(八年级数学教案)苏科版八上课题:2.1勾股定理(2)教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1勾股定理(2)教案
八年级数学教案
学习目标:
1、通过拼图,用面积的方法说明勾股定理的正确性.
2、通过实例应用勾股定理,培养学生的知识应用技能.
学习重点:1.用面积的方法说明勾股定理的正确2勾股定理的应用. 学习难点:勾股定理的应用.
学习过程:
一、学前准备:
1、阅读课本第46页到第47页,完成下列问题:
(1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称
为弦。
图(1)称为弦图”最早是由三国时期的数学家赵爽在为《周髀算经》
作法时给出的。
图(2)是在北京召开的_______ 年国际数学家大会(TCM— 2002)
的会标,其图案正是弦图”它标志着中国古代的数学成就•你能用不同方法表
示大正方形的面积吗?
2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的图形。
大正
方形的面积可以表示为______________________________ 可以表示为
对寸比两种表示方法,看看能不能得到勾股定理的结论。
用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图
形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)
二、合作探究:
(一)自学、相信自己:
(二)思索、交流:
拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③ 的形状,观察图②③ 可发现,图②中两个小正方形的面积之和
(三)应用、探究:
1、如图,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128 米•问从点A穿过湖到点B有多远?
(四)巩固练习:
1、如图,64、400分别为所在正方形的面积,则图中字
母A所代表的正方形面积是_______________ 。
三.学习体会:
本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。
2②图
四.自我测试:
五.自我提咼:。