最新初中数学命题与证明的难题汇编含答案解析(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学命题与证明的难题汇编含答案解析(3)
一、选择题
1.下列命题属于真命题的是()
A.同旁内角相等,两直线平行B.相等的角是对顶角
C.平行于同一条直线的两条直线平行D.同位角相等
【答案】C
【解析】
【分析】
要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.
【详解】
A、同旁内角互补,两直线平行,是假命题;
B、相等的角不一定是对顶角,是假命题;
C、平行于同一条直线的两条直线平行,是真命题;
D、两直线平行,同位角相等,是假命题;
故选C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
2.下列命题中逆命题是假命题的是()
A.如果两个三角形的三条边都对应相等,那么这两个三角形全等
B.如果a2=9,那么a=3
C.对顶角相等
D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
【答案】C
【解析】
【分析】
首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.
【详解】
解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;
B、逆命题为:如果a=3,那么a2=9.是真命题;
C、逆命题为:相等的角是对顶角.是假命题;
D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.
故选C.
【点睛】
此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.
3.下列命题是真命题的是()
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
【答案】A
【解析】
【分析】
根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.
【详解】
A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;
D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;
故选A.
【点睛】
此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.
4.下列命题中,是假命题的是()
A.对顶角相等B.同位角相等
C.同角的余角相等D.全等三角形的面积相等
【答案】B
【解析】
【分析】
根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.
【详解】
A.对顶角相等是真命题,故该选项不合题意,
B.两直线平行,同位角相等,故该选项是假命题,符合题意,
C.同角的余角相等是真命题,故该选项不合题意,
D.全等三角形的面积相等是真命题,故该选项不合题意.
故选:B.
【点睛】
本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
A.两点确定一条直线
B.两点之间,直线最短
C.等角的余角相等
D.等角的补角相等
【答案】B
【解析】
【分析】
根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.
【详解】
A.两点确定一条直线,正确;
B.两点之间,线段最短,所以B选项错误;
C.等角的余角相等,正确;
D.等角的补角相等,正确.
故选B
考点:定理
6.下列命题的逆命题不成立的是()
A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等
【答案】B
【解析】
【分析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;
选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B.
【点睛】
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
【解析】
【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
8.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.5个B.4个C.3个D.2个
【答案】D
【解析】
【分析】
利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.
【详解】
解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;
②两直线平行,内错角相等,故错误,是假命题;
③两点之间线段最短,正确,是真命题;
④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;
⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.
【点睛】
本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.
9.下列定理中,逆命题是假命题的是()
A.在一个三角形中,等角对等边
B.全等三角形对应角相等
C.有一个角是60度的等腰三角形是等边三角形
D.等腰三角形两个底角相等
【答案】B
【解析】
【分析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;
B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;
C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;
D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.
10.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()
A.①②③④B.①③④C.①③D.①
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题;
②对顶角相等,其逆命题:相等的角是对顶角,是假命题;
③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;
④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;
故选C.
【点睛】
本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.
11.交换下列命题的题设和结论,得到的新命题是假命题的是()
A.两直线平行,内错角相等; B.相等的角是对顶角;
C .所有的直角都是相等的;
D .若a =b ,则a -1=b -1.
【答案】C
【解析】
【分析】
【详解】 分析:写出原命题的逆命题,根据相关的性质、定义判断即可.
详解:交换命题A 的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等,是真命题;
交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题; 交换命题D 的题设和结论,得到的新命题是若a ﹣1=b ﹣1,则a =b ,是真命题. 故选C .
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
12.下列命题的逆命题是真命题的是( )
A .若a b =,则a b =
B .AB
C ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆
C .若0a =,则0ab =
D .四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;
B 、该命题的逆命题为:若△AB
C 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;
C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
13.下列命题中,假命题是( )
A .同旁内角互补,两直线平行
B .如果a b =,则22a b =
C .对应角相等的两个三角形全等
D .两边及夹角对应相等的两个三角形全等
【答案】C
【解析】
【分析】
根据平行线的判定、等式的性质、三角形的全等的判定判断即可.
【详解】
A 、同旁内角互补,两直线平行,是真命题;
B 、如果a b =,则22a b =,是真命题;
C 、对应角相等的两个三角形不一定全等,原命题是假命题;
D 、两边及夹角对应相等的两个三角形全等,是真命题;
故选:C .
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
14.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )
A .1a =-,2b =
B .2a =,1b =-
C .1a =,2b =-
D .2a =-,1b =
【答案】D
【解析】
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.
【详解】
A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;
B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;
C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;
D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,
故选:D .
【点睛】
本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.
15.对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( )
A .a =3,b =2
B .a =﹣3,b =2
C .a =3,b =﹣1
D .a =﹣1,b =3
【答案】B
【解析】
试题解析:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b 的值不能说明命题为假命题;
在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b 的值可以说明命题为假命题;
在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;
在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;
故选B.
考点:命题与定理.
16.下列命题的逆命题不正确
...的是()
A.相等的角是对顶角B.两直线平行,同旁内角互补
C.矩形的对角线相等D.平行四边形的对角线互相平分
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:对顶角相等.正确;
B、逆命题是:同旁内角互补,两直线平行,正确;
C、逆命题是:对角线相等的四边形是矩形,错误;
D、逆命题是:对角线互相平分的四边形是平行四边形,正确.
故选:C.
【点睛】
本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
17.下列命题的逆命题成立的有( )
①勾股数是三个正整数②全等三角形的三条对应边分别相等
③如果两个实数相等,那么它们的平方相等④平行四边形的两组对角分别相等
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.
【详解】
①逆命题:如果三个数是正整数,那么它们是勾股数
反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等
由SSS 定理可知,此逆命题成立
③逆命题:如果两个实数的平方相等,那么这两个实数相等
反例:22
2(2)4=-=,但22≠-,则此逆命题不成立
④逆命题:两组对角分别相等的四边形是平行四边形
由平行四边形的判定可知,此逆命题成立
综上,逆命题成立的有2个
故选:B .
【点睛】
本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.
18.下列说法正确的是( )
①函数y =x 的取值范围是13x …. ②若等腰三角形的两边长分别为3和7,则第三边长是3或7.
③一个正六边形的内角和是其外角和的2倍.
④同旁内角互补是真命题.
⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根.
A .①②③
B .①④⑤
C .②④
D .③⑤ 【答案】D
【解析】
【分析】
根据二次根式定义,等腰三角形性质,正多边形内角和外角关系,平行线性质,根判别式定义进行分析即可.
【详解】
①函数y =x 的取值范围是13x >-,故错误. ②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.
③一个正六边形的内角和是其外角和的2倍,正确.
④两直线平行,同旁内角互补是真命题,故错误.
⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根,正确, 故选D .
【点睛】
此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线
合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.
19.下面说法正确的个数有( )
①方程329x y +=的非负整数解只有1
3x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122
A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.
A .0个
B .1个
C .2个
D .3个 【答案】A
【解析】
【分析】
根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.
【详解】
解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;
②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;
③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.
⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,
故选A.
【点睛】
此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.
20.下列命题中真命题是( )
A .若a 2=b 2,则a=b
B .4的平方根是±2
C .两个锐角之和一定是钝角
D .相等的两个角是对顶角
【答案】B
【解析】
【分析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A 、若a 2=b 2,则a=±b ,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.。