高三数学等比数列测试题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列选择题
1.在数列{}n a 中,12a =,对任意的,m n N *
∈,m n m n a a a +=⋅,若
1262n a a a ++⋅⋅⋅+=,则n =( )
A .3
B .4
C .5
D .6
2.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8
B .8-
C .16
D .16-
3.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4 B .5 C .4或5 D .5或6 4.若1,a ,4成等比数列,则a =( )
A .1
B .2±
C .2
D .2-
5.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0
D .若S 2020>0,则a 2+a 4>0
6.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )
A .有最大项,有最小项
B .有最大项,无最小项
C .无最大项,有最小项
D .无最大项,无最小项
7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里
B .86里
C .90里
D .96里
8.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40
B .81
C .121
D .242
9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1
B .2
C .3
D .4
10.等比数列{}n a 的各项均为正数,且101010113a a =.则
313232020log log log a a a ++
+=( )
A .3
B .505
C .1010
D .2020
11.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16
B .16-
C .20
D .16或16-
12.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂.
A .55989
B .46656
C .216
D .36
13.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-
B .2-或1
C .1
D .2
14.已知单调递增数列{}n a 的前n 项和n S 满足()(
)*
21n n n S a a n =+∈N
,且0n
S
>,记
数列{}
2n
n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )
A .7
B .8
C .10
D .11
15.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6
D .3
16.设数列{}n a ,下列判断一定正确的是( )
A .若对任意正整数n ,都有24n
n a =成立,则{}n a 为等比数列
B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列
C .若对任意正整数m ,n ,都有2m n
m n a a +⋅=成立,则{}n a 为等比数列
D .若对任意正整数n ,都有
312
11
n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列
17.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
18.已知等比数列的公比为2,其前n 项和为n S ,则3
3
S a =( ) A .2
B .4
C .
74
D .
158
19.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50 B .60
C .70
D .80
20

12
与1
2的等比中项是( )
A .-1
B .1
C

2
D
.2
±
二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!
24.已知等差数列{}n a ,其前n 项的和为n S ,则下列结论正确的是( )
A .数列|n S n ⎧⎫

⎬⎩⎭
为等差数列 B .数列{}2
n
a 为等比数列
C .若,()m n a n a m m n ==≠,则0m n a +=
D .若,()m n S n S m m n ==≠,则0m n S += 25.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A
B
C
D
26.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *
==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩
⎭的
前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a =
B .2n
n S =
C .38
n T ≥
D .12
n T <
27.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-1
28.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1
13()2
n n a -=⋅-
B .36n
n S a =+
C .若数列{}n a 中存在两项p a ,s a
3a =,则19p s +的最小值为83
D .若1n n t S m S ≤-
≤恒成立,则m t -的最小值为116
29.数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,若22a =,48a =,则10S 的可能值
为( ) A .1023
B .341
C .1024
D .342
30.已知数列{}n a 的首项为4,且满足(
)*
12(1)0n n n a na n N
++-=∈,则( )
A .n a n ⎧⎫
⎨⎬⎩⎭
为等差数列
B .{}n a 为递增数列
C .{}n a 的前n 项和1
(1)24n n S n +=-⋅+
D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2
2
n n n T +=
31.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路
B .此人第三天走的路程站全程的
1
8
C .此人第一天走的路程比后五天走的路程多六里
D .此人后三天共走了42里路
32.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得
64m n a a =,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .22
212413
n
n a a a -++
+=
D .m n +为定值
33.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,781a a >,
871
01
a a -<-.则下列结论正确的是( ) A .01q <<
B .791a a <
C .n T 的最大值为7T
D .n S 的最大值为7S
34.已知等比数列{a n }的公比2
3
q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0
B .a 9>a 10
C .b 10>0
D .b 9>b 10
35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
令1m =,可得112+=⋅=n n n a a a a ,可得数列{}n a 为等比数列,利用等比数列前n 项和公式,求解即可. 【详解】
因为对任意的,m n N *
∈,都有m n m n a a a +=⋅,
所以令1m =,则112+=⋅=n n n a a a a , 因为10a ≠,所以0n a ≠,即
1
2n n
a a +=, 所以数列{}n a 是以2为首项,2为公比的等比数列,
所以2(12)6212n -=-,解得n =5,
故选:C 2.C 【分析】
根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】
因为254,32a a ==,所以3
5
2
8a q a =
=,所以2q ,
所以2
424416a a q ==⨯=,
故选:C. 3.C 【分析】
由等比数列的性质及等差数列的通项公式可得公差1
2
d =-,再由等差数列的前n 项和公式即可得解. 【详解】
设等差数列{}n a 的公差为,0d d ≠,
134,,a a a 成等比数列,2
314a a a ∴=即2(22)2(23)d d +=+,则12
d =-,
()()2
111198122
4
4216
n n n n n S a n d n n --⎛⎫∴=+
=-
=--+ ⎪⎝⎭,
所以当4n =或5时,n S 取得最大值. 故选:C. 4.B 【分析】
根据等比中项性质可得24a =,直接求解即可. 【详解】
由等比中项性质可得:
2144a =⨯=,
所以2a =±, 故选:B 5.A 【分析】
根据等比数列的求和公式及通项公式,可分析出答案. 【详解】
等比数列{}n a 的前n 项和为n S ,当1q ≠时,
202112021(1)01a q S q
-=>-,
因为2021
1q
-与1q -同号,
所以10a >,
所以2
131(1)0a a a q +=+>,
当1q =时,
2021120210S a =>,
所以10a >,
所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】
易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 6.B 【分析】
首先求得数列的通项公式,再运用等差数列的求和公式求得n T ,根据二次函数的性质的指数函数的性质可得选项. 【详解】
设等比数列{}n a 为q ,则等比数列的公比41
4141
328a q a -=
==,所以12
q =, 则其通项公式为:1
1
6113222n n n n a a q ---⎛⎫
=⋅=⨯= ⎪
⎝⎭

所以()
()
561154
2
2
12
622
2
22
n
n +n n n n n T a a
a ---==⨯==,
令()11t n n =-,所以当5n =或6时,t 有最大值,无最小值,所以n T 有最大项,无最小项.
. 7.D 【分析】
由题意得每天行走的路程成等比数列{}n a 、且公比为1
2
,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】
由题意可知此人每天走的步数构成
1
2
为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]
2378
1
12a -=-, 解得1192a =,∴此人第二天走1
192962

=里, ∴第二天走了96里,
故选:D . 8.C 【分析】
根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出
5S 的结果.
【详解】
因为12234,12a a a a +=+=,所以23
12
3a a q a a +=
=+,所以1134a a +=,所以11a =, 所以()5515113121113
a q S q
--===--, 故选:C. 9.D 【分析】
利用已知条件求得1,a q ,由此求得1a q +. 【详解】
依题意22211113
19
12730
a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩
,所以14a q +=.
故选:D 10.C 【分析】
利用等比数列的性质以及对数的运算即可求解.
由120202201932018101010113a a a a a a a a =====,
所以313232020log log log a a a ++
+
()10103101010113log log 31010a a ===.
故选:C 11.A 【分析】
根据等比数列的通项公式得出6
18a q =,10
132a q
=且10a >
,再由
819a a q ==.
【详解】
设等比数列{}n a 的公比为q ,则6
18a q =,10
132a q
=且10a >
则81916a q a ====
故选:A 12.B 【分析】
第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】
设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1
66
6n n n a -=⨯=
到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 13.A 【分析】
由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,
所以()2
13
1416
a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A .
14.B 【分析】
由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1
122n n T n +=-⋅+,即可得解.
【详解】
由题意,()()*
21n n n S a a n N
=+∈,
当2n ≥时,()11121n n n S a a ---=+,
所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,
因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,
所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,
()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,
所以()()2
3
4
1
11212222222
212212
n n
n n n n T n n n +++--=++++⋅⋅⋅+-⋅=
-⋅=-⋅--,
所以()1
12
2n n T n +=-⋅+,
所以876221538T =⨯+=,9
87223586T =⨯+=,
所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】
关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 15.D 【分析】
由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】
k a 是1a 与2k a 的等比中项
212k k a a a ∴=,()()2
111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦
()()2
23423k d d k d ∴+=⨯+,3k ∴=.
故选:D 【点睛】
本题考查等差数列与等比数列的基础知识,属于基础题. 16.C 【分析】
根据等比数列的定义和判定方法逐一判断. 【详解】
对于A ,若24n n a =,则2n
n a =±,+1+12n n a =±,则
1
2n n
a a +=±,即后一项与前一项的比不一定是常数,故A 错误;
对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2
m n
m n a a +⋅=可得0n a ≠,则+1
+12
m n m n a a +⋅=,所以1+1
222
n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;
对于D ,由312
11
n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满
足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】
方法点睛:证明或判断等比数列的方法,
(1)定义法:对于数列{}n a ,若()1
0,0n n n
a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2
21
0n n n n a a a a ++=≠,则数列{}n a 为等比数列;
(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 17.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可
【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则31327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 18.C 【分析】
利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】
解:因为等比数列的公比为2,
所以313
12311(12)
7712244
a S a a a a --===⋅, 故选:C 19.B 【分析】
由等比数列前n 项和的性质即可求得12S . 【详解】 解:
数列{}n a 是等比数列,
3S ∴,63S S -,96S S -,129S S -也成等比数列,
即4,8,96S S -,129S S -也成等比数列, 易知公比2q

9616S S ∴-=,12932S S -=,
121299663332168460S S S S S S S S =-+-+-+=+++=.
故选:B. 20.D 【分析】
利用等比中项定义得解. 【详解】
2311(
)(
(2-==

的等比中项是 故选:D
二、多选题 21.无 22.无 23.无
24.ABC 【分析】
设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-=,其前n 项和为
()
112
n n n S na d -=+
,结合等差数列的定义和前n 项的和公式以及等比数列的定义对选
项进行逐一判断可得答案. 【详解】
设等差数列{}n a 的首项为1a ,公差为d , ()11n a a n d +-= 其前n 项和为()
112
n n n S na d -=+
选项A. 1
1
2n S n a d n -=+,则+1111+1222
n n S S n n d a d a d n n -⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭(常数) 所以数列|n S n ⎧⎫

⎬⎩⎭
为等差数列,故A 正确. 选项B. ()1122n a n d
a +-=,则112222n n n n
a a a d a ++-==(常数),所以数列{}
2n a
为等比数列,故B
正确.
选项C. 由,m n
a n a m ==,得()()1111m n a a m d n
a a n d m
⎧=+-=⎪⎨=+-=⎪⎩ ,解得11,1a m n d =+-=- 所以()()()111110m n a a n m d n m n m +=++-=+-++-⨯-=,故C 正确. 选项D. 由,m n S n S m ==,则()112
n n n n S a d m -=+=,()112
m m m m S a d n -=+
=
将以上两式相减可得:()()()2212d
m n a m m n n n m ⎡⎤-+
---=-⎣

()()()112
d
m n a m n m n n m -+-+-=-,又m n ≠
所以()1112d a m n +
+-=-,即()1112
d
m n a +-=-- ()()()()()()()111112
m n m n m n d
S m n a m n a m n a m n +++-=++
=+++--=-+,所
以D 不正确. 故选:ABC 【点睛】
关键点睛:本题考查等差数列和等比数列的定义的应用以及等差数列的前n 项和公式的应
用,解答本题的关键是利用通项公式得出()()1111m n a a m d n
a a n d m
⎧=+-=⎪⎨=+-=⎪⎩,从中解出1,a d ,从而
判断选项C ,由前n 项和公式得到()112
n n n n S a d m -=+
=,
()112
m m m m S a d n -=+
=,然后得出
()1112
d
m n a +-=--,在代入m n S +中可判断D ,属于中档题. 25.AB
【分析】
因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】
解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2
111q
q q q -=-+,
因为1q ≠,所以21q q =+, 因为0q >
,所以解得q =
, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3
21q q =+,
整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >
,所以解得12
q -+=,
综上q =
或q =, 故选:AB 26.ACD 【分析】
在1+14,()n n a S a n N *
==∈中,令1n =,则A 易判断;由3
2122S a a =+=,B 易判断;
令12(1)n n n b n n a ++=
+,13
8
b =,
2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,裂项求和3182
n T ≤<,则CD 可判断. 【详解】
解:由1+14,()n n a S a n N *
==∈,所以2114a S a ===,故A 正确;
32212822S a a =+==≠,故B 错误;
+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,
1
2n n
a a +=, 所以2n ≥时,2422n n
n a -=⋅=,
令12(1)n n n b n n a ++=
+,12123
(11)8
b a +==+,
2n ≥时,()()11
12211
(1)12212n n n n n n n b n n a n n n n +++++=
==-++⋅+⋅,
113
8
T b ==,2n ≥时,
()()2334
113111111111
8223232422122122
n n n n T n n n ++=+-+-+
+
-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,31
82
n T ≤<,故CD 正确;
故选:ACD. 【点睛】
方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n
n a n a S S n -=⎧
=⎨-≥⎩递推数列的通项,注
意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和. 27.AC 【分析】
根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】
设等比数列{}n a 公比为,(0)q q ≠
则2
221
12
()n n n n
a a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;
若123,a a a <<则12
11101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩
,即数列{}n a 是递增数列,C 正确;
若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211
323(1),3
a a q r r a a =
==∴=+=-,即D 错误 故选:AC 【点睛】
等比数列的判定方法
(1)定义法:若1
(n n
a q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且2
12n n a a a a ++=,则数列{}n a 是等比数列;
(3)通项公式法:若数列通项公式可写成(,n
n a cq c q =均是不为0的常数),则{}n a 是等比
数列;
(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,n
n S kq k q q k =-≠≠为非零常数),则
{}n a 是等比数列.
28.ABD 【分析】
根据等差中项列式求出1
2
q =-
,进而求出等比数列的通项和前n 项和,可知A ,B 正确;
3a =求出15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,可知19p s +的最小值为
114
,C 不正确;利用1n n y S S =-关于n
S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】
设等比数列{}n a 的公比为q ,
由13a =,21344a a a -=+得2
43343q q -⨯=+⨯,解得1
2
q =-
,所以11
3()2
n n a -=⋅-,
1
3(1())
1221()121()2
n n n S --⎛⎫==-- ⎪⎝⎭--;
1111361()66()63()63222n n n n n S a -⎛
⎫=--=--=+⋅-=+ ⎪⎝
⎭;所以A ,B 正确;
3a =,则23p s a a a ⋅=,1122111()p s p s a a a q a q a q --⋅==,
所以11
4p s q
q
q --=,所以6p s +=,
则15p s =⎧⎨=⎩或24p s =⎧⎨=⎩或42p s =⎧⎨=⎩或5
1
p s =⎧⎨=⎩,此时19145p s +=或114或194或465;C 不正确,
122,2121()2122,2n
n n n
n S n ⎧⎛⎫
+⎪ ⎪⎪⎝⎭⎛
⎫=--=⎨ ⎪⎝⎭⎛⎫
⎪- ⎪⎪⎝⎭⎩
为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3
[,2)2
n S ∈,
又1n n y S S =-
关于n S 单调递增,所以当n 为奇数时,138
(,]23
n
n S S -∈,当n 为偶数时,153
[,)62n n S S -
∈,所以83
m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】
本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 29.AB 【分析】
首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】
解:因为数列{}n a 对任意的正整数n 均有2
12n n n a a a ++=,所以数列{}n a 为等比数列,因为
22a =,48a =,所以2
4
2
4a q a =
=,所以2q =±, 当2q
时11a =,所以10
1012102312
S -==-
当2q =-时11a =-,所以()(
)()
10
1011234112S -⨯--==--
故选:AB 【点睛】
本题考查等比数列的通项公式及求和公式的应用,属于基础题. 30.BD 【分析】
由12(1)0n n n a na ++-=得
121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫
⎨⎬⎩⎭
是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于
1
11
222
n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】
由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫
⎨⎬⎩⎭是以1141a a ==为首项,2为公比的
等比数列,故A 错误;因为11422n n n
a n
-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;
因为23
112222n n S n +=⨯+⨯+
+⋅,342212222n n S n +=⨯+⨯++⋅,所以 2
3
1
2
1222
2
n n n S n ++-=⨯++
+-⋅(
)222122
12
n
n n +-=
-⋅-,故
2(1)24n n S n +=-⨯+,
故C 错误;因为1
11
222
n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2
(1)22n n n n n T ++==,
故D 正确. 故选:BD 【点晴】
本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 31.ACD 【分析】
若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列,由6378S =求得首项,然后分析4个选项可得答案.
【详解】
解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列, 因为6378S =,所以16
61(1)2=
378112
a S -
=-,解得1
192a =,
对于A ,由于21
192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 31481
19248,
43788
a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程
多六里,所以C 正确; 对于D ,由于45611
11924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭
,所以D 正确, 故选:ACD 【点睛】
此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 32.BD 【分析】
由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数
列前n 项和公式,求出 1
22
212443
n n a a a +-++
+=,故选项C 错误,由等比数列的通项公式
得到62642m n +==,所以选项D 正确. 【详解】
由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,
所以()111222222n n n n n n n a S S a a a a ----=-=---=,
所以
1
2n
n a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,
故选项A 错误,选项B 正确; 数列{}2
n
a 是以首项214a
=,公比14q =的等比数列,
所以()
()21
112221
2
1
141444114
3
n n n n
a q a a a q +-⨯--++
+=
=
=--,故选项C 错误;
6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.
故选:BD 【点睛】
本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 33.ABC 【分析】
由11a >,781a a >,
871
01
a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】
11a >,781a a >,
871
01
a a -<-, 71a ∴>,801a <<,
∴A.01q <<,故正确;
B.2
798
1a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.
D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】
本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 34.AD 【分析】
设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】
数列{a n }是公比q 为2
3
-
的等比数列,{b n }是首项为12,公差设为d 的等差数列,
则8
912()3
a a =-,9
1012()3
a a =-, ∴a 9•a 102
17
12()3
a =-<0,故A 正确; ∵a 1正负不确定,故B 错误;
∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-
)8>12+8d ,a 1(2
3
-)9>12+9d , 由于910,a a 异号,因此90a <或100a <
故 90b <或100b <,且b 1=12
可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】
本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 35.ACD 【分析】
根据新定义进行判断. 【详解】
A .若数列{}n a 是单增数列,则11111
111
()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1
1
10n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;
B .31n a n =-,则1
3131n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则1
3131
n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,
C 正确;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1
y x x
=-在(0,)+∞上是增函数,
当n 为偶数时,11()(0,1)2
n
n a =-∈,∴10n n n b a a =-<,
当n 为奇数时,11()2
n
n a =+1>,显然n a 是递减的,因此1
n n n
b a a =-
也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为1325
0236
b =
-=>, ∴15
6b =
是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD . 【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。

相关文档
最新文档