

相关文档
最新文档