临泽县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临泽县一中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.直线l过点P(2,﹣2),且与直线x+2y﹣3=0垂直,则直线l的方程为()
A.2x+y﹣2=0 B.2x﹣y﹣6=0 C.x﹣2y﹣6=0 D.x﹣2y+5=0
2.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()
A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥α
C.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n
3.已知直线a,b都与平面α相交,则a,b的位置关系是()
A.平行 B.相交 C.异面 D.以上都有可能
4.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高杂质低
旧设备37 121
新设备22 202
根据以上数据,则()
A.含杂质的高低与设备改造有关
B.含杂质的高低与设备改造无关
C.设备是否改造决定含杂质的高低
D.以上答案都不对
5.双曲线的焦点与椭圆的焦点重合,则m的值等于()
A.12 B.20 C. D.
6.在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()
A.B.C.D.
7.已知x,y满足时,z=x﹣y的最大值为()
A.4 B.﹣4 C.0 D.2
8
.已知向量=(﹣1,3),=(x,2),且,则x=()
A.B.C.D.
9. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .
725
B .725- C. 725± D .2425
10.不等式的解集为( )
A .或
B .
C .

D .
11.下列结论正确的是( )
A .若直线l ∥平面α,直线l ∥平面β,则α∥β.
B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.
C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2
D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α
12.若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )
A .(﹣∞,1]
B .[0,1]
C .(﹣2,﹣1)∪(﹣1,1]
D .(﹣∞,﹣2)∪(﹣1,1]
二、填空题
13.椭圆
+
=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .
14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.
15.已知函数f (x )=x m 过点(2,),则m= .
16.设函数
,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同
的实数根,则实数a 的取值范围是 .
17.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)
18.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 .
三、解答题
19.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=.111]
(1)求{}n a ,{}n b 的通项公式; (2)求数列{}n
n
a b 的前项和n S .
20.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,曲线C 2
的参数方程为
(θ为参数).
(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;
(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
21.已知全集U=R ,集合A={x|x 2﹣4x ﹣5≤0},B={x|x <4},C={x|x ≥a}.
(Ⅰ)求A ∩(∁U B ); (Ⅱ)若A ⊆C ,求a 的取值范围.
22.(本小题满分12分)已知椭圆1C :14
82
2=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;
(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.
23.已知{a n }为等比数列,a 1=1,a 6=243.S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35. (1)求{a n }和{B n }的通项公式; (2)设T n =a 1b 1+a 2b 2+…+a n b n ,求T n .
24.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数
(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?
(3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
临泽县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】B
【解析】解:∵直线x+2y﹣3=0的斜率为﹣,
∴与直线x+2y﹣3=0垂直的直线斜率为2,
故直线l的方程为y﹣(﹣2)=2(x﹣2),
化为一般式可得2x﹣y﹣6=0
故选:B
【点评】本题考查直线的一般式方程和垂直关系,属基础题.
2.【答案】D
【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;
B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;
C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;
D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.
故选D.
【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.3.【答案】D
【解析】解:如图,在正方体ABCD﹣A1B1C1D1中,
AA1∩平面ABCD=A,BB1∩平面ABCD=B,AA1∥BB1;
AA1∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB1相交;
AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA1与CD1异面.
∴直线a,b都与平面α相交,则a,b的位置关系是相交、平行或异面.
故选:D.
4.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37 121 158
新设备22 202 224
合计59 323 382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
5.【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
6.【答案】C
【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,
所以共有4×6=24个,
而在8个点中选3个点的有C83=56,
所以所求概率为=
故选:C
【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
7.【答案】A
【解析】解:由约束条件作出可行域如图,
联立,得A(6,2),
化目标函数z=x﹣y为y=x﹣z,
由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.
故选:A.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
8.【答案】C
【解析】解:∵,
∴3x+2=0,
解得x=﹣.
故选:C.
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.
9.【答案】A
【解析】
考点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理
R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 10.【答案】A 【解析】 令



其对应二次函数开口向上,所以解集为或
,故选A
答案:A
11.【答案】B
【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确; B 选项中,垂直于同一平面的两个平面平行,正确;
C 选项中,直线与直线相交、平行、异面都有可能,故不正确;
D 中选项也可能相交. 故选:B .
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
12.【答案】D
【解析】解:∵函数f (x )=﹣x 2
+2ax 的对称轴为x=a ,开口向下,
∴单调间区间为[a ,+∞)
又∵f (x )在区间[1,2]上是减函数,
∴a ≤1
∵函数g (x )=在区间(﹣∞,﹣a )和(﹣a ,+∞)上均为减函数,
∵g (x )=
在区间[1,2]上是减函数,
∴﹣a >2,或﹣a <1, 即a <﹣2,或a >﹣1,
综上得a ∈(﹣∞,﹣2)∪(﹣1,1], 故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.
二、填空题
13.【答案】
4 .
【解析】解:由题意,设P (4cos θ,
2sin θ)
则P 到直线的距离为
d=
=

当sin (θ

)=1时,d 取得最大值为
4

故答案为:
4.
14.【答案】2300 【解析】111]
试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪
⎪⎨⎧≥+≥+≥≥140
20y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的
最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300
.
1111]
考点:简单线性规划.
【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列
出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 15.【答案】﹣1.
【解析】解:将(2,)代入函数f(x)得:=2m,
解得:m=﹣1;
故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
16.【答案】(﹣1,﹣]∪[,).
【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.
当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.
当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.
当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.
当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.
当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.
设g(x)=ax,则g(x)过定点(0,0),
坐标系中作出函数y=f(x)和g(x)的图象如图:
当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,
则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,
故满足条件的斜率k的取值范围是或,
故答案为:(﹣1,﹣]∪[,)
【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.
17.【答案】 15
【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种 故答案为:15.
【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.
18.【答案】 .
【解析】解:∵a 是甲抛掷一枚骰子得到的点数, ∴试验发生包含的事件数6,
∵方程x 2
+ax+a=0 有两个不等实根, ∴a 2
﹣4a >0,
解得a >4, ∵a 是正整数, ∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
三、解答题
19.【答案】(1)2,2==q d ;(2)1
2
3
26-+-=n n n S . 【解析】
(2)121
2--=n n n n b a ,………………6分 12212
1
223225231---+-++++=n n n n n S ,①
n n n n n S 2
12232252321211321-+-++++=- .②……………8分 ①-②得n
n n n n S 2
122222222212`1221--+++++=-- 2311222
221
1222222n n n
n S --=++++
-,…………10分
所以1
2
3
26-+-
=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.
【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {
n
n
b 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 20.【答案】
【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,
根据曲线C 2的参数方程为
(θ为参数),可得它的普通方程为
+y 2=1.
(Ⅱ)把曲线C 1与C 2是联立方程组
,化简可得 5x 2
﹣8x=0,显然△=64>0,
故曲线C 1与C 2是相交于两个点.
解方程组求得
,或
,可得这2个交点的坐标分别为(0,1)、(,﹣).
【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.
21.【答案】
【解析】解:(Ⅰ)∵全集U=R ,B={x|x <4},
∴∁U B={x|x ≥4},
又∵A={x|x 2
﹣4x ﹣5≤0}={x|﹣1≤x ≤5},
∴A ∩(∁U B )={x|4≤x ≤5}; (Ⅱ)∵A={x|﹣1≤x ≤5},C={x|x ≥a},且A ⊆C ,
∴a 的范围为a ≤﹣1. 【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本
题的关键.
22.【答案】(1)x y 82
=;(2)9
64. 【解析】
试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积2
2b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直
线BD 的方程为()21
--
=x k
y .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .
利用四边形ABCD 面积BD AC S 2
1
=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.
(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,
则直线BD 的斜率为k
1
-,直线AC 的方程为)2(-=x k y ,联立⎪⎩

⎨⎧=+
-=148)2(22y x x k y ,得0888)12(2222=-+-+k x k x k .111]
∴2
2
21218k
k x x +=+,22212188k k x x +-=. 1
2)1(324)(1||2
2212
212++=-+⋅+=k k x x x x k AC .由于直线BD 的斜率为k 1-,用k 1-代换上式中的。

可得2
)
1(32||22++=
k k BD . ∵BD AC ⊥,∴四边形ABCD 的面积)
12)(2()1(16||||212
22
2+++=⋅=k k k BD AC S . 由于222222
2
]2
)1(3[]2)12()2([)12)(2(+=+++≤++k k k k k ,∴964≥S ,当且仅当1222
2+=+k k ,即
1±=k 时取得等号.
易知,当直线AC 的斜率不存在或斜率为零时,四边形ABCD 的面积8=S . 综上,四边形ABCD 面积的最小值为9
64. 考点:椭圆的简单性质.1
【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得||||2MF MP =,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当AC 或BD 中的一条与轴垂直而另一条与轴重合时,四边形面积为2
2b .当直线
AC 和BD 的斜率都存在时,分别设出BD AC ,的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得
BD AC ,,从而利用四边形的面积公式求最值.
23.【答案】
【解析】解:(Ⅰ)∵{a n }为等比数列,a 1=1,a 6=243,
∴1×q 5
=243,解得q=3,
∴.
∵S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35. ∴5×
3+
d=35,解得d=2,
b n =3+(n ﹣1)×2=2n+1. (Ⅱ)∵T n =a 1b 1+a 2b 2+…+a n b n ,



①﹣②得:

整理得:.
【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
24.【答案】
【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与
相差较大,所以节能意识强弱与年龄有关
(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为
∴年龄大于50岁的约有(人)
(3)抽取节能意识强的5人中,年龄在20至50岁的(人),
年龄大于50岁的5﹣1=4人,记这5人分别为a,B1,B2,B3,B4.
从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),
设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,
则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)
故所求概率为。

相关文档
最新文档