清河区第一中学2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

清河区第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}01
2
|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[
【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题. 2. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =
-++-+-在02π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则实数的取值范围为( )
A .117⎡⎤⎢⎥⎣⎦,
B .117⎡
⎤-⎢⎥⎣
⎦,
C.1
(][1)7
-∞-+∞,,
D .[1)+∞, 3. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离
相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A B A.直线 B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 4. 抛物线y=﹣8x 2的准线方程是( )
A .y=
B .y=2
C .x=
D .y=﹣2
5. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φ
ω
的值为( )
A.18 B .14
C.12
D .1
6. 对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
7. 若变量x ,y 满足:,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <﹣
B .﹣2<t ≤﹣
C .﹣2≤t ≤﹣
D .﹣2≤t <﹣
8. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )
A .
π B .2
π
C .4
π
D .
π
9. 设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( ) A .2
B .8
C .﹣2或8
D .2或8
10.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )
A .1:2:3
B .2:3:4
C .3:2:4
D .3:1:2 11.若某程序框图如图所示,则该程序运行后输出的值是( )
A.7
B.8
C. 9
D. 10
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.
12.一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()
A.4π
B.
C. 5π
D. 2π+
【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.
二、填空题
13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m中的整数m的值
是.
14.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
15.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
16.若执行如图3所示的框图,输入
,则输出的数等于 。

三、解答题
17.在直角坐标系xOy 中,已知一动圆经过点(2,0)且在y 轴上截得的弦长为4,设动圆圆心的轨 迹为曲线C .
(1)求曲线C 的方程;111]
(2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.
18.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
19.设圆C满足三个条件①过原点;②圆心在y=x上;③截y轴所得的弦长为4,求圆C的方程.
20.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.
21.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.
(Ⅰ)求证:AE=EB;
(Ⅱ)若EF•FC=,求正方形ABCD的面积.
22.(本小题满分12分)△ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线.(1)求证:AD=1
22b
2+2c2-a2;
(2)若A=120°,AD=19
2,sin B
sin C
=3
5
,求△ABC的面积.
清河区第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1.【答案】C
2.【答案】D
【解析】
考点:1、导数;2、单调性;3、函数与不等式.
3.【答案】D.
第Ⅱ卷(共110分)
4.【答案】A
【解析】解:整理抛物线方程得x 2
=﹣y ,∴p=
∵抛物线方程开口向下,
∴准线方程是y=,
故选:A .
【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
5. 【答案】
【解析】解析:选B.由图象知函数的周期T =2, ∴ω=2π
2
=π,
即f (x )=sin (πx +φ),由f (-1
4)=0得
-π4+φ=k π,k ∈Z ,即φ=k π+π4. 又-π2≤φ≤π2,∴当k =0时,φ=π4,
则φω=1
4,故选B. 6. 【答案】B 【解析】由题意,可取,所以
7. 【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,

,得
,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),
则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0,
解得﹣2≤t ≤﹣,
即实数t 的取值范围为是[﹣2,﹣], 故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
8.【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为:=4π
故选:C.
9.【答案】D
【解析】解:由题意可得3∈A,|a﹣5|=3,
∴a=2,或a=8,
故选D.
10.【答案】D
【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,
则球的体积V球=
圆柱的体积V圆柱=2πR3
圆锥的体积V圆锥=
故圆柱、圆锥、球的体积的比为2πR3::=3:1:2
故选D
【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.
11.【答案】A
【解析】运行该程序,注意到循环终止的条件,有n=10,i=1;n=5,i=2;n=16,i=3;n=8,i=4;n=4,i=5;n=2,i=6;n=1,i=7,到此循环终止,故选A.
12.【答案】B
二、填空题
13.【答案】6.
【解析】解:第一次循环:S=0+=,i=1+1=2;
第二次循环:S=+=,i=2+1=3;
第三次循环:S=+=,i=3+1=4;
第四次循环:S=+=,i=4+1=5;
第五次循环:S=+=,i=5+1=6;输出S,不满足判断框中的条件;
∴判断框中的条件为i<6?
故答案为:6.
【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题
14.【答案】12π
【解析】
考点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
15.【答案】3
16.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。

三、解答题
17.【答案】(1) 2
4y x =;(2)证明见解析;(3,0). 【解析】
(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212
(
,)22
x x y y M ++, 由24,(1),
y x y k x ⎧=⎨=-⎩得2222
(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,
考点:曲线的轨迹方程;直线与抛物线的位置关系.
【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件
),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意
参数的取值是)('x f 不恒等于的参数的范围. 18.【答案】
【解析】解:(1)投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 由题设f (x )=k
1x ,g (x )=k 2,(k 1,k 2≠0;x ≥0)
由图知f (1)=,∴k 1=
又g (4)=,∴k 2=
从而f (x )=
,g (x )=
(x ≥0)
(2)设A 产品投入x 万元,则B 产品投入10﹣x 万元,设企业的利润为y 万元
y=f (x )+g (10﹣x )=,(0≤x ≤10),

,∴
(0≤t ≤

当t=,y max ≈4,此时x=3.75
∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.
【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.
19.【答案】
【解析】解:根据题意画出图形,如图所示:
当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,
由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,
∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),
在直角三角形ABC
中,根据勾股定理得:AC1=2,
1
则圆C1方程为:(x﹣2)2+(y﹣2)2=8;
当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,
由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,
=OD′=C2B′=2,即圆心C2(﹣2,﹣2),
在直角三角形A′B′C
中,根据勾股定理得:A′C2=2,
2
则圆C1方程为:(x+2)2+(y+2)2=8,
∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.
【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.
20.【答案】
【解析】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.
又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,
∴AA1⊥平面ABC.
(II)解:由AC=4,BC=5,AB=3.
∴AC2+AB2=BC2,∴AB⊥AC.
建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),
∴,,.
设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).
则,令y1=4,解得x1=0,z1=3,∴.
,令x2=3,解得y2=4,z2=0,∴.
===.
∴二面角A1﹣BC1﹣B1的余弦值为.
(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,
∴=,=(0,3,﹣4),
∵,∴,
∴,解得t=.
∴.
【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.
21.【答案】
【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,
且四边形ABCD为正方形,
∴EA为圆D的切线,且EB是圆O的切线,
由切割线定理得EA2=EF•EC,
故AE=EB.
(Ⅱ)设正方形的边长为a,连结BF,
∵BC为圆O的直径,∴BF⊥EC,
在Rt△BCE中,由射影定理得EF•FC=BF2=,
∴BF==,解得a=2,
∴正方形ABCD的面积为4.
【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
22.【答案】 【解析】解:
(1)证明:∵D 是BC 的中点,
∴BD =DC =a
2
.
法一:在△ABD 与△ACD 中分别由余弦定理得c 2
=AD 2
+a 2
4
-2AD ·
a
2
cos ∠ADB ,① b 2=AD 2+a 2
4-2AD ·a 2
·cos ∠ADC ,②
①+②得c 2+b 2=2AD 2+a 2
2

即4AD 2=2b 2+2c 2-a 2,
∴AD =1
2
2b 2+2c 2-a 2.
法二:在△ABD 中,由余弦定理得
AD 2=c 2
+a 24-2c ·a 2
cos B
=c 2+a
24-ac ·a 2+c 2-b 22ac
=2b 2+2c 2-a 2
4,
∴AD =1
2
2b 2+2c 2-a 2.
(2)∵A =120°,AD =1219,sin B sin C =3
5

由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,② b c =3
5
,③ 联立①②③解得b =3,c =5,a =7,
∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=153
4.
即△ABC 的面积为15
4
3.。

相关文档
最新文档