高考数学模拟复习试卷试题模拟卷138 3
高考模拟复习试卷试题模拟卷高三数学数学试卷文科
![高考模拟复习试卷试题模拟卷高三数学数学试卷文科](https://img.taocdn.com/s3/m/2cd7d15171fe910ef02df896.png)
高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高三数学模拟试题及答案
![高三数学模拟试题及答案](https://img.taocdn.com/s3/m/c265b00526d3240c844769eae009581b6bd9bd20.png)
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高三数学模拟试题含答案
![高三数学模拟试题含答案](https://img.taocdn.com/s3/m/7c3344a318e8b8f67c1cfad6195f312b3169ebaf.png)
高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
高三数学模拟试题试卷答案
![高三数学模拟试题试卷答案](https://img.taocdn.com/s3/m/a0993db0846a561252d380eb6294dd88d1d23d49.png)
一、选择题(每题5分,共50分)1. 若函数f(x) = 2x + 1在区间[1, 3]上单调递增,则函数g(x) = x^2 - 2x + 1在区间[1, 3]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A2. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 25,则公差d为:A. 1B. 2C. 3D. 4答案:B3. 若复数z = 1 + bi(b∈R)在复平面上对应的点为P,则|OP|的值为:A. 1B. √2C. √(1+b^2)D. √(1-b^2)答案:C4. 函数y = log2(x+1)的图像在以下哪个象限:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A5. 已知三角形ABC的三个内角A、B、C满足A + B + C = π,若sinA = 1/2,sinB = √3/2,则cosC的值为:A. 1/2B. √3/2C. 1/4D. 3/4答案:D6. 已知数列{an}满足an = an-1 + 2(n≥2),且a1 = 1,则数列{an}的前n项和Sn为:A. n^2 + nB. n^2 + 2nC. n^2 + n + 2D. n^2 + 2n + 1答案:A7. 已知函数f(x) = x^3 - 3x + 2,若f'(x) = 0的解为x1、x2,则f(x)的极值点为:A. x1、x2B. x1C. x2D. 无极值点答案:A8. 若函数f(x) = ax^2 + bx + c(a、b、c为常数)的图像开口向上,且顶点坐标为(1, -2),则a、b、c的取值范围分别为:A. a > 0,b = -2,c = -2B. a > 0,b = -2,c ≠ -2C. a ≠ 0,b = -2,c = -2D. a ≠ 0,b = -2,c ≠ -2答案:A9. 已知数列{an}满足an = 2an-1 + 1(n≥2),且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^n - 2D. an = 2^n + 2答案:A10. 若函数f(x) = |x-1| + |x+2|在x = -1处的导数存在,则f(-1)的值为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共25分)11. 函数f(x) = (x-1)/(x+1)的对称轴方程为______。
2023届高三新高考数学原创模拟试题(含答案解析)
![2023届高三新高考数学原创模拟试题(含答案解析)](https://img.taocdn.com/s3/m/857d71e3b04e852458fb770bf78a6529647d35b7.png)
2023届高三新高考数学原创模拟试题学校:___________姓名:___________班级:___________考号:___________A .||OQB .|5.若()20230112x a a x -=++A .2-B .-6.函数y=ax 2+bx 与y=log b aA ..C ..7.以()x φ表示标准正态总体在区间内取值的概率,若随机变量()2,N μσ,则概率(P ξμ-A .()()φμσφμσ+--()() 11φφ--C .1 μφσ-⎛⎫⎪⎝⎭.()2φμσ-8.若干个能确定一个立体图形的体积的量称为该立体图形的“基本量1111ABCD A B C D -,下列四组量中,一定能成为该长方体的“基本量”的是(A .1AB ,AC ,1AD 的长度B .AC ,1B D ,1AC 的长度D .1AC ,BD ,1CC 的长度二、多选题三、双空题13.设i 是虚数单位,已知2i 3-是关于x 的方程220(,)x px q p q ++=∈R 的一个根,则p =________,q =________.四、填空题五、双空题16.正方形ABCD 位于平面直角坐标系上,其中(1,1)A ,(1,1)B -,(1,1)C --,(1,1)D -.考虑对这个正方形执行下面三种变换:(1)L :逆时针旋转90︒.(2)R :顺时针旋转90︒.(3)S :关于原点对称.上述三种操作可以把正方形变换为自身,但是A ,B ,C ,D 四个点所在的位置会发生变化.例如,对原正方形作变换R 之后,顶点A 从(1,1)移动到(1,1)-,然后再作一次变换S 之后,A 移动到(1,1)-.对原来的正方形按1a ,2a ,L ,k a 的顺序作k 次变换记为12k a a a ,其中{,,}i a L R S ∈,1,2,,i k = .如果经过k 次变换之后,顶点的位置恢复为原来的样子,那么我们称这样的变换是k -恒等变换.例如,RRS 是一个3-恒等变换.则3-恒等变换共________种;对于正整数n ,n -恒等变换共________种.六、解答题17.如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点.(1)证明:PB DM ⊥.(2)求BD 与平面ADMN 所成角的正弦值.18.十字测天仪广泛应用于欧洲中世纪晩期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置.如图1所示,十字测天仪由杆AB 和横档CD 构成,并且E 是CD 的中点,横档与杆垂直并且可在杆上滑动.十字测天仪的使用方法如下:如图2,手持(1)在某次测量中,40AE =,横档的长度为20,求太阳高度角的正弦值.(2)在杆AB 上有两点1A ,2A 满足1212AA AA =.当横档CD 的中点E 位于度角为(1,2)i i α=,其中1α,2α都是锐角.证明:122αα<.19.设正项数列{}n a 满足11a =,12121n n n a a a ++=-,*n ∈N .数列{}n x 满足π0,2n x ⎛⎫∈ ⎪⎝⎭,*n ∈N .已知如下结论:当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin tan <<x x x (1)求{}n x 的通项公式.(2)证明:222212π11112111n n n a a a -<+++<+++ .20.椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,O 为坐标原点.椭圆C 于A ,B 两点.(1)若直线l 与x 轴垂直,并且OA OB ⊥,求a 的值.(2)若直线l 绕点F 任意转动,当A ,O ,B 不共线时,都满足AOB ∠取值范围.21.某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,i y i =学生编号i 123456789数学成绩i x 1009996939088858380知识竞赛成绩iy 29016022020065709010060参考答案:【详解】,,或是,,根据集合元素的互异性,集合为,共含有9.AC【分析】对于A:根据线面平行分析判断;对于D:根据线面、面面垂直的判定定理分析判断【详解】对于选项A:因为D,DF⊂平面PDF,BC⊄平面PDF所以BC∥平面PDF,故A正确;对于选项B:因为D,E分别是且PA与AC夹角为60︒,所以异面直线对于选项C:因为E是BC的中点,且同理可得:AE BC ⊥,PE AE E = ,,PE AE ⊂平面PAE ,所以DF ⊥平面PAE ,且DF ⊂平面ABC ,所以平面PAE ⊥平面ABC ,故C 正确;对于选项D :取底面ABC 的中心O ,连接PO ,则PO ⊥平面ABC ,但PO 与平面PDF 相交,所以平面PDF 与平面ABC 不垂直,故D 错误;故选:AC.10.ABD【分析】由n S 与n a 的关系得出n a 与1n a -的关系式即可判断ABD ,通过举反例即可判断出C .【详解】对于A ,当2n ≥时,n n S a =且11n n S a --=,两式相减可得11n n n n n a S S a a --=-=-,即10n a -=.所以{}n a 是恒为0的数列,即{}n a 是公差为0的等差数列,故A 正确;对于B ,当2n ≥时,n n S na =且11(1)n n S n a --=-,两式相减可得11(1)n n n n n a S S na n a --=-=--,即1(1)(1)n n n a n a --=-,所以1n n a a -=,即{}n a 是常数列,是公差为0的等差数列,故B 正确;对于C ,如果10a ≠,令1n =可得21a =,当2n ≥时,1n n n S a a +=且11n n n S a a --=,两式相减可得()111n n n n n n a S S a a a -+-=-=-,如果0n a ≠,则111n n a a +--=,这并不能推出{}n a 是等差数列,例如:考虑如下定义的数列{}n a :1,1,2,2,3,3,L ,则其通项公式可写成2n a n =,21n a n -=.则()222122111(2)(1)nnn k k n n k k S a a k n n a a -+===+==+=∑∑,)DN.由(1)可知PB⊥平面BDN∠是BD与平面ADMN所成角.2AD AB BC a====,于是另一方面,22BD AB AD=+=因此,在直角三角形BDN中,sinBD与平面ADMN所成角的正弦值为(1)8 17证明见解析【分析】(1)方法一,根据三边长度,利用余弦定理,求方法二,先求sin CAE∠,再根据二倍角公式求)如图:轴垂直,则直线l :1x =,联立直线与椭圆方程可得2b a =±.所以不妨设1,A ⎛ ⎝,所以4210b OA OB a ⋅=-= ,则b a,所以210a a --=,解得)如图:(i )若直线AB 与x 轴垂直,由(1)可知钝角,只需4210b OA OB a ⋅=-< ,即21b a >.代入152-(舍去).)若直线AB 与x 轴不垂直,设()11,A x y ,221b a =-,椭圆方程变为222211x y a a +=-.联立直线与椭圆方程选做(ii )问:根据()g x 的单调性,可知:()g x 在区间π3π2π,2π()22m m m ⎛⎫++∈ ⎪⎝⎭Z 即()1,m m a b +()g x 在ππ2,2π()22m m m π⎛⎫-++∈ ⎪⎝⎭Z 即(),m m b a 中的值域为结合①②两式以及()1(0)g g b >,可知当N m ∈时,()g x 在πππ,π[0,22m m ⎛⎫-+++∞ ⎪⎝⎭I 当21m k =-时,()()()211,k k k A g a g b --=;当2m k =。
高三下学期数学(理科)模拟考试卷-附参考答案
![高三下学期数学(理科)模拟考试卷-附参考答案](https://img.taocdn.com/s3/m/1aa1e4b1690203d8ce2f0066f5335a8102d2662f.png)
高三下学期数学(理科)模拟考试卷-附参考答案注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上.2.回答选择题时,则选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,则将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合{}{220,M xx x N x y =--<==∣∣,则M N ⋃=( ) A.(],e ∞- B.()0,2 C.(]1,e - D.()1,2- 2.已知复数z 满足()12i 34i z -=-,则z 的共轭复数z =( )A.12i --B.12i -+C.12i -D.12i +3.2023年3月24日是第28个“世界防治结核病日”,我国的宣传主题是“你我共同努力,终结结核流行”,呼吁社会各界广泛参与,共同终结结核流行,维护人民群众的身体健康.已知某种传染疾病的患病率为5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人诊断为阳性,患者中有2%的人诊断为阴性.若随机抽取一人进行验血,则其诊断结果为阳性的概率为( )A.0.46B.0.046C.0.68D.0.0684.过抛物线2:4C y x =焦点F 的直线交抛物线C 于()()1122,,,A x y B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r ,点1O 到C 的准线l 的距离与r 的积为25,则()12r x x +=( )A.40B.30C.25D.205.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度30.1mg /m为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,则竣工1周后室内甲醛浓度为36.25mg /m ,3周后室内甲醛浓度为31mg /m ,且室内甲醛浓度()t ρ(单位:3mg /m )与竣工后保持良好通风的时间t (*t ∈N )(单位:周)近似满足函数关系式()eat bt ρ+=,则该文化娱乐场所的甲醛浓度若要达到安全开放标准,竣工后至少需要放置的时间为( ) A.5周 B.6周 C.7周 D.8周6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为( )A.14 B.4 C.12 D.27.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线右支上一点,且12MF MF ⊥,延长2MF 交双曲线C 于点P .若12MF PF =,则双曲线C 的离心率为( )8.在ABC 中90,4,,A AB AC P Q ===是平面ABC 上的动点,且2AP AQ PQ ===,M 是边BC 上一点,则MP MQ ⋅的最小值为( )A.1B.2C.3D.4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的有( )A.若随机变量,ξη满足21ηξ=+,则()()21D D ηξ=+B.若随机变量()23,N ξσ~,且(6)0.84P ξ<=,则(36)0.34P ξ<<=C.若样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强D.按从小到大顺序排列的两组数据:甲组:27,30,37,,40,50m ;乙组:24,,33,44,48,52n .若这两组数据的第30百分位数、第50百分位数都分别对应相等,则67m n +=10.2022年12月,神舟十四号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆(都包含,M N 点)组成的“曲圆”,半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,3F ,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则( )A.椭圆的离心率为12B.AFG 的周长为6+C.ABF 面积的最大值是92D.线段AB长度的取值范围是6,3⎡+⎣11.如图,四棱柱1111ABCD A B C D -的底面是边长为1AA ⊥底面ABCD ,三棱锥1A BCD -的体积是3,底面ABCD 和1111A B C D 的中心分别是O 和1,O E 是11O C 的中点,过点E 的平面α分别交11111,,BB B C C D 于点,,F N M ,且BD ∥平面,G α是线段MN 上任意一点(含端点),P 是线段1A C 上任意一点(含端点),则( )A.侧棱1AAB.四棱柱1111ABCD A B C D -的外接球的表面积是40πC.当1125B F BB =时,则平面α截四棱柱所得的截面是六边形 D.PO PG +的最小值是512.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A.0a b +>B.0c d +>C.0a d +>D.0b c +>三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中角α的顶点为O ,始边与x 轴的非负半轴重合,终边与圆229x y +=相交于点5t ⎛⎫ ⎪ ⎪⎝⎭,则sin 22πα⎛⎫+= ⎪⎝⎭__________. 14.已知多项式5625601256(2)(1)x x a a x a x a x a x -+-=+++++,则1a =__________.15.已知函数()()2e 2ln x f x k x x x =+-和()2e xg x x=,若()g x 的极小值点是()f x 的唯一极值点,则实数k 的最大值为__________.16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列:1,0A ,则数列():0,1,0,1,0,1f A .已知数列1:1,0,1,0,1A ,且数列()1,1,2,3,k k A f A k +==,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图,在平面四边形ABCD中3,,sin AC AB DAC BAC BAC ∠∠∠====.(1)求边BC ; (2)若23CDA π∠=,求四边形ABCD 的面积. 18.(本小题满分12分)在各项均为正数的数列{}n a 中()21112,2n n n n a a a a a ++==+. (1)求数列{}n a 的通项公式; (2)若n b =,数列{}n b 的前n 项和为n S ,证1n S <19.(本小题满分12分)2023年3月某学校举行了普通高中体育与健康学业水平合格性考试,考试分为体能测试和技能测试,其中技能测试要求每个学生在篮球运球上篮、羽毛球对拉高远球和游泳3个项目中任意选择一个参加.某男生为了在此次体育学业考试中取得优秀成绩,决定每天训练一个技能项目.第一天在3个项目中任意选一项开始训练,从第二天起,每天都是从前一天没有训练的2个项目中任意选一项训练.(1)若该男生进行了3天训练,求第三天训练的是“篮球运球上篮”的概率;(2)设该男生在考前最后6天训练中选择“羽毛球对拉高远球”的天数为X ,求X 的分布列及数学期望. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,,F F P 是椭圆上一动点(与左、右顶点不重合),12PF F的内切圆半径的最大值是312.(1)求椭圆C 的方程;(2)过()4,0H 作斜率不为0的直线l 交椭圆于,A B 两点,过B 作垂直于x 轴的直线交椭圆于另一点Q ,连接AQ ,设ABQ 的外心为G ,求证:2AQ GF 为定值.21.(本小题满分12分)在三棱台111A B C ABC -中1AA ⊥平面111111,2,1,ABC AB AC AA A B AB AC ====⊥,E F 分别是1,BC BB 的中点,D 是棱11A C 上的动点.(1)求证:1AB DE ⊥(2)若D 是线段11A C 的中点,平面DEF 与11A B 的交点记为M ,求平面AMC 与平面AME 夹角的余弦值.22.(本小题满分12分)已知函数()ln 1f x x ax =-+有两个零点12,x x ,且122x x >. (1)求实数a 的取值范围;(2)证明:222112e x x x x ⎛⎫⋅+>⎪⎝⎭参考答案1.【答案】C 解析:2201,2M xx x =--<=-∣,由1ln 0x -,得0e x <,则{0,e]N x y ===∣,所以(]1,e M N ⋃=-.故选C.2.【答案】C 解析:因为()12i 34i 5z -=-==,可得()()()512i 512i 12i 12i 12i z +===+--+,所以12i z =-.故选C. 3.【答案】D 解析:设随机抽取一人进行验血,其诊断结果为阳性为事件A ,设随机抽取一人为患者为事件B ,随机抽取一人为非患者为事件B ,则()()()()()0.980.050.020.95P A P A B P B P A B P B =+=⨯+⨯=∣∣0.068.故选D.4.【答案】A 解析:由抛物线的性质知,点1O 到C 的准线l 的距离为12AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为()121252x x r ++==,则有128x x +=,故()1240r x x +=.故选A.5.【答案】B 解析:由题意可知()()()()32341e6.25,3e 1,e 125a ba b a ρρρρ++======解得2e 5a=.设该文化娱乐场所竣工后放置0t 周后甲醛浓度达到安全开放标准,则()()0001102e e e6.255t a t at b a b t ρ--++⎛⎫==⋅=⨯ ⎪⎝⎭0.1,整理得01562.52t -⎛⎫ ⎪⎝⎭.设1562.52m -⎛⎫= ⎪⎝⎭ 因为455562.522⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,所以415m <-<,即56m <<,则011t m --,即0t m 故竣工后至少需要放置的时间为6周.故选B.6.【答案】D 解析:设圆柱和圆锥底面半径分别为,r R ,因为圆锥轴截面的顶角为直,设圆柱高为h ,则,h R r h R r R R-==-,由题意得()222R r r R r πππ⨯=+⨯-,解得2r R=.故选D .7.【答案】D 解析:设1(2)MF t t a =>,由双曲线的定义可得22MF t a =-,又21PF MF t == 则12PF t a =+,由12MF MF ⊥,可得22211||MF MP PF +=,即222(22)(2)t t a t a +-=+,解得3t a =.又2221221MF MF F F +=,即222(3)4a a c +=即c =,所以c e a ==.故选D.8.【答案】B 解析:取PQ 的中点N ,则,MP MN NP MQ MN NQ MN NP =+=+=-,可得()()2221,MP MQ MN NP MN NP MN NP MN MN MA AN MA AN ⋅=+⋅-=-=-=+-当且仅当点N 在线段AM 上时,则等号成立,故|||||||||||3|MN MA AN MA -=-显然当AM BC ⊥时,则MA 取到最小值|||||3||233|MN MA ∴--=故21312MP MQ MN ⋅=--=.故选B.9.【答案】BC 解析:对于A ,由方差的性质可得()()()224D D D ηξξ==,故A 错误;对于B ,由正态密度曲线的对称性可得(36)(6)0.50.34P P ξξ<<=<-=,故B 正确;对于C ,由样本相关系数知识可得,样本相关系数r 的绝对值越接近1,则成对样本数据的线性相关程度越强,故C 正确;对于D ,甲组:第30百分位数为30,第50百分位数为372m +,乙组:第30百分位数为n ,第50百分位数为33447722+=,则30,3777,22n m =⎧⎪⎨+=⎪⎩解得30,40,n m =⎧⎨=⎩故70m n +=,故D 错误.故选BC. 10.【答案】BD 解析:由题知,椭圆中的几何量3b c ==,所以a =则离心率2c e a ===故A 不正确;因为3AB OB OA OA =+=+由椭圆性质可知332OA ,所以6332AB +故D 正确;设,A B 到y 轴的距离分别为12,d d则()1212113222ABFAOFOBFSSSd OF d OF d d =+=⋅+⋅=+当点A在短轴的端点处时,则12,d d 同时取得最大值3,故ABF 面积的最大值是9,故C 不正确;由椭圆定义知2AF AG a +==AFG 的周长6AFGCFG =+=+B 正确.故选BD.11.【答案】BCD 解析:对于选项A ,因为三棱锥1A BCD -的体积111323V AA=⨯⨯=解得1AA=A错误;对于选项B,外接球的半径满足22221440R AB AD AA=++=故外接球的表面积2440S Rππ==,故选项B正确;对于选项D,因为BD∥平面1111,,BD B D B Dα⊄∥平面α,所以11B D∥平面α,又平面1111A B C D⋂平面11,MN B Dα=⊂平面1111A B C D,所以11B D MN∥,又因为四边形1111A B C D是正方形1111A CB D⊥,所以11AC MN⊥,因为侧棱1AA⊥底面1111,A B C D MN⊂底面1111A B C D 所以1AA MN⊥,又1111AC AA A⋂=,所以MN⊥平面11AAC C,垂足是E,故对任意的G,都有PG PE,又因为1111114OO O E AC===,故215PO PG PO PE OE OO++==,故选项D正确;对于选项C,如图,延长MN交11A B的延长线于点Q,连接AQ交1BB于点F,在平面11CC D D内作MH AF∥交1DD于点H,连接AH,则平面α截四棱柱所得的截面是五边形AFNMH,因为1112B Q B N AB==,所以此时1113B FBB=,故11113B FBB<<时截面是六边形,1113B FB<时截面是五边形,故选项C正确.故选BCD.12.【答案】AD 解析:对于A,e e1.010,1,111a ba ba b==>∴>->-++令()e(1)1xf x xx=>-+则()2e1)xxf xx=+'所以()f x在()1,0-上单调递减,在()0,∞+上单调递增,且()01f=,又()1 1.01f>故01,10a b<<-<<令()()()()()()ln ln2ln1ln1,1,1h x f x f x x x x x=--=-++-+∈-,则()2112220111h xx x x-=-+=-<+-+-',所以()h x在()1,1-上单调递减,且()()00,1,0h b=∈-()()()()()()ln ln0,,,f b f b f b f b f af b a b∴-->∴>-∴>-∴>-即0a b+>,故选项A 正确;对于B ,()()1e 1e 0.990,1,1c d c d c d -=-=>∴<< 令()()1e (1)x g x x x =-<,则()e x g x x '=-,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,且()01g =,又()10.99g -<,故01,10c d <<-<<.令()()()()()()()ln ln 2ln 1ln 1,1,1m x g x g x x x x h x x =--=-++-+=∈-,所以()m x 在()1,1-上单调递减,且()()()()()()00,0,1,ln ln 0,m c g c g c g c g c =∈∴--<∴<- ()(),g d g c d c ∴<-∴<-,即0c d +<,故选项B 错误;对于C ,()()()()()()()11100,0.99,1,0,101f xg a a g a g d g x f a =∴-==>-∈-∴->- 又()g x 在(),0∞-上单调递增 ,0a d a d ∴->∴+< 故选项C 错误;对于D ,由C 可知 ()()(),0,1g b g c b ->-∈ 又()g x 在()0,1上单调递减,b c ∴-< 即0b c +>,故选项D 正确.故选AD.13.【答案】35- 解析:因为角α的终边与圆229x y +=相交于点t ⎫⎪⎪⎝⎭,所以cos 3α=÷=223sin 2cos22cos 12125πααα⎛⎫+==-=⨯-=- ⎪⎝⎭⎝⎭. 14.【答案】74 解析:对于5(2)x -,其二项展开式的通项为515C (2)r r r r T x -+=-,令51r -=,得4r =,故4455C (2)80T x x =-=,对于6(1)x -,其二项展开式的通项为616C (1)k k k k T x -+=- 令61k -=,得5k =,故5566C (1)6T x x =-=-,所以180674a =-=.15.【答案】2e 4 解析:由()2e x g x x =可得()()22442e e e 2x x x x x x x g x x x'-⋅-⋅==,当0x <或2x >时,则()0g x '>,当02x <<时,则()0g x '<,所以()g x 的极小值点是2.由()()2e 2ln xf x k x x x=+-可得()()()()432e 2e 12,0,xx x x k f x k x x x x x x ∞-⎛⎫⎛⎫=+-='--∈+ ⎪ ⎪⎝⎭⎝⎭,因为()f x 的唯一极值点为2,所以3e 0x k x x -或3e 0x k x x -恒成立,所以2e x k x 或2e xk x在()0,∞+上恒成立,因为()2e xg x x=在()0,2上单调递减,在()2,∞+上单调递增,当x ∞→+时,则()g x ∞→+,所以2e x k x 在()0,∞+上恒成立,则()2min e ()24k g x g ==.16.【答案】1103k -⨯ 解析:设数列k A 中0的个数为,1k a 的个数为k b ,则112,2k k k k k k a a b b a b ++=+=+,两式相加,得()113k k k k a b a b +++=+,又115,a b +=∴数列{}k k a b +是以5为首项,3为公比的等比数列153k k k a b -∴+=⨯两式相减,得17.【答案】解:(1)因为sin 14BAC BAC ∠∠=为锐角,所以cos 14BAC ∠==.因为3AC AB ==,在ABC 中由余弦定理得2222cos BC AC AB AC AB BAC ∠=+-⋅⋅即279231BC =+-=,得1BC =. (2)在ADC 中由正弦定理得sin sin CD AC DAC ADC∠∠==,所以1CD =.在ADC 中由余弦定理得222cos 2AD CD AC ADC AD CD ∠+-=⋅,即211722AD AD+--=,解得2AD =.因为121331273,12sin 214423ABCACDSS π=⨯⨯⨯==⨯⨯⨯=所以34ABCACDABCD S SS=+==四边形. 18.【答案】解:(1)()()()211112,20n n n n n n n n a a a a a a a a ++++=+∴-+=,则120n n a a +-=或10n n a a ++= 10,2n n n a a a +>∴=∴数列{}n a 为等比数列,公比为12,2,a =∴数列{}n a 的通项公式为2n n a =.(2)证明:由(1)得112,2n n n n a a ++==则n b ======∴数列{}n b 的前n项和为11n S n =+-=-1n S ∴<当2n时,则10,n n n S S b --===>∴当*n ∈N 时,则{}n S 为递增数列1n S S ∴n S1n S <19.【答案】解:(1)当第一天训练的是“篮球运球上篮”且第三天训练的也是“篮球运球上篮”为事件A ;当第一天训练的不是“篮球运球上篮”且第三天训练的是“篮球运球上篮”为事件B . 由题知,3天的训练过程中总共的可能情况为32212⨯⨯=种 所以,()()12112111,126126P A P B ⨯⨯⨯⨯==== 所以,第三天训练的是“篮球运球上篮”的概率()()13P P A P B =+=.(2)由题知,X 的可能取值为0,1,2,3考前最后6天训练中所有可能的结果有53296⨯=种当0X =时,则第一天有两种选择,之后每天都有1种选择,所以,()5521210329648P X ⨯====⨯; 当1X=时,则共有24444220+++++=种选择,所以()20519624P X ===; 当3X =时,则共有844824+++=种选择,所以()2413964P X ===; 所以()()()()5025210139648P X P X P X P X ==-=-=-=== 所以,X 的分布列为所以()1012324824484E X =⨯+⨯+⨯+⨯=. 20.【答案】解:(1)由题意知1,22c a c a =∴=,又222b a c =-,则,b =设12PF F 的内切圆半径为r ,则()()()121212112222PFF SPF PF F F r a c r a cr =++⋅=+⋅=+⋅. 故当12PF F 面积最大时,则r 最大,即点P 位于椭圆短轴顶点时r = )a c bc +=,把2,a c b ==代入,解得2,1a b c === 所以椭圆C 的方程为22143x y +=.(2)由题意知,直线AB 的斜率存在且不为0,设直线AB 的方程为4x ty =+代入椭圆方程得()()()222223424360,Δ(24)1443414440t y ty t t t +++==-+=-> 设()()1122,,,A x y B x y ,则1212222436,3434t y y y y t t -+==++ 因此可得1223234x x t +=+ 所以AB 中点的坐标为221612,3434t t t -⎛⎫ ⎪++⎝⎭因为G 是ABQ 的外心,所以G 是线段AB 的垂直平分线与线段BQ 的垂直平分线的交点,由题意可知,B Q 关于x 轴对称,故()22,Q x y -AB 的垂直平分线方程为2216123434tt x y t t ⎛⎫--=+ ⎪++⎝⎭ 令0y =,得2434x t =+,即24,034G t ⎛⎫⎪+⎝⎭,所以2222431,3434t GF t t =-=++ 又AQ ==221234t t ==+ 故24AQ GF =,所以2AQGF 为定值,定值为4. 21.【答案】解:(1)证明:取线段AB 的中点G ,连接1,A G EG ,如图所示 因为,E G 分别为,BC AB 的中点,所以EG AC ∥在三棱台111A B C ABC -中11AC AC ∥ 所以,11EG AC ∥,且11D A C ∈ 故1,,,E G A D 四点共面.因为1AA ⊥平面,ABC AG ⊂平面ABC ,所以1AA AG ⊥ 因为1111111,,AA A B AG AG A B AA AG ===⊥∥ 所以四边形11AA B G 是正方形,所以11AB AG ⊥. 又1111111111,,,AB AC AC AG A AC AG ⊥⋂=⊂平面1A DEG 所以1AB ⊥平面1A DEG .因为DE ⊂平面1A DEG ,所以1AB DE ⊥.(2)延长EF 与11C B 相交于点Q ,连接DQ ,则11DQ A B M ⋂=. 因为,F E 分别为1BB 和BC 的中点1B Q BE ∥,所以111B Q B FBE BF== 则11112B Q BE BC B C ===,所以,1B 为1C Q 的中点. 又因为D 为11A C 的中点,且11A B DQ M ⋂=,则M 为11A C Q 的重心 所以1112233A M AB == 因为1AA ⊥平面,ABC AC ⊂平面ABC ,所以1AA AC ⊥.因为11111,AB AC AC AC ⊥∥,所以1AB AC ⊥. 又因为1111,,AA AB A AA AB ⋂=⊂平面11AA B B 所以AC ⊥平面11AA B B ,所以1,,AC AB AA 两两垂直以A 为原点,1,,AC AB AA 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系则()()()()20,0,0,0,2,0,2,0,0,1,1,0,0,,13A B C E M ⎛⎫ ⎪⎝⎭所以()()22,0,0,0,,1,1,1,03AC AM AE ⎛⎫=== ⎪⎝⎭. 设平面AMC 的法向量为()1,,n a b c =则1120,20,3n AC a n AM b c ⎧⋅==⎪⎨⋅=+=⎪⎩取3b =-,则()10,3,2n =-. 设平面AME 的法向量为()2,,n x y z =则220,20,3n AE x y n AM y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩取3y =-,可得()23,3,2n =-. 所以,12121213cos ,2213n n n n n n ⋅===⨯ 故平面AMC 与平面AME 夹角的余弦值为22. 22.【答案】解:(1)()ln 1f x x ax =-+的定义域为()()110,,ax f x a x x∞-+=='- 当0a 时,则()0f x '>恒成立,所以()f x 在()0,∞+上单调递增,()f x 不可能有两个零点,故舍去;当0a >时,则令()0f x '>,解得10x a <<,令()0f x '<,解得1x a> 所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减 所以max 11()ln f x f a a ⎛⎫==⎪⎝⎭. 要使()f x 有两个零点,则max 1()ln 0f x a=>,解得01a <<. 又22111444242ln 10,ln 1110e e e e a f a f a a a a a a ⎛⎫⎛⎫=-⋅+=-<=-+<-+=-< ⎪ ⎪⎝⎭⎝⎭所以当01a <<时,则()f x 在11,e a ⎛⎫ ⎪⎝⎭和214,a a ⎛⎫⎪⎝⎭上各有一个零点21,,x x 且122x x >,所以1122ln 10,ln 10,x ax x ax -+=⎧⎨-+=⎩由fx 的单调性知,当()21,x x x ∈时,则()0f x > 当()1,x x ∞∈+时,则()0f x <.因为2212x x x <<,所以()220f x >,即()2222ln 221ln 1x ax x ax -+>-+ 所以2ln2ax <,而22ln 1x ax +=,即2ln 1ln2x +<,所以220ex <<,而22ln 1x a x +=.令()ln 12,0,e x h x x x +⎛⎫=∈ ⎪⎝⎭,则()221ln 1ln x x h x x x -'--== 因为20,e x ⎛⎫∈ ⎪⎝⎭,所以2ln ln 0ex ->->,所以()0h x '> 所以()h x 在20,e ⎛⎫⎪⎝⎭上单调递增所以()2ln2eln22e 2eh x h ⎫<==⎪⎭,所以eln20,2a ⎛⎫∈ ⎪⎝⎭.(2)因为1220x x >>,所以22211212e e 2x x x x x x ⎛⎫⋅+⋅ ⎪⎝⎭,当且仅当12x x =时取等号 而1220x x >>,故222112e e x xx x ⎛⎫⋅+>⋅⎪⎝⎭要证222112e x x x x ⎛⎫⋅+>⎪⎝⎭2e 42⋅,即证1228e x x ,即证1228ln ln e x x 即证12ln ln 3ln22x x +-.设12x t x =,因为1220x x >>,所以2t > 由(1)得1122ln 1,ln 1,x ax x ax +=⎧⎨+=⎩,两式作差,化简得21ln ln ln 1,ln 1ln 11t tx x t t t =-=-+-- 所以122ln ln ln ln 21tx x t t +=+--. 令()2ln ln 2,21tg t t t t =+->-,则()2212ln (1)t t t g t t t '--=-. 令()212ln t t t t ϕ=--,则()()2222ln ,20t t t t tϕϕ'=---''=>,易知()t ϕ'在()2,∞+上单调递增故()()222ln20t ϕϕ'>'=->,所以()t ϕ在()2,∞+上单调递增,所以()()234ln20t ϕϕ>=->所以()g t 在()2,∞+上单调递增,所以()()23ln22g t g >=-,即12ln ln 3ln22x x +>-得证.所以不等式222112e x x x x ⎛⎫⋅+> ⎪⎝⎭.。
全国高考数学模拟试卷(4套)
![全国高考数学模拟试卷(4套)](https://img.taocdn.com/s3/m/9264e69b9fc3d5bbfd0a79563c1ec5da50e2d6ef.png)
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
高考数学模拟考试试卷(含有答案)
![高考数学模拟考试试卷(含有答案)](https://img.taocdn.com/s3/m/048509f6f424ccbff121dd36a32d7375a417c6bc.png)
高考数学模拟考试试卷(含有答案)本试卷共19题。
全卷满分120分。
考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。
高考模拟数学试卷带答案
![高考模拟数学试卷带答案](https://img.taocdn.com/s3/m/5a270150591b6bd97f192279168884868662b876.png)
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = 2x + 3在区间[1, 4]上单调递增,则下列结论正确的是:A. f(1) > f(2)B. f(2) > f(3)C. f(3) > f(4)D. f(4) > f(1)2. 已知数列{an}的通项公式为an = 3n - 2,则数列的前10项之和S10为:A. 28B. 55C. 82D. 1273. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限4. 下列函数中,在其定义域内是奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x^45. 已知等差数列{an}的前n项和为Sn,若a1 = 3,d = 2,则S10等于:A. 50B. 55C. 60D. 656. 若等比数列{bn}的公比为q,且b1 = 1,b3 = 8,则q的值为:A. 2B. 4C. 8D. 167. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为:A. ±1B. ±2C. ±3D. ±48. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,则cosB的值为:A. 3/5B. 4/5C. 5/7D. 7/59. 已知函数f(x) = x^2 - 4x + 4,则函数的对称轴为:A. x = 2B. x = 4C. y = 2D. y = 410. 若sinA + sinB = 1,cosA + cosB = 1,则sin(A + B)的值为:A. 0B. 1C. -1D. 211. 已知等差数列{an}的前n项和为Sn,若a1 = 2,d = -1,则S10等于:A. -10B. -20C. -30D. -4012. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. x轴B. y轴C. 第一象限D. 第二象限二、填空题(本大题共6小题,每小题5分,共30分。
高三数学模拟试卷附答案
![高三数学模拟试卷附答案](https://img.taocdn.com/s3/m/a1d85f27a5e9856a561260e2.png)
高三数学模拟试卷一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 1.设全集{1, 2, 3, 4, 5}U =,集合{1, 2}A =,{2, 3}B =,则 U A B = ð ▲ . 2.若复数312a ii++(i 是虚数单位)是纯虚数,则实数a 的值为 ▲ . 3.已知数列{}n a 是等差数列,若31124a a +=,43a =,则数列{}n a 的公差等于 ▲ . 4.直线240x y -+=与两坐标轴交点为A 、B ,则以线段AB 为直径的圆的方程是 ▲ . 5.如图1,已知一个班的语文成绩的茎叶图,则优秀率(不小于85分)是 ▲ . 6.若一个正三棱柱的三视图如图2所示,则这个正三棱柱的体积是 ▲ .图1 图27.一只蚂蚁在边长为3的正方形区域内随机地爬行,则其恰在离四个顶点距离都大于1的地方的概率为 ▲ .8.已知实数a 满足3log 182a =+,则函数3ax y =()[0,1]x ∈的值域是 ▲ . 9.已知关于某设备的使用年限与所支出的维修费用y (万元),有如下统计资料:设y 对x 具有线性相关关系,且线性回归方程为^0.08y bx =+,则回归系数b =__▲ _________ 10.甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着...排在乙的前面值班的概率是▲ .11.设函数()sin()1(0)6f x x πωω=+->的导函数()f x '的最大值为3,则图象()y f x =的对称轴的方程是 ▲ .12.如图3所示的流程图,输出的结果为4,则输入的实数x 的取值范围是 ▲ .主视图俯视图左视图5 1586 0344678897 35556798 023346679 01113.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有:.222b ac +=设想正方形换成正方体,把截线换成如图的 截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O —LMN ,如果用321,,s s s 表示三个侧面面积,4s 表示截面面积,那么你类比得到的结论是 ▲ .14.已知函数()f x 的定义域为(2,)-+∞,部分对应值如下表,'()f x 为()f x 的导函数,函数'()y f x =的图象如图5所示,若两正数,a b 满足(2)1f a b +<,则22b a ++的取值范围是 ▲ .图3二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知A 、B 、C 三点的坐标分别为)0,3(A 、)3,0(B 、)sin ,(cos ααC ,若1-=⋅BC AC ,求αααtan 12sin sin 22++的值.如图6,正三棱柱ABC —A 1B 1C 1的底面边长为1D 在棱A 1C 1上. (1)若11A D DC =,求证:直线BC 1∥平面AB 1D ;(2)是否存在点D ,使平面AB 1D ⊥平面ABB 1A 1?若存在,请确定点D 的位置;若不存在,请说明理由.图617.(本小题满分14分) ,第一小问满分4分,第二小问满分5分,第三小问满分5分已知数列{}n a 的前n 项和为n S ,411=a ,且*),2(122211N n n a S S n n n ∈≥++=--.数列{}nb 满足431=b , 且*),2(31N n n n b b n n ∈≥=--.(1)求证:数列{}n a 为等差数列; (2)求证:数列{}n n a b -为等比数列; (3)求数列}{n b 的通项公式以及前n 项和n T .C 1B 1DA 1CBA某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与()a x -和2x 的乘积成正比;②当2ax =时,3y a =,且技术改造投入比率:(0,]2()xt a x ∈-,其中t 为常数,且(0,2]t ∈.(1)求()y f x =的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值.19.(本小题满分16分,第一小问满分3分,第二小问满分6分,第三小问满分7分)在图7所示的平面斜坐标系xOy 中,60xOy ∠=︒,平面上任一点P 关于该斜坐标系的坐标00(,)x y 是这样定义的:过P 作两坐标轴的平行线分别交坐标轴Ox 于A 、Oy 于B ,则A 在Ox 轴上表示的数为0x ,B 在Oy 轴上表示的数为0y .(1)若点P 在斜坐标系xOy 中的坐标为(2,3)-,求P 到O 的距离; (2)求以O 为圆心、1为半径的圆在斜坐标系xOy 中的方程,并求直线12x =截该圆所得的弦长;(3)在斜坐标系xOy 中,直线 (01)x t t =<<交(2)中的圆于M 、N 两点,问:当t 为何值时,△MON 的面积取得最大值?并求此最大值.图720.(本小题满分16分,第一小问满分5分,第二小问满分3分,第三小问满分8分)设函数()f x 的定义域为R ,若()f x x ≤对一切实数x 均成立,则称函数()f x 为Ω函数.(1)试判断函数1()sin f x x x =、()2e e 1x x f x -=+和()2321x f x x =+中哪些是Ω函数,并说明理由;(2)若函数()y f x =是定义在R 上的奇函数,且满足对一切实数x 1、x 2,均有()()1212f x f x x x --≤,求证:函数()f x 一定是Ω函数;(3) 求证:若1a >,则函数2()ln()ln f x x a a =+-是Ω函数.参考答案1.{1} 2.6- 3.3 4. 22(2)(1)5x y ++-=(或22420x y x y ++-=) 5.20% 6. 7.19π-8.[1,2] 9.1.23 10.1311.39k x ππ=+()k Z ∈12. 9[,3)413.24232221S S S S =++14. 1,32⎛⎫ ⎪⎝⎭图5图3二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.15. 解:由1-=⋅,得1)3(sin sin cos )3(cos -=-+-αααα………3分32cos sin =+∴αα…………………………………………………………………5分 95cos sin 2-=⋅∴αα ……………………………………………………………7分又αααtan 12sin sin 22++==++αααααcos sin 1cos sin 2sin 2295cos sin 2-=⋅αα 。
高考数学模拟试题及答案
![高考数学模拟试题及答案](https://img.taocdn.com/s3/m/2045550db207e87101f69e3143323968011cf4fc.png)
高考数学模拟试题及答案[说明:以下是一份数学模拟试卷,包含20道题目和对应的答案解析。
请按照试题进行答题,并在答案解析中查看详细的解题过程。
希望对您的备考有所帮助。
]Part I 选择题(共10题,每题4分,共40分)1. 若集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},则A∩B = ( )。
A. {1, 2, 3, 4}B. {3, 4}C. {3, 4, 5, 6}D. {}2. 函数 y = 2^(x-1) 的图像是一条( )。
A. 直线B. 双曲线C. 抛物线D. 指数曲线3. 已知函数 f(x) = x^2 - 3x + 2,则 f(3) = ( )。
A. -2B. 0C. 2D. 44. 若sinθ = 0.8,0<θ<π/2,则cosθ = ( )。
A. 0.2B. 0.4C. 0.6D. 0.85. 已知一边长度为 a 的正方形的对角线长为 d,则 a/d = ( )。
A. √2B. 1C. 1/√2D. √2/26. 若函数 f(x) 为奇函数,则 f(-2) = ( )。
A. -f(2)B. f(2)C. 0D. -f(-2)7. 一枚硬币正面向上的概率为 0.6,抛掷该枚硬币10次,正面向上次数是 4 的概率是 ( )。
A. 0.2508B. 0.3024C. 0.2016D. 0.40328. 空间直角坐标系中,已知直线L1: 3x + 4y + λ = 0,L2: 2x + 5y - 1 = 0 相交于点 P(1, -1),则λ = ( )。
A. 3B. 4C. -3D. -49. 设复数 z 满足 |z-1| = |z-2|,则 z 等于 ( )。
A. 1B. 2C. 3D. 410. 已知对数函数y = logₐx 的图像经过点 (2, 1/3),则 a 的值为 ( )。
A. 2B. 1/2C. 1/3D. 3Part II 解答题(共10题,每题6分,共60分)11. 已知三角形 ABC,其中∠B = 100°,∠C = 25°,AD 为高,垂足为 D。
高考模拟卷数学试卷及答案
![高考模拟卷数学试卷及答案](https://img.taocdn.com/s3/m/986f68b2162ded630b1c59eef8c75fbfc67d9453.png)
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,是奇函数的是:A. \( f(x) = x^2 + 1 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = |x| \)D. \( f(x) = x^3 \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,4)关于直线y=x的对称点是:A. (3,4)B. (4,3)C. (3,-4)D. (-4,3)4. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( ab \)的最大值为:A. 12B. 15C. 18D. 205. 在三角形ABC中,若\( \angle A = 30^\circ \),\( \angle B = 45^\circ \),则\( \angle C \)的度数是:A. 105°B. 120°C. 135°D. 150°6. 已知函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(2) \)的值为:A. 3B. 5C. 7D. 97. 在等比数列中,若前三项分别为2,6,18,则该数列的公比是:A. 2B. 3C. 6D. 98. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = \frac{\sqrt{3}}{2} \),则\( \tan(\alpha + \beta) \)的值为:A. 1B. -1C. 0D. 无解9. 已知圆的方程为\( x^2 + y^2 - 4x + 6y - 12 = 0 \),则该圆的半径是:A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3)到直线\( 2x - y + 1 = 0 \)的距离是:A. 1B. 2C. 3D. 411. 若\( \log_2(x - 1) = 3 \),则\( x \)的值为:A. 3B. 4C. 5D. 612. 若\( \frac{a}{b} = \frac{c}{d} \),且\( a \neq 0 \),\( b \neq 0 \),\( c \neq 0 \),\( d \neq 0 \),则\( \frac{a + c}{b + d} \)的值为:A. 1B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)13. 函数\( f(x) = x^3 - 3x \)的极值点是______。
高三数学模拟试题及答案
![高三数学模拟试题及答案](https://img.taocdn.com/s3/m/9e8e44c7d1d233d4b14e852458fb770bf78a3b3b.png)
高三数学模拟试题及答案一、选择题(每题4分,共40分)1.(4分)已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求f(x)的单调递增区间。
A. (-∞, -1) ∪ (2, +∞)B. (-∞, 2) ∪ (4, +∞)C. (-∞, 1) ∪ (4, +∞)D. (-∞, 2) ∪ (3, +∞)2.(4分)设等差数列{an}的首项为a1,公差为d,若a1 = 2,a2 + a5 = 10,则数列{an}的前10项和S10为多少?A. 120B. 110C. 100D. 903.(4分)已知三角形ABC中,∠A = 60°,AB = 3,AC = 4,求BC 的长度。
A. √13B. √21C. √33D. √374.(4分)若复数z满足|z - 1| = |z + 1|,则z在复平面内对应的点的轨迹是什么?A. 直线y = xB. 直线y = -xC. 直线y = x + 2D. 直线y = -x + 25.(4分)已知数列{bn}满足b1 = 1,bn = (1/2)^(n-1) * (bn-1 +1),求b5的值。
A. 2B. 3C. 4D. 56.(4分)在直角坐标系中,圆的方程为(x - 2)^2 + (y + 3)^2 = 9,若圆与直线2x - y + 6 = 0相交,求交点坐标。
A. (1, -3)B. (3, 0)C. (2, -1)D. (0, 2)7.(4分)已知函数g(x) = x^2 - 4x + 3,求g(x)在区间[0, 3]上的最大值和最小值。
A. 最大值3,最小值0B. 最大值4,最小值0C. 最大值3,最小值-1D. 最大值4,最小值-18.(4分)已知等比数列{cn}的前n项和为Sn,若S3 = 7,S6 = 21,求S9。
A. 35B. 56C. 63D. 729.(4分)在三维直角坐标系中,点A(1, 2, 3)、B(4, 5, 6)和C(7, 8, 9),求三角形ABC的体积。
高三数学高考模拟试题及答案
![高三数学高考模拟试题及答案](https://img.taocdn.com/s3/m/47c7e546b42acfc789eb172ded630b1c59ee9b16.png)
高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。
则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。
则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。
2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。
3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。
高考模拟复习试卷试题模拟卷高三数学高考数学试卷理科
![高考模拟复习试卷试题模拟卷高三数学高考数学试卷理科](https://img.taocdn.com/s3/m/26dea0e543323968011c92f9.png)
高考模拟复习试卷试题模拟卷高三数学高考数学试卷(理科)一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.2.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ=.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为.11.(4分)在(1+x+)10的展开式中,x2项的系数为(结果用数值表示).12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=(元).13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为.14.在锐角三角形 A BC中,tanA=,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则•=.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根18.(5分)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣C.1 D.2三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.22.(16分)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf (x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).上海市高考数学试卷(理科)参考答案与试题解析一、填空题(本大题共有14题,满分48分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.(4分)若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【点评】本题考查了复数的运算法则、复数相等,属于基础题.2.(4分)设全集U=R.若集合Α={1,2,3,4},Β={x|2≤x≤3},则Α∩∁UΒ={1,4}.【分析】本题考查集合的运算,由于两个集合已经化简,故直接运算得出答案即可.【解答】解:∵全集U=R,集合Α={1,2,3,4},Β={x|2≤x≤3},∴(∁UB)={x|x>3或x<2},∴A∩(∁UB)={1,4},故答案为:{1,4}.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.3.(4分)若线性方程组的增广矩阵为解为,则c1﹣c2=16.【分析】根据增广矩阵的定义得到,是方程组的解,解方程组即可.【解答】解:由题意知,是方程组的解,即,则c1﹣c2=21﹣5=16,故答案为:16.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)若正三棱柱的所有棱长均为a,且其体积为16,则a=4.【分析】由题意可得(•a•a•sin60°)•a=16,由此求得a的值.【解答】解:由题意可得,正棱柱的底面是变长等于a的等边三角形,面积为•a•a•sin60°,正棱柱的高为a,∴(•a•a•sin60°)•a=16,∴a=4,故答案为:4.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题.5.(4分)抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.【分析】利用抛物线的顶点到焦点的距离最小,即可得出结论.【解答】解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,所以=1,所以p=2.故答案为:2.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.6.(4分)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.【分析】设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.【解答】解:设圆锥的底面半径为r,高为h,母线长为l,则圆锥的侧面积为:πrl,过轴的截面面积为:rh,∵圆锥的侧面积与过轴的截面面积之比为2π,∴l=2h,设母线与轴的夹角为θ,则cosθ==,故θ=,故答案为:.【点评】本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.7.(4分)方程log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2的解为2.【分析】利用对数的运算性质化为指数类型方程,解出并验证即可.【解答】解:∵log2(9x﹣1﹣5)=log2(3x﹣1﹣2)+2,∴log2(9x﹣1﹣5)=log2[4×(3x ﹣1﹣2)],∴9x﹣1﹣5=4(3x﹣1﹣2),化为(3x)2﹣12•3x+27=0,因式分解为:(3x﹣3)(3x﹣9)=0,∴3x=3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2.故答案为:2.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题.8.(4分)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).【分析】根据题意,运用排除法分析,先在9名老师中选取5人,参加义务献血,由组合数公式可得其选法数目,再排除其中只有女教师的情况;即可得答案.【解答】解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C95=126种;其中只有女教师的有C65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算.9.已知点P和Q的横坐标相同,P的纵坐标是Q的纵坐标的2倍,P和Q的轨迹分别为双曲线C1和C2.若C1的渐近线方程为y=±x,则C2的渐近线方程为.【分析】设C1的方程为y2﹣3x2=λ,利用坐标间的关系,求出Q的轨迹方程,即可求出C2的渐近线方程.【解答】解:设C1的方程为y2﹣3x2=λ,设Q(x,y),则P(x,2y),代入y2﹣3x2=λ,可得4y2﹣3x2=λ,∴C2的渐近线方程为4y2﹣3x2=0,即.故答案为:.【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(4分)设f﹣1(x)为f(x)=2x﹣2+,x∈[0,2]的反函数,则y=f(x)+f﹣1(x)的最大值为4.【分析】由f(x)=2x﹣2+在x∈[0,2]上为增函数可得其值域,得到y=f﹣1(x)在[]上为增函数,由函数的单调性求得y=f(x)+f﹣1(x)的最大值.【解答】解:由f(x)=2x﹣2+在x∈[0,2]上为增函数,得其值域为[],可得y=f﹣1(x)在[]上为增函数,因此y=f(x)+f﹣1(x)在[]上为增函数,∴y=f(x)+f﹣1(x)的最大值为f(2)+f﹣1(2)=1+1+2=4.故答案为:4.【点评】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.11.(4分)在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).【分析】先把原式前两项结合展开,分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:∵(1+x+)10 =,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.12.(4分)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则Eξ1﹣Eξ2=0.2(元).【分析】分别求出赌金的分布列和奖金的分布列,计算出对应的均值,即可得到结论.【解答】解:赌金的分布列为ξ1 1 2 3 4 5P所以Eξ1=(1+2+3+4+5)=3,奖金的分布列为:若两张卡片上数字之差的绝对值为1,则有(1,2),(2,3),(3,4),(4,5),4种,若两张卡片上数字之差的绝对值为2,则有(1,3),(2,4),(3,5),3种,若两张卡片上数字之差的绝对值为3,则有(1,4),(2,5),2种,若两张卡片上数字之差的绝对值为4,则有(1,5),1种,则P(ξ2=1.4)==,P(ξ2=2.8)==,P(ξ2=4.2)==,P(ξ2=5.6)==ξ2 1.4 2.8 4.2 5.6P所以Eξ2=1.4×(×1+×2+×3+×4)=2.8,则Eξ1﹣Eξ2=3﹣2.8=0.2元.故答案为:0.2【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率的公式分别进行计算是解决本题的关键.13.(4分)已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12(m≥2,m∈N*),则m的最小值为8.【分析】由正弦函数的有界性可得,对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f (x)max﹣f(x)min=2,要使m取得最小值,尽可能多让xi(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<xm≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f (xm)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意xi,xj(i,j=1,2,3,…,m),都有|f(xi)﹣f(xj)|≤f (x)max﹣f(x)min=2是解答该题的关键,是难题.14.在锐角三角形 A BC中,tanA=,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则•=﹣.【分析】由题意画出图形,结合面积求出cosA=,,然后代入数量积公式得答案.【解答】解:如图,∵△ABD与△ACD的面积分别为2和4,∴,,可得,,∴.又tanA=,∴,联立sin2A+cos2A=1,得,cosA=.由,得.则.∴•==.故答案为:.【点评】本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,考查了三角函数的化简与求值,是中档题.二、选择题(本大题共有4题,满分15分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.【解答】解:设z1=1+i,z2=i,满足z1、z2中至少有一个数是虚数,则z1﹣z2=1是实数,则z1﹣z2是虚数不成立,若z1、z2都是实数,则z1﹣z2一定不是虚数,因此当z1﹣z2是虚数时,则z1、z2中至少有一个数是虚数,即必要性成立,故“z1、z2中至少有一个数是虚数”是“z1﹣z2是虚数”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念进行判断是解决本题的关键.16.(5分)已知点A的坐标为(4,1),将OA绕坐标原点O逆时针旋转至OB,则点B的纵坐标为()A.B.C.D.【分析】根据三角函数的定义,求出∠xOA的三角函数值,利用两角和差的正弦公式进行求解即可.【解答】解:∵点 A的坐标为(4,1),∴设∠xOA=θ,则sinθ==,cosθ==,将OA绕坐标原点O逆时针旋转至OB,则OB的倾斜角为θ+,则|OB|=|OA|=,则点B的纵坐标为y=|OB|sin(θ+)=7(sinθcos+cosθsin)=7(×+)=+6=,故选:D.【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键.17.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【分析】根据方程根与判别式△之间的关系求出a12≥4,a22<8,结合a1,a2,a3成等比数列求出方程③的判别式△的取值即可得到结论.【解答】解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即a3=,则a32=()2=,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B.【点评】本题主要考查方程根存在性与判别式△之间的关系,结合等比数列的定义和性质判断判别式△的取值关系是解决本题的关键.18.(5分)设Pn(xn,yn)是直线2x﹣y=(n∈N*)与圆x2+y2=2在第一象限的交点,则极限=()A.﹣1 B.﹣C.1 D.2【分析】当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),利用圆的切线的斜率、斜率计算公式即可得出.【解答】解:当n→+∞时,直线2x﹣y=趋近于2x﹣y=1,与圆x2+y2=2在第一象限的交点无限靠近(1,1),而可看作点Pn(xn,yn)与(1,1)连线的斜率,其值会无限接近圆x2+y2=2在点(1,1)处的切线的斜率,其斜率为﹣1.∴=﹣1.故选:A.【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在长方体ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分别是AB、BC的中点,证明A1、C1、F、E四点共面,并求直线CD1与平面A1C1FE所成的角的大小.【分析】利用长方体的几何关系建立直角坐标系.利用向量方法求空间角.【解答】解:连接AC,因为E,F分别是AB,BC的中点,所以EF是△ABC的中位线,所以EF∥AC.由长方体的性质知AC∥A1C1,所以EF∥A1C1,所以A1、C1、F、E四点共面.以D为坐标原点,DA、DC、DD1分别为x、y、z轴,建立空间直角坐标系,易求得,设平面A1C1EF的法向量为则,所以,即,z=1,得x=1,y=1,所以,所以=,所以直线CD1与平面A1C1FE所成的角的大小arcsin.【点评】本题主要考查利用空间直角坐标系求出空间角的方法,属高考常考题型.20.(14分)如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.(1)求t1与f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.【分析】(1)由题意可得t1==h,由余弦定理可得f(t1)=PC=,代值计算可得;(2)当t1≤t≤时,由已知数据和余弦定理可得f(t)=PQ=,当<t≤1时,f(t)=PB=5﹣5t,综合可得当<t≤1时,f(t)∈[0,],可得结论.【解答】解:(1)由题意可得t1==h,设此时甲运动到点P,则AP=v甲t1=5×=千米,∴f(t1)=PC===千米;(2)当t1≤t≤时,乙在CB上的Q点,设甲在P点,∴QB=AC+CB﹣8t=7﹣8t,PB=AB﹣AP=5﹣5t,∴f(t)=PQ===,当<t≤1时,乙在B点不动,设此时甲在点P,∴f(t)=PB=AB﹣AP=5﹣5t∴f(t)=∴当<t≤1时,f(t)∈[0,],故f(t)的最大值没有超过3千米.【点评】本题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题.21.(14分)已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C 到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C 到直线l1的距离d==,因为|AB|=2|AO|=2,所以S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,根据对称性,设x1=,则y1=,同理可得x2=,y2=,所以S=2|x1y2﹣x2y1|=.方法二:设直线l1、l2的斜率分别为、,则=﹣,所以x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,所以(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,所以S=2|x1y2﹣x2y1|=.【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题.22.(16分)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即a≥an(n∈N*),求证:数列{bn}的第n0项是最大项;(3)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).【分析】(1)把bn=3n+5代入已知递推式可得an+1﹣an=6,由此得到{an}是等差数列,则an可求;(2)由an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1,结合递推式累加得到an=2bn+a1﹣2b1,求得,进一步得到得答案;(3)由(2)可得,然后分﹣1<λ<0,λ=﹣1,λ<﹣1三种情况求得an的最大值M和最小值m,再由∈(﹣2,2)列式求得λ的范围.【解答】(1)解:∵an+1﹣an=2(bn+1﹣bn),bn=3n+5,∴an+1﹣an=2(bn+1﹣bn)=2(3n+8﹣3n﹣5)=6,∴{an}是等差数列,首项为a1=1,公差为6,则an=1+(n﹣1)×6=6n﹣5;(2)∵an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2(bn﹣bn﹣1)+2(bn﹣1﹣bn﹣2)+…+2(b2﹣b1)+a1=2bn+a1﹣2b1,∴,∴.∴数列{bn}的第n0项是最大项;(3)由(2)可得,①当﹣1<λ<0时,单调递减,有最大值;单调递增,有最小值m=a1=λ,∴∈(﹣2,2),∴λ∈,∴.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(3)的求解运用了极限思想方法,是中档题.23.(18分)对于定义域为R的函数g(x),若存在正常数T,使得cosg(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期.已知f(x)是以T为余弦周期的余弦周期函数,其值域为R.设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证g(x)=x+sin是以6π为周期的余弦周期函数;(2)设a<b,证明对任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;(3)证明:“u0为方程cosf(x)=1在[0,T]上得解,”的充要条件是“u0+T为方程cosf (x)=1在区间[T,2T]上的解”,并证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【分析】(1)根据余弦函数的周期定义,判断cosg(x+6π)是否等于cosg(x)即可;(2)根据f(x)的值域为R,便可得到存在x0,使得f(x0)=c,而根据f(x)在R上单调递增即可说明x0∈[a,b],从而完成证明;(3)只需证明u0+T为方程cosf(x)=1在区间[T,2T]上的解得出u0为方程cosf(x)=1在[0,T]上的解,是否为方程的解,带入方程,使方程成立便是方程的解.证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T),可讨论x=0,x=T,x∈(0,T)三种情况:x=0时是显然成立的;x=T时,可得出cosf(2T)=1,从而得到f(2T)=2k1π,k1∈Z,根据f (x)单调递增便能得到k1>2,然后根据f(x)的单调性及方程cosf(x)=1在[T,2T]和它在[0,T]上解的个数的情况说明k1=3,和k1≥5是不存在的,而k1=4时结论成立,这便说明x=T时结论成立;而对于x∈(0,T)时,通过考查cosf(x)=c的解得到f(x+T)=f (x)+f(T),综合以上的三种情况,最后得出结论即可.【解答】解:(1)g(x)=x+sin;∴==cosg(x)∴g(x)是以6π为周期的余弦周期函数;(2)∵f(x)的值域为R;∴存在x0,使f(x0)=c;又c∈[f(a),f(b)];∴f(a)≤f(x0)≤f(b),而f(x)为增函数;∴a≤x0≤b;即存在x0∈[a,b],使f(x0)=c;(3)证明:若u0+T为方程cosf(x)=1在区间[T,2T]上的解;则:cosf(u0+T)=1,T≤u0+T≤2T;∴cosf(u0)=1,且0≤u0≤T;∴u0为方程cosf(x)=1在[0,T]上的解;∴“u0为方程cosf(x)=1在[0,T]上得解”的充分条件是“u0+T为方程cosf(x)=1在区间[T,2T]上的解”;下面证明对任意x∈[0,T],都有f(x+T)=f(x)+f(T):①当x=0时,f(0)=0,∴显然成立;②当x=T时,cosf(2T)=cosf(T)=1;∴f(2T)=2k1π,(k1∈Z),f(T)=4π,且2k1π>4π,∴k1>2;1)若k1=3,f(2T)=6π,由(2)知存在x0∈(0,T),使f(x0)=2π;cosf(x0+T)=cosf(x0)=1⇒f(x0+T)=2k2π,k2∈Z;∴f(T)<f(x0+T)<f(2T);∴4π<2k2π<6π;∴2<k2<3,无解;2)若k1≥5,f(2T)≥10π,则存在T<x1<x2<2T,使得f(x1)=6π,f(x2)=8π;则T,x1,x2,2T为cosf(x)=1在[T,2T]上的4个解;但方程cosf(x)=1在[0,2T]上只有f(x)=0,2π,4π,3个解,矛盾;3)当k1=4时,f(2T)=8π=f(T)+f(T),结论成立;③当x∈(0,T)时,f(x)∈(0,4π),考查方程cosf(x)=c在(0,T)上的解;设其解为f(x1),f(x2),…,f(xn),(x1<x2<…<xn);则f(x1+T),f(x2+T),…,f(xn+T)为方程cosf(x)=c在(T,2T)上的解;又f(x+T)∈(4π,8π);而f(x1)+4π,f(x2)+4π,…,f(xn)+4π∈(4π,8π)为方程cosf(x)=c在(T,2T)上的解;∴f(xi+T)=f(xi)+4π=f(xi)+f(T);∴综上对任意x∈[0,T],都有f(x+T)=f(x)+f(T).【点评】考查对余弦周期函数定义的理解,充分条件的概念,方程的解的概念,知道由cosf(x)=1能得出f(x)=2kx,k∈Z,以及构造方程解题的方法,在证明最后一问时能运用第二问的结论.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.102.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度4.(5分)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<5.(5分)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.36.(5分)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种7.(5分)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2B.﹣1C.1D.28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,点O为线段BD的中点,设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是()A.[,1]B.[,1]C.[,]D.[,1]9.(5分)已知f(x)=ln(1+x)﹣ln(1﹣x),x∈(﹣1,1).现有下列命题:①f(﹣x)=﹣f(x);②f()=2f(x)③|f(x)|≥2|x|其中的所有正确命题的序号是()A.①②③B.②③C.①③D.①②10.(5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)复数=.12.(5分)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()=.13.(5分)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46m,则河流的宽度BC约等于m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB|的最大值是.15.(5分)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.17.(12分)一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐:每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得﹣200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现.若干盘游戏后,与最初分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.18.(12分)三棱锥A﹣BCD及其侧视图、俯视图如图所示,设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A﹣NP﹣M的余弦值.19.(12分)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和Tn.20.(13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.(14分)已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(10)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.(5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10【分析】利用二项展开式的通项公式求出(1+x)6的第r+1项,令x的指数为2求出展开式中x2的系数.然后求解即可.【解答】解:(1+x)6展开式中通项Tr+1=C6rxr,令r=2可得,T3=C62x2=15x2,∴(1+x)6展开式中x2项的系数为15,在x(1+x)6的展开式中,含x3项的系数为:15.故选:C.【点评】本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.2.(5分)已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}【分析】计算集合A中x的取值范围,再由交集的概念,计算可得.【解答】解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.【点评】本题属于容易题,集合知识是高中部分的基础知识,也是基础工具,高考中涉及到对集合的基本考查题,一般都比较容易,且会在选择题的前几题,考生只要够细心,一般都能拿到分.3.(5分)为了得到函数y=sin(2x+1)的图象,只需把y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度【分析】根据 y=sin(2x+1)=sin2(x+),利用函数y=Asin(ωx+φ)的图象变换规律,得。
高考数学模拟复习试卷试题模拟卷133
![高考数学模拟复习试卷试题模拟卷133](https://img.taocdn.com/s3/m/2b0e6b0676a20029bc642d66.png)
高考模拟复习试卷试题模拟卷【考情解读】1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 【重点知识梳理】 1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:an +1-an =d(n ∈N*,d 为常数),或an -an -1=d (n≥2,d 为常数). 2.等差数列的通项公式与前n 项和公式(1)若等差数列{an}的首项是a1,公差是d ,则其通项公式为an =a1+(n -1)d . 通项公式的推广:an =am +(n -m)d(m ,n ∈N*). (2)等差数列的前n 项和公式 Sn =n (a1+an )2=na1+n (n -1)2d(其中n ∈N*,a1为首项,d 为公差,an 为第n 项). 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{an}为等差数列,且m +n =p +q ,则am +an =ap +aq(m ,n ,p ,q ∈N*).(3)若{an}是等差数列,公差为d ,则ak ,ak +m ,ak +2m ,…(k ,m ∈N*)是公差为m d 的等差数列. (4)数列Sm ,S2m -Sm ,S3m -S2m ,…也是等差数列. (5)S2n -1=(2n -1)an.(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项). 4.等差数列的前n 项和公式与函数的关系 Sn =d 2n2+⎝⎛⎭⎫a1-d 2n.数列{an}是等差数列⇔Sn =An2+Bn(A ,B 为常数). 5.等差数列的前n 项和的最值在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.【高频考点突破】考点一等差数列的性质及基本量的求解【例1】 (1)设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=()A.-6 B.-4 C.-2 D.2【答案】A(2)(·浙江卷)已知等差数列{an}的公差d>0.设{an}的前n项和为Sn,a1=1,S2·S3=36.①求d及Sn;②求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.规律方法(1)一般地,运用等差数列性质,可以化繁为简、优化解题过程.但要注意性质运用的条件,如m+n=p+q,则am+an=ap+aq(m,n,p,q∈N*),只有当序号之和相等、项数相同时才成立.(2)在求解等差数列基本量问题中主要使用的是方程思想,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.【变式探究】(1)设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于()A.0 B.37 C.100 D.-37(2)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10(3)已知等差数列{an}的前n 项和为Sn ,且S10=10,S20=30,则S30=________.【答案】(1)C(2)A(3)60考点二 等差数列的判定与证明【例2】若数列{an}的前n 项和为Sn ,且满足an +2SnSn -1=0(n≥2),a1=12.(1)求证:⎩⎨⎧⎭⎬⎫1Sn 成等差数列;(2)求数列{an}的通项公式.规律方法证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明an-an-1=d(n≥2,d为常数);二是等差中项法,证明2an+1=an+an+2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法.【变式探究】已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=Snn+c,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由.考点三等差数列前n项和的最值问题【例3】等差数列{an}的首项a1>0,设其前n项和为Sn,且S5=S12,则当n为何值时,Sn有最大值?规律方法求等差数列前n项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项;(2)利用性质求出其正负转折项,便可求得和的最值;(3)将等差数列的前n项和Sn=A n2+Bn(A,B为常数)看作二次函数,根据二次函数的性质求最值.【变式探究】(1)等差数列{an}的前n项和为Sn,已知a5+a7=4,a6+a8=-2,则当Sn取最大值时,n的值是()A.5 B.6 C.7 D.8(2)设数列{an}是公差d <0的等差数列,Sn 为前n 项和,若S6=5a1+10d ,则Sn 取最大值时,n 的值为()A .5B .6C .5或6D .11(3)已知等差数列{an}的首项a1=20,公差d =-2,则前n 项和Sn 的最大值为________.【答案】(1)B(2)C(3)110 【真题感悟】【高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )12 【答案】B【高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为,则该数列的首项为________ 【答案】5【高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________.【答案】9【高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a =,d =.【答案】2,13-1.(·安徽卷)数列{an}是等差数列,若a1+1,a3+3,a5+5构成公比为q 的等比数列,则q =________.【答案】12.(·北京卷)若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n =________时,{an}的前n 项和最大.【答案】83.(·福建卷)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( ) A .8 B .10 C .12 D .14 【答案】C4.(·湖北卷)已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.5.(·湖南卷)已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.6.(·辽宁卷)设等差数列{an}的公差为d.若数列{2a1an}为递减数列,则() A.d<0 B.d>0 C.a1d<0 D.a1d>0【答案】C7.(·全国卷)等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=1anan+1,求数列{bn}的前n项和Tn.8.(·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.(1)证明:an+2-an=λ.(2)是否存在λ,使得{an}为等差数列?并说明理由.9.(·山东卷)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn=(-1)n-14nanan+1,求数列{bn}的前n项和Tn.10.(·陕西卷)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.11.(·天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1的值为________.【答案】-1212.(·重庆卷)设a1=1,an +1=a2n -2an +2+b(n ∈N*). (1)若b =1,求a2,a3及数列{an}的通项公式.(2)若b =-1,问:是否存在实数c 使得a2n<c<a2n +1对所有n ∈N*成立?证明你的结论.13.(·新课标全国卷Ⅰ] 某几何体的三视图如图1-3所示,则该几何体的体积为()图1-3A.16+8π B.8+8πC.16+16π D.8+16π【答案】A14.(·新课标全国卷Ⅰ] 设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=()A.3 B.4 C.5 D.6【答案】C15.(·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.【答案】2016.(·北京卷)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn.(1)若{an}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dn=-d(n=1,2,3,…)的充分必要条件为{an}是公差为d的等差数列;(3)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.17.(·全国卷)等差数列{a n}前n 项和为Sn.已知S3=a22,且S1,S2,S4成等比数列,求{an}的通项公式.18.(·山东卷)设等差数列{an}的前n 项和为Sn ,且S4=4S2,a2n =2an +1. (1)求数列{an}的通项公式;(2)设数列{bn}的前n 项和为Tn ,且Tn +an +12n =λ(λ为常数),令cn =b2n(n ∈N*),求数列{cn}的前n 项和Rn.19.(·四川卷) 在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项、公差及前n 项和.20.(·新课标全国卷Ⅱ] 等差数列{an}的前n 项和为Sn ,已知S10=0,S15=25,则nSn 的最小值为________.【答案】-4921.(·重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.【答案】64【押题专练】1.记Sn 为等差数列{an}的前n 项和,若S33-S22=1,则其公差d =()A.12 B .2 C .3D .4【答案】B2.设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n 项和.若S1,S2,S4成等比数列,则a1=() A .2B .-2C.12D .-12【答案】D3.已知等差数列{an},且3(a3+a5)+2(a7+a10+a13)=48,则数列{an}的前13项之和为 () A .24B .39C .104D .52【答案】D4.设Sn 是等差数列{an}的前n 项和,公差d≠0,若S11=132,a3+ak =24,则正整数k 的值为 () A .9B .10C .11D .12【答案】A5.已知数列{an}满足an +1=an -57,且a1=5,设{an}的前n 项和为Sn ,则使得Sn 取得最大值的序号n 的值为() A .7B .8C .7或8D .8或9【答案】C6.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为 ()A.53B.103C.56D.116【答案】A7.设Sn 为等差数列{an}的前n 项和,(n +1)Sn <nSn +1(n ∈N*).若a8a7<-1,则 () A .Sn 的最大值是S8 B .Sn 的最小值是S8 C .Sn 的最大值是S7D .Sn 的最小值是S7【答案】D8.在等差数列{an}中,a15=33,a25=66,则a35=________.【答案】999.设Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=________.【答案】-110.已知等差数列{an}中,S3=9,S6=36,则a7+a8+a9=________.【答案】4511.设等差数列{an}的前n 项和为Sn ,若a1<0,S2 015=0. (1)求Sn 的最小值及此时n 的值; (2)求n 的取值集合,使an≥Sn.12.已知等差数列的前三项依次为a ,4,3a ,前n 项和为Sn ,且Sk =110. (1)求a 及k 的值;(2)设数列{bn}的通项bn =Snn ,证明数列{bn}是等差数列,并求其前n 项和Tn.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用. 【热点题型】题型一 用不等式(组)表示不等关系例1、某商人如果将进货单价为8元的商品按每件10元销售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品的单价每提高1元,销售量就相应减少10件.若把提价后商品的单价设为x 元,怎样用不等式表示每天的利润不低于300元?【提分秘籍】对于不等式的表示问题,关键是理解题意,分清变化前后的各种量,得出相应的代数式,然后,用不等式表示.而对于涉及条件较多的实际问题,则往往需列不等式组解决.【举一反三】已知甲、乙两种食物的维生素A ,B 含量如下表:甲 乙 维生素A(单位/kg) 600 700 维生素B(单位/k g)800400设用甲、乙两种食物各xkg ,ykg 配成至多100kg 的混合食物,并使混合食物内至少含有56000单位维生素A 和62000单位维生素B ,则x ,y 应满足的所有不等关系为________.题型二比较大小例2、(1)已知a1,a2∈(0,1),记M =a1a2,N =a1+a2-1,则M 与N 的大小关系是( ) A .M<NB .M>N C .M =ND .不确定(2)若a =ln33,b =ln44,c =ln55,则( ) A .a<b<cB .c<b<a C .c<a<bD .b<a<c 【提分秘籍】 比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系. 【举一反三】(1)如果a<b<0,那么下列不等式成立的是( ) A.1a <1b B .ab<b2C .-ab<-a2D .-1a <-1b(2)设a =log32,b =log52,c =log23,则( ) A .a>c>bB .b>c>a C .c>b>a D .c>a>b 题型三 不等式性质的应用例3、已知a>b>0,给出下列四个不等式:①a2>b2;②2a>2b -1;③a -b>a -b ;④a3+b3>2a2b. 其中一定成立的不等式为( ) A .①②③B .①②④ C .①③④D .②③④ 【提分秘籍】(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等.【举一反三】(1)设a ,b 是非零实数,若a<b ,则下列不等式成立的是( ) A .a2<b2B .ab2<a2bC.1ab2<1a2bD.b a <a b(2)已知a ,b ,c ∈R ,有以下命题:①若a>b ,则ac2>bc2;②若ac2>bc2,则a>b ;③若a>b ,则a·2c>b·2c. 其中正确的是________.(填上所有正确命题的序号) 【高考风向标】1.【高考浙江,文6】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是()A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++ 2.(·山东卷)已知实数x ,y 满足ax <ay(0<a <1),则下列关系式恒成立的是( ) A. 1x2+1>1y2+1 B. ln(x2+1)>ln(y2+1) C. sin x >sin y D. x3>y33.(·四川卷)若a>b>0,c<d<0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.(·安徽卷)若函数f(x)=|x +1|+|2x +a|的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或85.(·新课标全国卷Ⅱ)已知点A(-1,0),B(1,0),C(0,1),直线y =ax +b(a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝⎛⎦⎥⎤1-22,13 D.⎣⎡⎭⎫13,126.(·新课标全国卷Ⅱ)设a =log 36,b =log510,c =log714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c 【高考押题】1.“a +c>b +d”是“a>b 且c>d”的( ) A .必要不充分条件B .充分不必要条件 C .充要条件D .既不充分也不必要条件 2.若1a <1b <0,则下列结论不正确的是( ) A .a2<b2B .ab<b2C .a +b<0D .|a|+|b|>|a +b|3.已知x>y>z ,x +y +z =0,则下列不等式中成立的是( ) A .xy>yzB .xz>yz C .xy>xzD .x|y|>z|y|4.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( ) A .(0,5π6) B .(-π6,5π6) C .(0,π) D .(-π6,π)5.设a>1,且m =loga(a2+1),n =loga(a -1),p =loga(2a),则m ,n ,p 的大小关系为( ) A .n>m>pB .m>p>n C .m>n>pD .p>m>n6.已知a<0,-1<b<0,那么a ,ab ,ab2的大小关系是__________.(用“>”连接)7.设a>b>c>0,x =a2+b +c 2,y =b2+c +a 2,z =c2+a +b 2,则x ,y ,z 的大小关系是________.(用“>”连接)8.已知a ,b ,c ,d 均为实数,有下列命题 ①若ab>0,bc -ad>0,则c a -db >0; ②若ab>0,c a -db >0,则bc -ad>0; ③若bc -ad>0,c a -db >0,则ab>0. 其中正确的命题是________.9.若实数a≠1,比较a +2与31-a的大小.10.甲乙两人同时从宿舍到教室,甲一半路程步行,一半路程跑步;乙一半时间步行,一半时间跑步;如果两人步行、跑步速度均相同,则谁先到教室?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高三数学模拟练习卷
![高三数学模拟练习卷](https://img.taocdn.com/s3/m/7ae770c6227916888586d718.png)
FxyABC O高三数学模拟练习卷一、选择题(本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知==+∈==∈=N M y x R x N x y R y M 则}.2|{},|{222( )A .)}1,1(),1,1{(-B .{1}C .[0,1]D .]2,0[2.已知映射,:B A f →其中A=B=R ,对应法则x x y x f 2:2+-=→,关于实数B k ∈. 在集合A 中存在不同的两个原象,则k 的取值范畴是 ( ) A .k >1 B .k ≤1 C .k ≥1 D .k <13.已知)4()5(),1()2)(1(:*,,35-⨯-=-+++=∈∈-M n x x x x M N n R x n x 例如定义 x COSM x f x 20062005)(,60)3(73⋅=-=-⨯-则函数 ( )A .是偶函数不是奇函数B .是奇函数不是偶函数C .既是奇函数、又是偶函数D .既不是奇函数又不是偶函数 4.设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则 ( )A .54S S =B .56S S =C .64S S >D .56S S < 5.若定义在区间(-1,0)内函数)1(3log )(+=x ax f 满足0)(<x f ,则a 的取值范畴是( )A .(0,1)B .(1,+∞)C .(0,31) D .(+∞,31)6.若,10,1,<<>-≥---b a b b aa x y yx且成立则( )A .0>+y xB .0<+y xC .0≥+y xD .0≤+y x7.如图所示,在正方体ABCD —A 1B 1C 1D 1的侧面AB 1内有一动点P 到平面A 1C 1的距离是直线BC 的距离的2 倍,点M 是棱BB 1的中点,则动点P 所在曲线的大致 形状为 ( )8.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 ( )A .x y 232=B .x y 92=C .x y 292= D .x y 32=9.设)(,sin cos )(x f x x x f 把-=的图象按向量)0)(0,(>m m 平移后,图象恰好为函 数)('x f y -=的图象,则m 的值能够为( )A .4π B .π43C .πD .2π 10.已知F 1、F 2为椭圆E 的左右两个焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,假如椭圆离心率为e ,且||||21PF e PF =则e 的值为 ( )A .22B .32-C .33 D .22-二、填空题(本大题共7小题,每小题4分,共28分,把答案填在横线上。
新高考高三数学模拟试卷
![新高考高三数学模拟试卷](https://img.taocdn.com/s3/m/c9b36a6386c24028915f804d2b160b4e767f81c1.png)
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = \frac{2x + 1}{x - 1}$,则函数的图像不经过下列哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在等差数列$\{a_n\}$中,$a_1 = 3$,$a_4 = 11$,则该数列的公差为:A. 2B. 3C. 4D. 53. 已知圆的方程$x^2 + y^2 - 6x + 8y - 15 = 0$,则该圆的半径为:A. 3B. 4C. 5D. 64. 函数$f(x) = ax^2 + bx + c$在$x = -1$时取得最小值,且$f(0) = 3$,$f(2) = 1$,则$a + b + c$的值为:A. 3B. 2C. 1D. 05. 在直角坐标系中,直线$y = 2x - 3$与圆$x^2 + y^2 = 9$相切,则圆心到直线的距离为:A. 3B. 2C. 1D. $\sqrt{5}$6. 已知复数$z = a + bi$($a, b \in \mathbb{R}$),若$|z - 3i| = 5$,则$|z|$的最大值为:A. 5B. 8C. 10D. 127. 在三角形ABC中,$A = 60^\circ$,$b = 2$,$c = 3$,则$sinB$的值为:A. $\frac{\sqrt{3}}{2}$B. $\frac{1}{2}$C. $\frac{\sqrt{2}}{2}$D. $\frac{\sqrt{6}}{3}$8. 已知数列$\{a_n\}$的通项公式为$a_n = 2^n - 1$,则数列的前$n$项和$S_n$为:A. $2^n - n - 1$B. $2^n - n$C. $2^n - 2n - 1$D. $2^n - 2n$9. 已知函数$f(x) = x^3 - 3x^2 + 4x$,则$f(x)$的对称中心为:A. (1, 2)B. (1, 0)C. (0, 2)D. (0, 0)10. 已知向量$\vec{a} = (1, 2)$,$\vec{b} = (2, 3)$,则$\vec{a} \cdot\vec{b}$的值为:A. 7B. 5C. 3D. 1二、填空题(本大题共10小题,每小题5分,共50分。
重庆市县2024高三冲刺(高考数学)部编版模拟(备考卷)完整试卷
![重庆市县2024高三冲刺(高考数学)部编版模拟(备考卷)完整试卷](https://img.taocdn.com/s3/m/4887e5a0710abb68a98271fe910ef12d2af9a9b3.png)
重庆市县2024高三冲刺(高考数学)部编版模拟(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题深度学习是人工智能的一种具有代表性的实现方法,以神经网络为出发点.在训练神经网络时,需要设置学习率来控制参数更新的速度,在模型训练初期,会使用较大的学习率进行模型优化,随着选代次数增加,学习率会逐渐进行减小,保证模型在训练后期不会有太大的波动.在神经网络优化中,指数衰减的学习率模型为,其中L表示每一轮优化时使用的学习率,表示初始学习率,D表示衰减系数,G表示训练迭代轮数,表示衰减速度.已知某个知识衰减的学习率模型的初始学习率为0.6,衰减速度为12,且当训练迭代轮数为12时,学习率衰减为0.3,则学习率衰减到0.1以下(不含0.1)所需的训练选代轮数至少为()(参考数据:)A.31B.32C.33D.34第(2)题设集合,,则().A.B.C.D.第(3)题已知,则有A.B.C.D.第(4)题现有一个轴截面是边长为4的等边三角形的倒置圆锥(顶点在下方,底面在上方),将半径为的小球放入圆锥,使得小球与圆锥的侧面相切,过所有切点所在平面将圆锥分割成两个部分,则分割得到的圆台的侧面积为()A.B.C.D.第(5)题某校有7名同学获省数学竞赛一等奖,其中男生4名,女生3名.现随机选取2名学生作“我爱数学”主题演讲.假设事件为“选取的两名学生性别相同”,事件为“选取的两名学生为男生”,则()A.B.C.D.第(6)题设,均为正实数,若直线被圆截得的弦长为2,则的取值范围是()A.B.C.D.第(7)题已知,则()A.B.C.D.第(8)题已知全集,集合,,则集合()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题有一组样本数据,其中是最小值,是最大值,则()A.的平均数等于的平均数B.的中位数等于的中位数C.的标准差不小于的标准差D.的极差不大于的极差第(2)题设一组样本的统计数据为:,其中n∈N*,.已知该样本的统计数据的平均数为,方差为,设函数,x∈R.则下列说法正确的是()A.设b∈R,则的平均数为B.设a∈R,则的方差为C.当x=时,函数有最小值D.第(3)题已知某养老院75岁及以上的老人占60%.75岁以下的老人中,需要有人全天候陪同的占10%;75岁及以上的老人中,需要有人全天候陪同的占30%.如果从该养老院随机抽取一位老人,则以下结论中,正确的是()A.抽到的老人年龄在75岁以下的概率为35%B.抽到的老人需要有人全天候陪同的概率为22%C.抽到的老人年龄在75岁以下且需要有人全天候陪同的概率为4%D.抽到的老人年龄大于等于75岁且不需要有人全天候陪同的概率为40%三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若函数,恰有3个零点,则实数的取值范围为_____.第(2)题在棱长为1的正方体中,点关于平面的对称点为,则到平面的距离为______________.第(3)题在中,,且,则的面积是________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在直角坐标系中,圆的参数方程为(为参数),直线的参数方程为(为参数).(1)判断直线和圆的位置关系,并说明理由;(2)设是圆上一动点,,若点到直线的距离为,求的值.第(2)题如表是S市某中学高二三班2020年第一学期期中考试16名学生的数学名次和年级总分名次数学年级名次x262667101247411192121总分年级名次y2103152567879119数学年级名次x147101155231393294192192总分年级名次y122133138152163174188206(1)用线性回归方程拟合y与x的关系,计算相关系数r,说出相关性的强弱(|r|>0.75叫做强相关,|r|<0.75叫做弱相关)(2)根据以上数据填充以下表格,并计算有没有85%的把握认为数学成绩与总成绩相关数学前120名数学120名以后合计总分前120名总分120名以后合计参考公式与数据:,,=308243,=237454.62,.P(K2≥k0)0.150.100.050.0250.010k0 2.072 2.706 3.841 5.024 6.635第(3)题已知数列的前项和,.(1)求数列的通项公式;(2)求数列的前项和.第(4)题某企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新产品进行合理定价,该企业将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)45678销量(百6764615850件)(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.当销售数据对应的残差的绝对值时,则将销售数据称为一个“精准销售”.现从5个销售数据中任取2个,求“精准销售”至少有1个的概率.参考数据:参考公式:线性回归方程中的估计值分别为第(5)题如图,在四棱锥中,四边形是等腰梯形,,,,.(1)证明:平面平面;(2)若,且,求二面角的正弦值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【考情解读】1. 掌握数列的求和方法:(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n -1)<n2<n(n +1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.【高频考点突破】考点一等差、等比数列求和公式及利用例1 已知{a n}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn -an}为等比数列.(1) 求数列{an}和{bn}的通项公式; (2) 求数列{bn}的前n 项和.考点二可转化为等差、等比数列求和例2 已知数列{an}的前n 项和Sn =n2+n2,n ∈N*. (1) 求数列{an}的通项公式;(2) 设bn =2an +(-1)nan ,求数列{bn}的前2n 项和.考点三根据数列特征,用适当的方法求和例3 已知数列{an}的前n 项和Sn =-12n2+kn(k ∈N*),且Sn 的最大值为8. (1) 确定常数k ,求an ;(2) 求数列⎩⎨⎧⎭⎬⎫9-2an 2n 的前n 项和Tn.【变式探究】已知数列{an}和{bn}满足a1=1,a2=2,an>0,bn =anan +1(n ∈N*),且{bn}是以q 为公比的等比数列.(1) 证明:an +2=anq2;(2) 若cn =a2n -1+2a2n ,证明:数列{cn}是等比数列; (3) 求和:1a1+1a2+1a3+1a4+…+1a2n -1+1a2n .考点四数列求和的综合应用例4 将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表: a1 a2a3 a4a5a6 a7a8a9a10 …记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1,Sn 为数列{bn}的前n 项和,且满足2bnbnSn -S2n =1(n≥2).【真题感悟】【高考四川,文16】设数列{an}(n =1,2,3…)的前n 项和Sn 满足Sn =2an -a3,且a1,a2+1,a3成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为Tn ,求Tn. .【高考浙江,文17】(本题满分15分)已知数列n a 和nb 满足,*1112,1,2(n N ),n n a b a a +===∈*12311111(n N )23n n b b b b b n+++++=-∈. (1)求n a 与n b ;(2)记数列n n a b 的前n 项和为n T ,求n T .1.(·湖南卷) 已知数列{an}满足a1=1,|an +1-an|=pn ,n ∈N*. (1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p 的值;(2)若p =12,且{a2n -1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式. 2.(·安徽卷) 设实数c >0,整数p >1,n ∈N*. (1)证明:当x >-1且x≠0时,(1+x)p >1+px ;(2)数列{an}满足a1>c 1p ,an +1=p -1p an +c p a1-p n ,证明:an >an +1>c 1p .3.(·湖北卷) 已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列. (1)求数列{an}的通项公式.(2)记Sn 为数列{an}的前n 项和,是否存在正整数n ,使得Sn>60n +800?若存在,求n 的最小值;若不存在,说明理由.4.(·江西卷) 已知首项都是1的两个数列{an},{b n}(bn≠0,n ∈N*)满足anbn +1-an +1bn +2bn +1bn =0.(1)令cn =anbn ,求数列{cn}的通项公式; (2)若bn =3n -1,求数列{an}的前n 项和Sn.5.(·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an +1=3an +1.(1)证明⎩⎨⎧⎭⎬⎫an +12是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+…+1an <32.6.(·四川卷) 设等差数列{an}的公差为d ,点(an ,bn)在函数f(x)=2x 的图像上(n ∈N*). (1)若a1=-2,点(a8,4b7)在函数f(x)的图像上,求数列{an}的前n 项和Sn ;(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫an bn 的前n项和Tn.7.(·浙江卷) 已知数列{an}和{bn}满足a1a2a3…an =(2)bn(n ∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(1)求an 与bn.(2)设cn =1an -1bn (n ∈N*).记数列{cn}的前n 项和为Sn. (i)求Sn ;(i i)求正整数k ,使得对任意n ∈均有Sk≥Sn.8.(高考辽宁卷)下面是关于公差d>0的等差数列{an}的四个命题: P1:数列{an}是递增数列; P2:数列{nan}是递增数列; P3:数列{ann }是递增数列; P4:数列{an +3nd}是递增数列. 其中的真命题为() A .p1,p2B .p3,p4C .p2,p3D .p1,p49.(高考重庆卷)已知{an}是等差数列,a1=1,公差d≠0,Sn 为其前n 项和,若a1,a2,a5成等比数列,则S8=________.10. (高考广东卷)设数列{an}的前n 项和为Sn.已知a1=1,2Sn n =an +1-13n2-n -23,n ∈N*. (1)求a2的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n ,有1a1+1a2+…+1an <74.【押题专练】1. 两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x2a2-y2b2=1的离心率e =________.2. 在等比数列{an}中,前n 项和为Sn ,若Sm ,Sm +2,Sm +1成等差数列,则am ,am +2,am +1成等差数列.(1) 写出这个命题的逆命题;(2) 判断逆命题是否为真,并给出证明.3. 已知等差数列{an}满足a3+a6=-13,a1·a8=-43,a1>a8. (1) 求数列{an}的通项公式;(2) 把数列{an}的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{bn}的第1项、第2项、第3项、…、第n 项、…,求数列{2bn}的前n 项之和;(3) 设数列{cn}的通项为cn =n·2bn ,试比较(n +1)(n +2)cn +n(n +1)cn +2与2n(n +2)cn +1的大小.4.已知数列{an}满足an =2an -1+2n -1(n≥2),且a4=81. (1) 求数列{an}的前三项a1,a2,a3;(2)求证:数列⎩⎨⎧⎭⎬⎫an -12n 为等差数列,并求an.5.已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{an}的前n 项和为Sn ,点(n ,Sn)(n ∈N*)均在函数y =f(x)的图象上.(1) 求数列{an}的通项公式;(2) 设bn =3anan +1,Tn 是数列{bn}的前n 项和,求使得Tn <m20对所有n ∈N*都成立的最小正整数m.6.各项均为正数的数列{an}中,设Sn =a1+a2+…+an ,Tn =1a1+1a2+…+1an ,且(2-Sn)(1+Tn)=2,n ∈N*.(1) 设bn =2-Sn ,证明数列{bn}是等比数列;(2) 设cn =12nan ,求集合{(m ,k ,r)|cm +cr =2ck ,m<k<r ,m ,k ,r ∈N*}.7. 设函数f(x)=sinxcosx -3cos(x +π)cosx(x ∈R). (1) 求f(x)的最小正周期;(2) 若函数y =f(x)的图象向右平移π4个单位后再向上平移32个单位得到函数y =g(x)的图象,求y =g(x)在⎣⎡⎦⎤0,π4上的最大值.8. 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.(1) 用d表示a1、a2,并写出an+1与an的关系式;(2) 若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m 表示).9. 已知函数f(x)=lnx-ax+1,a∈R是常数.(1) 求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(2) 证明函数y=f(x)(x≠1)的图象在直线l的下方;(3) 讨论函数y=f(x)零点的个数.10. 设数列{an}的前n项积为Tn,已知对n,m∈N*,当n>m时,总有TnTm=Tn-m·q(n-m)m(q>0是常数).(1) 求证:数列{an}是等比数列;(2) 设正整数k,m,n(k<m<n)成等差数列,试比较Tn·Tk和(Tm)2的大小,并说明理由.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 【热点题型】题型一 通过配凑法利用基本不等式求最值例1、(1)已知x<54,求f(x)=4x -2+14x -5的最大值;(2)已知x 为正实数且x2+y22=1,求x 1+y2的最大值; (3)求函数y =x -1x +3+x -1的最大值.【提分秘籍】(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【举一反三】(1)已知0<x<1,则x(3-3x)取得最大值时x 的值为( ) A.13B.12C.34D.23(2)若函数f(x)=x +1x -2(x>2)在x =a 处取最小值,则a 等于( )A .1+2B .1+3C .3D .4题型二 通过常数代换或消元法利用基本不等式求最值例2、(1)已知x>0,y>0且x +y =1,则8x +2y 的最小值为________. (2)已知x>0,y>0,x +3y +xy =9,则x +3y 的最小值为________. 【提分秘籍】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.【举一反三】(1)若两个正实数x ,y 满足2x +1y =1,并且x +2y>m2+2m 恒成立,则实数m 的取值范围是( ) A .(-∞,-2)∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2)(2)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. 题型三 基本不等式与函数的综合应用例3、(1)已知f(x)=32x -(k +1)3x +2,当x ∈R 时,f(x)恒为正值,则k 的取值范围是( ) A .(-∞,-1) B .(-∞,22-1) C .(-1,22-1) D .(-22-1,22-1) (2)已知函数f(x)=x2+ax +11x +1(a ∈R),若对于任意x ∈N*,f(x)≥3恒成立,则a 的取值范围是________.【提分秘籍】(1)a>f(x)恒成立⇔a>f(x)max , a<f(x)恒成立⇔a<f(x)min ;(2)求最值时要注意其中变量的条件,有些不能用基本不等式的问题可考虑利用函数的单调性. 【举一反三】 已知函数f(x)=x +px -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为________.题型四基本不等式的实际应用例4、某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2000元/m2;材料工程费在建造第一层时为400 元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.【提分秘籍】对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用基本不等式求最值.【举一反三】(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价p +q2%,若p>q>0,则提价多的方案是________.【高考风向标】1.【高考湖南,文7】若实数,a b 满足12ab a b+=,则ab 的最小值为( ) A 、2 B 、2 C 、22 D 、42b a =ab 2.【高考重庆,文14】设,0,5a b a b ,则1++3a b 的最大值为________.3.【高考福建,文5】若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .54.(·辽宁卷)对于c>0,当非零实数a ,b 满足4a2-2ab +4b2-c =0且使|2a +b|最大时,3a -4b +5c 的最小值为________.5.(·山东卷)若⎝⎛⎭⎫ax2+b x 6的展开式中x3项的系数为20,则a2+b2的最小值为________. 6.(·福建卷)要制作一个容积为4 m3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元7.(·重庆卷)若log4(3a +4b)=log2ab ,则a +b 的最小值是________.8.(·四川卷)已知F 为抛物线y2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是()A .2B .3 C.1728 D.109.(高考山东卷)设正实数x ,y ,z 满足x2-3xy +4y2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为()A .0 B.98 C .2 D.9410.(·重庆卷)(3-a )(a +6)(-6≤a≤3)的最大值为() A .9 B.92 C .3 D.3 22 【高考押题】1.下列不等式一定成立的是( ) A .lg(x2+14)>lgx(x>0) B .sinx +1sinx ≥2(x≠kπ,k ∈Z) C .x2+1≥2|x|(x ∈R) D.1x2+1>1(x ∈R) 2.若a>0,b>0,且ln(a +b)=0,则1a +1b 的最小值是( ) A.14B .1C .4D .83.已知x>0,y>0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .22C.2D .24.小王从甲地到乙地往返的时速分别为a 和b(a<b),其全程的平均时速为v ,则( ) A .a<v<abB .v =ab C.ab<v<a +b 2D .v =a +b25.设正实数x ,y ,z 满足x2-3xy +4y2-z =0.则当zxy 取得最小值时,x +2y -z 的最大值为( ) A .0B.98C .2D.94 6.若对于任意x>0,xx2+3x +1≤a 恒成立,则a 的取值范围是________.7.设x ,y ∈R ,且xy≠0,则(x2+1y2)(1x2+4y2)的最小值为________.8.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.9.(1)当x<32时,求函数y =x +82x -3的最大值;(2)设0<x<2,求函数y =x 4-2x 的最大值.10.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S的最大允许值是多少?为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。