郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. i 是虚数单位,i 2015等于( )
A .1
B .﹣1
C .i
D .﹣i
2. 二项式(1)(N )n x n *
+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
3.
如果向量
满足
,且
,则的夹角大小为( ) A .30° B .45° C .75° D .135°
4. 已知抛物线x 2=﹣2y 的一条弦AB 的中点坐标为(﹣1,﹣5),则这条弦AB 所在的直线方程是( ) A .y=x ﹣4 B .y=2x ﹣3 C .y=﹣x ﹣6 D .y=3x ﹣2
5. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
6. 从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( ) A
.
B
.
C
.
D
.
7. 全称命题:∀x ∈R ,x 2>0的否定是( )
A .∀x ∈R ,x 2≤0
B .∃x ∈R ,x 2>0
C .∃x ∈R ,x 2<0
D .∃x ∈R ,x 2≤0
8. 如图,空间四边形OABC 中,,
,
,点M 在OA
上,且
,点N 为BC 中点,
则
等于( )
A
. B
. C
. D
.
9. 执行如图的程序框图,则输出S 的值为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .2016
B .2
C .
D .﹣1
10.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )
A .3
B .4
C .5
D .6
11.sin 3sin1.5cos8.5,
,的大小关系为( ) A .sin1.5sin 3cos8.5<< B .cos8.5sin 3sin1.5<< C.sin1.5cos8.5sin 3<<
D .cos8.5sin1.5sin 3<<
12.函数2
(44)x
y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .1
二、填空题
13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .
14.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给
出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(
),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
15.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,
{,0x x x f x x lnx x a
+≤=->在其定义域上恰有两
个零点,则正实数a 的值为______.
16.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .
17.已知直线5x+12y+m=0与圆x 2﹣2x+y 2
=0相切,则m= . 18.若复数34
sin (cos )i 55
z αα=-
+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.
三、解答题
19.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)
(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分) (3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.
20.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:
(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率
(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围
21.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.
(Ⅰ)求;
(Ⅱ)若c2=b2+a2,求B.
22.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交
点为A,且线段AB的中点E在直线y=x上.
(1)求直线AB的方程;
(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.
①证明:OM•ON为定值;
②证明:A、Q、N三点共线.
23.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
24.如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,CM ⊥AB ,垂足为点M . (1)求证:DC 是⊙O 的切线; (2)求证:AM •MB=DF •DA .
郊区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D
【解析】解:i 2015=i 503×4+3=i 3
=﹣i ,
故选:D
【点评】本题主要考查复数的基本运算,比较基础.
2. 【答案】B
【解析】因为(1)(N )n
x n *
+?的展开式中3
x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 3. 【答案】B
【解析】解:由题意故,即
故两向量夹角的余弦值为=
故两向量夹角的取值范围是45°
故选B
【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.
4. 【答案】A
【解析】解:设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=﹣2,x 12=﹣2y 1,x 22
=﹣2y 2. 两式相减可得,(x 1+x 2)(x 1﹣x 2)=﹣2(y 1﹣y 2) ∴直线AB 的斜率k=1,
∴弦AB 所在的直线方程是y+5=x+1,即y=x ﹣4. 故选A ,
5. 【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
6.【答案】C
【解析】解:从1,2,3,4中任取两个数,有(1,2),(1,3),
(1,4),(2,3),(2,4),(3,4)共6种情况,
其中一个数是另一个数两倍的为(1,2),(2,4)共2个,
故所求概率为P==
故选:C
【点评】本题考查列举法计算基本事件数及事件发生的概率,属基础题.
7.【答案】D
【解析】解:命题:∀x∈R,x2>0的否定是:
∃x∈R,x2≤0.
故选D.
【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.
8.【答案】B
【解析】解:===;
又,,,
∴.
故选B.
【点评】本题考查了向量加法的几何意义,是基础题.
9.【答案】B
【解析】解:模拟执行程序框图,可得
s=2,k=0
满足条件k<2016,s=﹣1,k=1
满足条件k<2016,s=,k=2
满足条件k<2016,s=2.k=3
满足条件k <2016,s=﹣1,k=4 满足条件k <2016,s=,k=5 …
观察规律可知,s 的取值以3为周期,由2015=3*671+2,有 满足条件k <2016,s=2,k=2016
不满足条件k <2016,退出循环,输出s 的值为2. 故选:B .
【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s ,k 的值,观察规律得到s 的取值以3为周期是解题的关键,属于基本知识的考查.
10.【答案】B
【解析】解:模拟执行程序框图,可得 s=0,n=0
满足条件n <i ,s=2,n=1 满足条件n <i ,s=5,n=2 满足条件n <i ,s=10,n=3 满足条件n <i ,s=19,n=4 满足条件n <i ,s=36,n=5
所以,若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为4, 有n=4时,不满足条件n <i ,退出循环,输出s 的值为19. 故选:B .
【点评】本题主要考查了循环结构的程序框图,属于基础题.
11.【答案】B 【解析】
试题分析:由于()cos8.5cos 8.52π=-,因为8.522
π
ππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,
∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较. 12.【答案】C 【解析】
考点:指数函数的概念.
二、填空题
13.【答案】 6 .
【解析】解:根据题意可知:f (x )﹣2x
是一个固定的数,记为a ,则f (a )=6,
∴f (x )﹣2x =a ,即f (x )=a+2x
,
∴当x=a 时,
又∵a+2a
=6,∴a=2,
∴f (x )=2+2x
,
∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x
+4
≥
2+4=6,当且仅当x=0时成立,
∴f (x )+f (﹣x )的最小值等于6,
故答案为:6.
【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.
14.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;1212(,)x x x x A B ϕ=
=
,
1211,(,)A B ϕ==>因为1
(,)
t A B ϕ<
恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 15.【答案】e
【解析】考查函数()()20{
x x x f x ax lnx
+≤=-,其余条件均不变,则:
当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有ln x
a x =
有且只有一个实根。
令()()2
ln 1ln ,'x x g x g x x x -==, 当x >e 时,g ′(x )<0,g (x )递减;
当0<x <e 时,g ′(x )>0,g (x )递增。
即有x =e 处取得极大值,也为最大值,且为
1e
, 如图g (x )的图象,当直线y =a (a >0)与g (x )的图象 只有一个交点时,则1a e
=
. 回归原问题,则原问题中a e =.
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.
16.【答案】 ( 1,±2) .
【解析】解:设点P 坐标为(a 2
,a )
依题意可知抛物线的准线方程为x=﹣2
a 2+2=
,求得a=±2
∴点P 的坐标为( 1,±2)
故答案为:( 1,±2
).
【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.
17.【答案】8或﹣18
【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.
【解答】解:整理圆的方程为(x ﹣1)2++y 2
=1 故圆的圆心为(1,0),半径为1 直线与圆相切
∴圆心到直线的距离为半径 即
=1,求得m=8或﹣18
故答案为:8或﹣18 18.【答案】34
-
【解析】由题意知3sin 05α-
=,且4cos 05α-≠,所以4cos 5α=-,则3tan 4
α=-. 三、解答题
19.【答案】解:(1)当a=1,f (x )=x 2﹣3x+lnx ,定义域(0,+∞),
∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,
∴
综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,
x∈(1,e],h(x)是增函数,
∴,
∴时,,∴
∴a的取值范围为…(14分)
20.【答案】
【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,
一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,
记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,
记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,
其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,
所以P(M)==,
即恰有1人一周课外阅读时间在[2,4)的概率为.
(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,
课外阅读时间落在[2,4)的频率为P2=0.03,
课外阅读时间落在[4,6)的频率为P3=0.05,
课外阅读时间落在[6,8)的频率为P1=0.2,
因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,
故t0∈[6,8),
所以P1+P2+P3+0.1×(t0﹣6)=0.2,
解得t0=7,
所以教育局拟向全市中学生的一周课外阅读时间为7小时.
【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.
21.【答案】
【解析】解:(Ⅰ)由正弦定理得,sin2
AsinB+sinBcos2A=sinA,
即sinB(sin2
A+cos2A)=sinA
∴sinB=sinA,=
(Ⅱ)由余弦定理和C2
=b2+a2,得cosB=
由(Ⅰ)知b2
=2a2,故c2=(2+)a2,
可得cos2B=,又cosB>0,故cosB=
所以B=45°
【点评】本题主要考查了正弦定理和余弦定理的应用.解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化.
22.【答案】
【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(2)证明:设P(x0,y0),则,
①直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
②设直线MB的方程为:y=kx﹣1(其中k==),
联立,整理得:(1+2k2)x2﹣4kx=0,
∴x Q=,y Q=,
∴k AN===1﹣,k AQ==1﹣,要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,
将k=代入,即证:x M•x N=,
由①的证明过程可知:|x M |•|x N |=,
而x M 与x N 同号,∴x M •x N =,
即A 、Q 、N 三点共线.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
23.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【
解
析
】
试
题解析:
(1)设()(0)f x kx b k =+>,111]
由题意有:32,27,k b k b -+=⎧⎨+=⎩解得1,
5,k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-.
(2)(())(5)10f f x f x x =+=+,{}3x ∈-. 考点:待定系数法.
24.【答案】
【解析】证明:(1)连接OC ,∵OA=OC ∴∠OAC=∠OCA ,
∵CA 是∠BAF 的角平分线, ∴∠OAC=∠FAC ∴∠FAC=∠OCA , ∴OC ∥AD .… ∵CD ⊥AF ,
∴CD ⊥OC ,即DC 是⊙O 的切线.…
(2)连接BC ,在Rt △ACB 中,CM ⊥AB ,∴CM 2
=AM •MB . 又∵DC 是⊙O 的切线,∴DC 2
=DF •DA .
∵∠MAC=∠DAC ,∠D=∠AMC ,AC=AC ∴△AMC ≌△ADC ,∴DC=CM ,
∴AM•MB=DF•DA…
【点评】几何证明选讲重点考查相似形,圆的比例线段问题,一般来说都比较简单,只要掌握常规的证法就可以了.。