广义最小二乘法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 广义最小二乘法
当计量经济学模型同时存在序列相关和异方差,而且随机误差项的方差-协方差矩阵未知时我们可以考虑使用广义最小二乘法(GLS)。
即下列模型:
μβ+=X Y
满足这样一些条件:
0)(=μE
Ω=2')(δμμCOV
nn
n n n ωωωωωωωωω 21222
2111211......=Ω
设D D '=ω
用1-D 左乘μβ+=X Y 的两边,得到一个新的模型
μβ111---+=D X D Y D
即
***μβ+=X Y (1)
该模型具有同方差性和随机误差相互独立性。
因为可以证明:
2**)(δμμ='E I
于是可用普通最小二乘法估计(1)式,得到的参数估计结果为
**1**)(ˆY X X X '-'=β
=Y X X X 1
11)(---Ω'Ω'
整个过程最重要的一步就是要估计Ω,当模型存在一阶自相关时。
我们取 1
11
2121 ----=Ωn n n n ρρρρ
ρρ 案例四:广义最小二乘法
在这里我们举例子来说明广义最小二乘法的应用。
在讨论这个问题时所采用的数据如下表5.1所示:
表5.1
首先我们计算ρ,我们可以直接根据OLS估计出来的DW来计算,OLS估计出来的结果为下表5.2:
表5.2
可以根据ρ=1-DW/2,DW=0.8774,因此ρ=0.5613,在这个基础上,我们可以得出这个方差-协方差矩阵。
方差协方差矩阵可以由以下一个程序来获得:
!p=0.5613
matrix(17,17) fac1
for !i=1 to 17
fac1(!i,!i)=1
next
for !j=1 to 17
for !i=!j+1 to 17
fac1(!i,!j)=!p^(!i-!j)
fac1(!j,!i)=fac1(!i,!j)
next
next
得到的矩阵结果为下表5.3
表5.3
:
下面再进行Cholosky 分解,得到1
D ,进行Cholosky 分解时所用到的命令如下: sym(17,17) fact1
matrix fact1 = @cholesky(fact)
得到的fact1矩阵如下:
求解fact1的逆矩阵就可以将数据进行转换,得到*2m 和*
gdp ,求解逆矩阵时用到的命令如下:
matrix(17,17) fact2
fact2=@inverse(fact)
得到的fact1矩阵的逆矩阵fact2如下:
*
m=m2*fact2
2
*
gdp=gdp*fact
这样就可以得到一组变换后的数据,数据如下:
再对这组数据进行普通最小二乘法就可以得到这个方程的广义最小二乘法的估计结果,结果如下:
表5.4
可以看到,使用广义最小二乘法后,序列相关的情况得到改善。