松原市高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

松原市高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )
A .9.6
B .7.68
C .6.144
D .4.9152
2. 已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫
⎪⎝⎭
内变动 时,的取值范围是( )
A . ()0,1
B .⎝
C .()1,3⎫
⎪⎪⎝⎭
D .(
3. 函数f (x )=log 2(3x ﹣1)的定义域为( )
A .[1,+∞)
B .(1,+∞)
C .[0,+∞)
D .(0,+∞)
4. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
5. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )
A .
B .
C .
D .
6. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( ) A .a+3 B .6 C .2
D .3﹣a
7. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )
A .(1﹣1,]
B .(0,1]
C .[﹣1,1]
D .(﹣1,2]
8. 已知函数f (x )=x 3+mx 2+(2m+3)x (m ∈R )存在两个极值点x 1,x 2,直线l 经过点A (x 1,x 12),B
(x 2,x 22),记圆(x+1)2+y 2
=上的点到直线l 的最短距离为g (m ),则g (m )的取值范围是( )
A .[0,2]
B .[0,3]
C .[0,)
D .[0,)
9. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .14101
10.数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )
A .﹣
B .
C .﹣1
D .1
11.函数f (x )=tan (2x+
),则( )
A .函数最小正周期为π,且在(﹣,)是增函数
B .函数最小正周期为
,且在(﹣
,)是减函数
C .函数最小正周期为π,且在(,)是减函数
D .函数最小正周期为
,且在(

)是增函数
12.三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a
二、填空题
13.计算sin43°cos13°﹣cos43°sin13°的值为 .
14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 15.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 16.不等式
的解集为 .
17.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则
b
a
的值为 ▲ . 18.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别
与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;
②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .
三、解答题
19.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;
(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.
20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
21.(本小题满分12分)
中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各
(1)求各大学抽取的人数;
(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的
概率.
22.已知数列a 1,a 2,…a 30,其中a 1,a 2,…a 10,是首项为1,公差为1的等差数列;列a 10,a 11,…a 20,是公
差为d 的等差数列;a 20,a 21,…a 30,是公差为d 2
的等差数列(d ≠0).
(1)若a 20=40,求d ;
(2)试写出a 30关于d 的关系式,并求a 30的取值范围;
(3)续写已知数列,使得a 30,a 31,…a 40,是公差为d 3
的等差数列,…,依此类推,把已知数列推广为无穷数
列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
23.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.
(1)求S n 的最小值及相应n 的值;
(2)求T n .
24.(本小题满分12分)
两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.
(1)求0x =,1y =,2z =的概率;
(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.
【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.
松原市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】C
【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x
, 结合程序框图易得当n=4时,S=15(1﹣20%)4
=6.144.
故选:C .
2. 【答案】C 【解析】1111]
试题分析:由直线方程1:L y x =,可得直线的倾斜角为0
45α=,又因为这两条直线的夹角在0,
12π⎛⎫
⎪⎝⎭
,所以直线2:0L ax y -=的倾斜角的取值范围是0
3060α<<且0
45α≠,所以直线的斜率为
00tan30tan 60a <<且0tan 45α≠,即
13
a <<或1a << C. 考点:直线的倾斜角与斜率. 3. 【答案】D
【解析】解:要使函数有意义,
则3x ﹣1>0, 即3x >1, ∴x >0. 即函数的定义域为(0,+∞),
故选:D .
【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.
4. 【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
5.【答案】D
【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.
根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,
可得,1=,∴=,
,可得e=.
故此双曲线的离心率为:.
故选D.
【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.
6.【答案】A
【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,
故选:A.
7.【答案】B
【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],
由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,
解得:﹣1<x≤1,即N=(﹣1,1],
则M∩N=(0,1],
故选:B.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
8.【答案】C
【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f′(x)=x2+2mx+2m+3,
由题意可得,判别式△>0,即有4m2﹣4(2m+3)>0,
解得m>3或m<﹣1,
又x1+x2=﹣2m,x1x2=2m+3,
直线l经过点A(x1,x12),B(x2,x22),
即有斜率k==x1+x2=﹣2m,
则有直线AB:y﹣x12=﹣2m(x﹣x1),
即为2mx+y﹣2mx1﹣x12=0,
圆(x+1)2+y2=的圆心为(﹣1,0),半径r为.
则g(m)=d﹣r=﹣,
由于f′(x1)=x12+2mx1+2m+3=0,
则g(m)=﹣,
又m>3或m<﹣1,即有m2>1.
则g(m)<﹣=,
则有0≤g(m)<.
故选C.
【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.
9.【答案】B
【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,
∴,可得a n+1=a n﹣1,
因此数列{a n}是周期为2的周期数列.
a1=3,∴3a2+2=2a2+2×3,解得a2=4,
∴S 2015=1007(3+4)+3=7052.
【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.
10.【答案】D
【解析】解:∵a 1=3,a n ﹣a n •a n+1=1,
∴,得,,a 4=3,

∴数列{a n }是以3为周期的周期数列,且a 1a 2a 3=﹣1, ∵2016=3×672,
∴A 2016 =(﹣1)672
=1.
故选:D .
11.【答案】D
【解析】解:对于函数f (x )=tan (2x+),它的最小正周期为,
在(

)上,2x+
∈(

),函数f (x )=tan (2x+
)单调递增,
故选:D .
12.【答案】A
【解析】解:∵a=0.52=0.25, b=log 20.5<log 21=0, c=20.5>20=1, ∴b <a <c . 故选:A .
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
二、填空题
13.【答案】 .
【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,
故答案为.
14.【答案】1 【解析】 试题分析:()()()()22131112
22=-+--+-=
m AB ,解得:1=m ,故填:1.
考点:空间向量的坐标运算
15.【答案】 (﹣4,0] .
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件; 当a ≠0时,要使不等式ax 2﹣2ax ﹣4<0恒成立, 则满足,
即,

解得﹣4<a <0,
综上:a 的取值范围是(﹣4,0]. 故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
16.【答案】 (0,1] .
【解析】解:不等式,即
,求得0<x ≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.
17.【答案】1
2
-

点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
18.【答案】①②④.
【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.
②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积
最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.
③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.
④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.
故答案为:①②④.
【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.
三、解答题
19.【答案】
【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,
所以该考场有10÷0.25=40人,
所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:
40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;
(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:
×=2.9;
(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,
所以还有2人只有一个科目得分为A,
设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,
则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:
Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.
设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,所以事件B中包含的基本事件有1个,
则P(B)=.
【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.20.【答案】
【解析】解:(1)由题意可得,∴n=160;
(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b .f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f )共15种,其中a 和b 至少有一人上台抽奖的基本事件有9种,
∴a 和b 至少有一人上台抽奖的概率为
=;
(3)由已知0≤x ≤1,0≤y ≤1,点(x ,y )在如图所示的正方形OABC 内,
由条件得到的区域为图中的阴影部分
由2x ﹣y ﹣1=0,令y=0可得x=,令y=1可得x=1
∴在x ,y ∈[0,1]时满足2x ﹣y ﹣1≤0的区域的面积为=
∴该代表中奖的概率为=.
21.【答案】(1)甲,乙,丙,丁;(2)2
5
P =. 【解析】
试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.
试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.
(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,
13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,
12{,}b b ,13{,}b b ,23{,}b b ,共15种,
这2名同学来自同一所大学的结果共6种,所以所求概率为62155
P ==. 考点:1、分层抽样方法的应用;2、古典概型概率公式. 22.【答案】
【解析】解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.
(2)a30=a20+10d2=10(1+d+d2)(d≠0),
a30=10,
当d∈(﹣∞,0)∪(0,+∞)时,a30∈[7.5,+∞)
(3)所给数列可推广为无穷数列{a n],
其中a1,a2,…,a10是首项为1,公差为1的等差数列,
当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为d n的等差数列.
研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.
研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),
依此类推可得a10(n+1)=10(1+d+…+d n)=.
当d>0时,a10(n+1)的取值范围为(10,+∞)等.
【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.
23.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.
由a n≤0,解得n≤5.n≥6时,a n>0.
∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.
n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n
=﹣2S5+S n
=2n2﹣19n+89.
∴T n=.
【点评】本题考查了等差数列的通项公式及其前n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
24.【答案】
【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,
此时的概率2
13111324
P C ⎛⎫=⨯⨯= ⎪⎝⎭.
(4分)。

相关文档
最新文档