高考数学压轴专题新备战高考《函数与导数》分类汇编及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学《函数与导数》高考知识点
一、选择题
1.函数()()2
ln 43f x x x =+-的单调递减区间是( )
A .3,2
⎛⎤-∞ ⎥⎝

B .32⎡⎫+∞⎪⎢⎣⎭

C .31,2
⎛⎤- ⎥⎝

D .342⎡⎫⎪⎢⎣⎭

【答案】D 【解析】 【分析】
先求函数定义域,再由复合函数单调性得结论. 【详解】
由2430x x +->得14x -<<,即函数定义域是(1,4)-,
2232543()24
u x x x =+-=--+在3(1,]2-上递增,在3
[,4)2上递减,
而ln y u =是增函数,
∴()f x 的减区间是3[,4)2
. 故选:D . 【点睛】
本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.
2
.3
6ax ⎛⎫
- ⎪ ⎪⎝
⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1
【答案】A 【解析】 【分析】
首先根据二项式定理求出a ,把a 的值带入1
1
a
dx x

即可求出结果. 【详解】
解题分析
根据二项式3
ax ⎛- ⎝⎭
的展开式的通项公式得2
21
213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44
a
a ∴=∴=,
则4
4
111
11d d ln 2ln 2a x x x x x ===⎰⎰.
故选:A 【点睛】
本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k k
k n T a b -+=.属于中等
题.
3.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足
()()
3f x f x x
'->,则关于x 的不等式3
1(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭
的解集为( )
A .()3,6
B .()0,3
C .()0,6
D .()6,+∞
【答案】A 【解析】 【分析】
根据条件,构造函数3
()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】
解:Q 3
(1)(3)(3)03
x f x f ---<,
3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),
Q 定义在(0,)+∞的函数()f x ,
3x ∴<,
令3
()()g x x f x =,
∴不等式3(3)(3)27x f x f --<(3),
即为(3)g x g -<(3),
323()(())3()()g x x f x x f x x f x '='=+',
Q
()()
3f x f x x
'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,
32()3()0x f x x f x ∴+>,
()0g x ∴'>, ()g x ∴单调递增,
又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q ,
36x ∴<<.
故选:A . 【点睛】
本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.
4.三个数0.20.4
0.44,3,log 0.5的大小顺序是 ( ) A .0.40.2
0.43<4log 0.5<
B .0.40.2
0.43<log 0.5<4
C .0.4
0.20.4log 0.534<<
D .0.2
0.40.4log 0.54
3<<
【答案】D 【解析】
由题意得,12
0.2
0.4
5
5
0.4
0log
0.514
43
3<<<==== D.
5.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4
C .0
D .﹣4
【答案】A 【解析】
()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处
的切线方程是1y x =--,所以()()23,'21f f =-=-,
()()()()2'2221'27g g f f ∴+=-+-=,故选A .
6.已知()ln x
f x x
=
,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020
log 20202019
>
【答案】D 【解析】 【分析】
根据2
1ln (),(0,)x
f x x x
-'=
∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】
2
1ln (),(0,)x
f x x x -'=
∈+∞Q
∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;
对于选项B ,()2ln 4ln 2ln 2
4(2)442
f f ====,故B 正确;
对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,
ln ln a b
a b

<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,
(2019)(2020)f f ∴>,即
ln 2019ln 202022019020>⇒20192020ln 2020
log 2020ln 02019
219>=, 故选项D 不正确. 故选:D 【点睛】
本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.
7.已知函数()3
2
2
f x x ax bx a =+++在1x =处取极值10,则a =( )
A .4或3-
B .4或11-
C .4
D .3-
【答案】C 【解析】
分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵3
2
2
()f x x ax bx a =+++, ∴2
()32f x x ax b '
=++.
由题意得2
(1)320
(1)110f a b f a b a =++=⎧⎨=+++='⎩
, 即2
239a b a b a +=-⎧⎨
++=⎩,解得33a b =-⎧⎨=⎩或4
11a b =⎧⎨=-⎩
. 当33
a b =-⎧⎨
=⎩时,22
()3633(1)0f x x x x '=-+=-≥,故函数()f x 单调递增,无极值.不
符合题意. ∴4a =. 故选C .
点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.
(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.
8.已知函数()2
f x x x =+,且()1
231ln
log 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝
⎭,,,则a b c ,,的大小关系为( )
A .a c b <<
B .b c a <<
C .c a b <<
D .b a c <<
【答案】A 【解析】 【分析】
由函数()2
f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数
()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.
【详解】
由题意,函数()2
f x x x =+,满足()()2
2
()f x x x x x f x -=-+-=+=,
所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,
又当0x ≥时,()2
f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递
增函数,则函数()f x 在(,0)-∞上为单调递减函数,
又由31ln 22<=,113222log log 1<=-,1
122
-=,
根据对称性,可得11
323(ln )(2)(log )2
f f f -<<,即a c b <<,故选A .
【点睛】
本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.
9.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )
A .()()()0.3
1.1
3
0. 2
0.54f f log f << B .()()()0.3
1.1
3
0. 240.5f f f log <<
C .()()()1.1
0.3
3
40.20.5f f f log << D .()()()0.3
1.1
3
0.50.24f log f f << 【答案】A 【解析】 【分析】
由已知可得()f x 的图象关于直线1x =对称.因为0.3
1.130.2
1log 0.5141-<-<-,又
()f x 在[1,)+∞上单调递增,即可得解.
【详解】
解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.3
1.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,
则0.3
1.130.2
1log 0.5141-<-<-,
又()f x 在[1,)+∞上单调递增, 所以(
)()()0.3
1.1
3
0.20.54f f log f <<.
故选:A. 【点睛】
本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.
10.函数()3ln x
f x x
=
的部分图象是( ) A . B .
C .
D .
【答案】A 【解析】 【分析】
根据奇偶性排除B ,当1x >时,()3ln 0x
f x x
=>,排除CD ,得到答案. 【详解】
()()()33
ln ln ,x x f x f x f x x x
=-==--, ()f x 为奇函数,排除B
当1x >时,()3ln 0x
f x x
=>恒成立,排除CD 故答案选A 【点睛】
本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.
11.已知函数()ln x
f x x
=,则使
ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,
e ⎛
⎫ ⎪⎝⎭
C .1,1e ⎛⎫ ⎪⎝⎭
D .1,e ⎛⎫-∞ ⎪⎝⎭
【答案】B 【解析】 【分析】 令()ln x
t f x x
==,利用导数研究其图象和值域,再将
ln ()()()f x g x a f x =-有2个零点,转化为ln t
a t
=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==
,当01x <<时,()0ln x
t f x x
==
<, 当1x >时,()
2
ln 1
()ln x t f x x -''==

当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:
所以ln ()()()f x g x a f x =-有2个零点,转化为ln t
a t
=在[),e +∞上只有一解, 令ln t m t =
,2
1ln 0t m t -'=≤,所以ln t
m t
=在[),e +∞上递减, 所以1
0m e
<≤

所以10a e <≤,当1
a e
=时,x e =,只有一个零点,不合题意, 所以10a e
<< 故选:B 【点睛】
本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.
12.已知函数
()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设
12a f ⎛⎫
=- ⎪⎝⎭
,()3b f =,()0c f =,则a b c 、、的大小关系为()
A .b a c <<
B .c b d <<
C .b c a <<
D .a b c <<
【答案】A 【解析】 【分析】 根据
()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上
单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系. 【详解】
()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称
()f x ∴图象关于1x =对称
()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增
又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫
∴-<-< ⎪⎝⎭
,即b a c << 本题正确选项:A 【点睛】
本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.
13.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3
()()2f x f x +=-,则9()2
f -的值为( ) A .0 B .3
C .
32
D .92
-
【答案】A 【解析】
【分析】
首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫
- ⎪⎝⎭
的值即可. 【详解】
函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛

+=- ⎪⎝⎭
,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛
⎫-
=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝
⎭. 本题选择A 选项. 【点睛】
本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.
14.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则
()()20192024f f +=( )
A .-5
B .5
C .0
D .4043
【答案】B 【解析】 【分析】
根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】
由(8)()0f x f x ++=,得(8)()f x f x +=-,
所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,
所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.
得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】
此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.
15.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1
处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0
【答案】A 【解析】 【分析】
先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】
当0x >时,0x -<,2
()ln f x x x -=-,又函数()f x 为偶函数,所以
2()ln f x x x =-,
(1)1f =,所以'1
()2f x x x
=-,'(1)1f =,故切线方程为11y x -=-,即y x =.
故选:A .
【点睛】
本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.
16.已知函数()()11
10x x e f x x e
++-=<与()()1ln x x
g x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )
A .1,1e ⎛⎫-∞+ ⎪⎝⎭
B .1,e ⎛⎫
-
+∞ ⎪⎝⎭
C .1,1e ⎛
⎫-∞- ⎪⎝⎭
D .11,e
⎛⎫-+∞ ⎪⎝

【答案】D 【解析】 【分析】
先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e e
x x a ++-=在()0,∞+上有解,设()()11
ln 1e e
x x x ϕ=
++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.
【详解】
由()f x 关于y 轴对称的函数为()()()1
1
1
1e e 10e
x x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1
e 1e ln 1e x x x x a --=+-()0x >,
则方程()1
e 1e ln 1e x x x x a --=+-在()0,∞+上有解,
即方程
()11ln 1e e
x x a ++-=在()0,∞+上有解,
设()()11ln 1e e
x x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,
()()
11e 1e 1e 1x x x x x x x ϕ--=-+='++Q , 令()=e 1x m x x --,则()=e 10x m x '->在()0,∞+上恒成立,所以()=e 1x
m x x --在()0,∞+上为增函数,∴()()00m x m >=,
即()0x ϕ'>Q 在()0,∞+上恒成立,
∴()x ϕ在()0,∞+上为增函数,
当0x >时,则()()101x e ϕϕ>=-
, 所以11e a >-
, 故选:D
【点睛】
本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.
17.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )
A .()()2019202020202019f f >
B .()()20192020f f >
C .()()2019202020202019f f <
D .()()20192020f f < 【答案】A
【解析】
【分析】
构造函数()()f x g x x
=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.
【详解】
令()()()0f x g x x x =>,则()()()2
xf x f x g x x '-'=. 由已知得,当0x >时,()0g x '>.
故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,
即()()2020201920202019
f f >,所以()()2019202020202019f f >. 故选:A.
【点睛】
本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.
18.4
0cos2d cos sin x x x x
π
=+⎰( ) A
.1)
B
1 C
1 D
.2【答案】C
【解析】
【分析】
利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.
【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x
-==-++,
∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x π
ππ
=-=+=+⎰⎰,故选C . 【点睛】
本题考查三角恒等变换知与微积分基本定理的交汇.
19.已知函数f (x )=2x -1,()2cos 2,0?2,0
a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛
⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,
1,22⎛
⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C
【解析】
【分析】
对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.
【详解】
当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =2
2(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,
所以此时函数g (x )的值域为(2a ,+∞),
由题得2a <1,即a <12
,即a <0.
当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],
当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩
. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12
. 综合得a 的范围为a <
12或1≤a ≤2, 故选C .
【点睛】 本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.
20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取
lg30.4771≈,lg 20.3010≈)
A .16
B .17
C .24
D .25 【答案】D
【解析】
【分析】
由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n ⎛⎫≥ ⎪⎝⎭
,利用运算法则可知32lg 2lg 3n ≥
⨯-,由此计算得到结果. 【详解】
记初始线段长度为a ,则“一次构造”后的折线长度为
43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭
, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n
⎛⎫≥ ⎪⎝⎭,
()()44lg lg lg 4lg32lg 2lg3lg1000333n
n n n ⎛⎫∴==-=-≥= ⎪⎝⎭
, 即324.0220.30100.4771
n ≥
≈⨯-,∴至少需要25次构造. 故选:D .
【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。

相关文档
最新文档