高中物理 静电场及其应用精选测试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理静电场及其应用精选测试卷培优测试卷
一、第九章静电场及其应用选择题易错题培优(难)
1.如图所示,y轴上固定有两个电荷量相等的带正电的点电荷,且关于坐标原点O对称。

某同学利用电场的叠加原理分析在两电荷连线的中垂线(x轴)上必定有两个场强最强的点A、'A,该同学在得到老师的肯定后又在此基础上作了下面的推论,你认为其中正确的是()
A.若两个点电荷的位置不变,但电荷量加倍,则x轴上场强最大的点仍然在A、'A两位置
B.如图(1),若保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置
C.如图(2),若在yoz平面内固定一个均匀带正电圆环,圆环的圆心在原点O。

直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
D.如图(3),若在yoz平面内固定一个均匀带正电薄圆板,圆板的圆心在原点O,直径与(1)图两点电荷距离相等,则x轴上场强最大的点仍然在A、'A两位置
【答案】ABC
【解析】
【分析】
【详解】
A.可以将每个点电荷(2q)看作放在同一位置的两个相同的点电荷(q),既然上下两个点电荷(q)的电场在x轴上场强最大的点仍然在A、A'两位置,两组点电荷叠加起来的合电场在x轴上场强最大的点当然还是在A、A'两位置,选项A正确;
B.由对称性可知,保持两个点电荷的距离不变、并绕原点O旋转90°后对称的固定在z轴上,则x轴上场强最大的点仍然在A、'A两位置,选项B正确;
C.由AB可知,在yOz平面内将两点电荷绕O点旋转到任意位置,或者将两点电荷电荷量任意增加同等倍数,在x轴上场强最大的点都在A、A'两位置,那么把带电圆环等分成一些小段,则关于O点对称的任意两小段的合电场在x轴上场强最大的点仍然还在A、A'两位置,所有这些小段对称叠加的结果,合电场在x轴上场强最大的点当然还在A、A'两位置,选项C正确;
D.如同C选项,将薄圆板相对O点对称的分割成一些小块,除了最外一圈上关于O点对称的小段间距还是和原来一样外,靠内的对称小块间距都小于原来的值,这些对称小块的合电场在x轴上场强最大的点就不再在A、A'两位置,则整个圆板的合电场在x轴上场强最大的点当然也就不再在A、A'两位置,选项D错误。

故选ABC。

2.如图所示,在圆心为O 、半径为R 的圆周上等间距分布着三个电荷量均为q 的点电荷
a 、
b 、
c ,其中a 、b 带正电,c 带负电。

已知静电力常量为k ,下列说法正确的是
( )
A .a 2
3kq B .c 2
3kq
C .a 、b 在O 点产生的场强为
2
3kq
R
,方向由O 指向c D .a 、b 、c 在O 点产生的场强为22kq
R
,方向由O 指向c 【答案】BD 【解析】 【分析】 【详解】
AB .根据几何关系得ab 间、bc 间、ac 间的距离
3r R =
根据库仑力的公式得a 、b 、c 间的库仑力大小
22
223q q F k k r R
==
a 受到的两个力夹角为120︒,所以a 受到的库仑力为
2
23a q F F k R
==
c 受到的两个力夹角为60︒,所以c 受到的库仑力为
2
2
333c kq F F R
== 选项A 错误,B 正确;
C .a 、b 在O 点产生的场强大小相等,根据电场强度定义有
02
q E k
R =
a 、
b 带正电,故a 在O 点产生的场强方向是由a 指向O ,b 在O 点产生的场强方向是由
b 指向O ,由矢量合成得a 、b 在O 点产生的场强大小
2q E k R
=
方向由O →c ,选项C 错误;
D .同理c 在O 点产生的场强大小为
02q
E k R
=
方向由O →c
运用矢量合成法则得a 、b 、c 在O 点产生的场强
22q
E k R
'=
方向O →c 。

选项D 正确。

故选BD 。

3.如图()a 所示,光滑绝缘水平面上有甲、乙两个点电荷.0t =时,甲静止,乙以
6m /s 的初速度向甲运动.此后,它们仅在静电力的作用下沿同一直线运动(整个运动过程
中没有接触),它们运动的v t -图像分别如图()b 中甲、乙两曲线所示.则由图线可知( )
A .两电荷的电性一定相反
B .甲、乙两个点电荷的质量之比为2:1
C .在20t ~时间内,两电荷的静电力先减小后增大
D .在30t ~时间内,甲的动能一直增大,乙的动能先减小后增大 【答案】BD 【解析】 【详解】
A .由图象0-t 1段看出,甲从静止开始与乙同向运动,说明甲受到了乙的排斥力作用,则知两电荷的电性一定相同,故A 错误.
B .由图示图象可知:v 甲0=0m/s ,v 乙0=6m/s ,v 甲1=v 乙1=2m/s ,两点电荷组成的系统动量守恒,以向左为正方向,由动量守恒定律得:
+=+m v m v m v m v 甲甲0乙乙0甲甲1乙乙1
代入数据解得:
m 甲:m 乙=2:1
故B 正确;
C .0~t 1时间内两电荷间距离逐渐减小,在t 1~t 2时间内两电荷间距离逐渐增大,由库仑定律得知,两电荷间的相互静电力先增大后减小,故C 错误.
D .由图象看出,0~t 3时间内,甲的速度一直增大,则其动能也一直增大,乙的速度先沿原方向减小,后反向增大,则其动能先减小后增大,故D 正确.
4.如图甲所示,两点电荷放在x 轴上的M 、N 两点,电荷量均为Q ,MN 间距2L ,两点电荷连线中垂线上各点电场强度y E 随y 变化的关系如图乙所示,设沿y 轴正方向为电场强度的正方向,中垂线上有一点()
0,3P L ,则以下说法正确的是 ( )
A .M 、N 两点上的两等量点电荷是异种电荷,M 为正电荷,N 为负电荷
B .将一试探电荷-q 沿y 轴负方向由P 移动到O ,试探电荷的电势能一直减少
C .一试探电荷-q 从P 点静止释放,在y 轴上做加速度先变小后变大的往复运动
D .在P 点给一试探电荷-q 合适的速度,使其在垂直x 轴平面内以O 点为圆心做匀速圆周运动,所需向心力为2
34Qq
k L
【答案】BD 【解析】 【详解】
A .如果M 、N 两点上的两等量点电荷是异种电荷,则其中垂线是为等势线,故A 错误;
B .等量同种电荷连线中垂线上,从P 到O 电势升高,负电荷的电势能减小,故B 正确;
C .等量同种电荷连线中垂线上,从P 到O 电场线方向向上,试探电荷受的电场力沿y 轴向下,在y 轴上O 点下方,电场线方向沿y 轴向下,试探电荷受的电场力沿y 轴向上,由图乙可知,y 轴上电场强度最大点的位移在P 点的下方,所以试探电荷沿y 轴先做加速度增大,后做加速度减小的加速运动,在y 轴上O 点下方,做加速度先增大后减小的减速运动,故C 错误;
D .等量正电荷中垂面上电场方向背离圆心O ,所以负试探电荷受电场力作用以O 为圆心做匀速圆周运动,如图,由几何关系可知,P 到M 的距离为2L ,图中60θ︒=,由叠加原理可得,P 点的场强为
232sin 2
sin 60(2)P M kQ kQ E E L θ︒
===
所以电场力即为向心力为
3Qq
F k
= 故D 正确。

5.如图所示,在竖直放置的半径为R 的光滑半圆弧绝缘细管的圆心O 处固定一点电荷,将质量为m ,带电量为+q 的小球从圆弧管的水平直径端点A 由静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力,已知重力加速度为g ,则下列说法正确的是( )
A .小球在
B 2gR B .小球在B 2gR
C .固定于圆心处的点电荷在AB 弧中点处的电场强度大小为3mg/q
D .小球不能到达C 点(C 点和A 在一条水平线上) 【答案】AC 【解析】
试题分析:由A 到B ,由动能定理得:0
102
mgr mv =
-,解得2v gr A 正确,B 错误,在B 点,对小球由牛顿第二定律得:2
qE mg v m r
-=,将B 点的速度带入可得
3mg
E q
=
,C 正确,从A 到C 点过程中电场力做功为零,所以小球能到达C 点,D 错误, 考点:动能定理和牛顿定律综合的问题
点评:小球沿细管滑到最低点B 时,对管壁恰好无压力.并不是电场力等于重力,而是电场力与重力提供向心力去做圆周运动.当是点电荷的电场时,由于电场力与支持力均于速度方向垂直,所以只有重力做功.
6.真空中相距L的两个固定点电荷E、F所带电荷量大小分别是Q E和Q F,在它们共同形成的电场中,有一条电场线如图中实线所示,实线上的箭头表示电场线的方向.电场线上标出了M、N两点,其中N点的切线与EF连线平行,且∠NEF>∠NFE.则()
A.E带正电,F带负电,且Q E >Q F
B.在M点由静止释放一带正电的检验电荷,检验电荷将沿电场线运动到N点
C.过N点的等势面与EF连线垂直
D.负检验电荷在M点的电势能大于在N点的电势能
【答案】C
【解析】
【分析】
【详解】
根据电场线的指向知E带正电,F带负电;N点的场强是由E、F两电荷在N点产生场强的叠加,电荷E在N点电场方向沿EN向上,电荷F在N点产生的场强沿NF向下,合场强水平向右,可知F电荷在N点产生的场强大于E电荷在N点产生的场强,而,所
以由点电荷场强公式知,A错误;只有电场线是直线,且初速度为0或初
速度的方向与电场平行时,带电粒子的运动轨迹才与电场线重合.而该电场线是一条曲线,所以运动轨迹与电场线不重合.故在M点由静止释放一带正电的检验电荷,不可能沿电场线运动到N点,B错误;因为电场线和等势面垂直,所以过N点的等势面与过N点的切线垂直,C正确;沿电场线方向电势逐渐降低,,再根据,q为负电荷,知,D错误;故选C.
【点睛】
只有电场线是直线,且初速度为0或初速度的方向与电场平行时,带电粒子的运动轨迹才与电场线重合.电场线和等势面垂直.N点的切线与EF连线平行,根据电场线的方向和场强的叠加,可以判断出E、F的电性及电量的大小.先比较电势的高低,再根据,比较电势能.
7.如图所示,轻质弹簧一端系在墙上,另一端系在三根长度相同的轻绳上,轻绳的下端各系质量与电荷量均相同的带正电小球,且三个小球均处于静止状态,已知重力加速度为g。

四种情形下每个小球受到的电场力大小与轻绳长度、小球质量、小球电荷量的关系如表所示,以下说法正确的是()
情形 轻绳长度 小球质量 小球电荷量 小球受到的电场力大小
1
L
m

33mg 2 2L m ②
33
mg 3 L 2m ③ 23
3mg 4
L
m

3mg
A 2倍
B 2倍
C .④中电荷量为③中电荷量的
32
2
倍 D .情形④下弹簧的伸长量最大 【答案】C 【解析】 【分析】 【详解】
由于三个小球质量和电荷量均相等,由对称性可知,三个小球必构成等边三角形,且每个小球受到的电场力相等,设绳的拉力为T ,与竖直方向夹角为θ,两小球之间的距离为r 、一个小球受到另外两个小球的电场力的合力为F ,对其中一个小球受力分析可得
sin T mg θ=
2
2cos kq T θF r
==
解得
22tan kq mg
F r θ
==
由几何关系可知,
tan θ=
=整理得
22kq F r == A .对比①和②可知,并应用上式可得
21121kq F r ===
2
2222kq F r ===
解得
12
r L =
2r =
故电荷量之间的关系为
112212
q r q r == 故A 错误; B
.由③可知,
23323kq F r ===
解得
32
r L =

3222
q q == 故B 错误; C
.由④可知
24424kq F r ===
解得
432
r L =

44
33
332
22
q r
q r
==
故C正确;
D.以三个小球为整体可知,小球受到的弹力应该等于其重力,故小球质量越大,弹簧弹力越大,故情形③下弹簧的伸长量最大,故D错误;
故选C。

8.如图所示,a、b、c、d四个质量均为m的带电小球恰好构成“三星拱月”之形,其中a、b、c三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕O点做半径为R的匀速圆周运动,三小球所在位置恰好将圆周等分,小球d位于O点正上方h处,且在外力F作用下恰处于静止状态。

已知a、b、c三小球的电荷量均为q,d球的电荷量为-6q,2
h R
=,重力加速度为g,静电力常量为k,则()
A.小球a
2
3
kq
Rm
B.小球b
2
2
3
3
kq
R m
C.小球c
2
3kq
D.外力F
2
26kq
【答案】C
【解析】
【分析】
【详解】
A.通过分析,a、b、c一定带同种电荷,d与a、b、c一定带异种电荷,对小球a受力分析,在水平面上和竖直面分别如下图,小球最终的合力为
222
122
22
3
3
2
2
3
(3)3(3)
kq
F F F k k
R R
R R R
=-=-⋅=
合力提供小球做圆周运动的向心力,有
22
3kq v
m
R
可得233kq v mR
=
,A 错误;
B .合力提供小球做圆周运动的向心力,有
2
23kq m ωR 解得23
33kq ωmR
=
,B 错误;
C .合力提供小球做圆周运动的向心力,有
2
2
3=3kq ma R 解得2
3kq a =C 正确;
D .对d 球受力分析,由平衡条件得:
22223(2)3R
F mg R R R
=+
解得2
26kq mg F +=,D 错误。

故选C 。

9.一个带电量为+Q 的点电荷固定在空间某一位置,有一个质量为m 的带电小球(重力不能忽略)在+Q 周围作匀速圆周运动,半径为R 3g
(g 为重力加速度)。

关于带电小球带电情况,下列说法正确的是:
A .小球带正电,电荷量大小为2
83mgR B .小球带正电,电荷量大小为2
33mgR kQ
C .小球带负电,电荷量大小为 2
833mgR kQ
D.小球带负电,电荷量大小为
2
3mgR
【答案】C
【解析】
【详解】
由题意可知小球做匀速圆周运动,合力提供向心力,因中心电荷为+Q,做出运动图像如图所示:
可知要让小球做匀速圆周运动,即小球所受库仑力和重力的合力提供向心力,所以小球带负电;
由向心力公式可知:
3
F ma
==

设小球与点电荷连线与竖直方向夹角为θ,则有:
3
3
3
tan=
3
F
mg mg
θ==

所以θ=30°,根据几何关系有:
cos30
mg
F
=

sin30
R
L
=
根据库仑定律有:
2
qQ
F k
L
=

联立可得:
2
83
3
mgR
q
kQ
=
故C正确,ABD错误。

10.如图所示,光滑绝缘半球形的碗固定在水平地面上,可视为质点的带电小球1、2的电
荷分别为Q 1、Q 2,其中小球1固定在碗底A 点,小球2可以自由运动,平衡时小球2位于碗内的B 位置处,如图所示.现在改变小球2的带电量,把它放置在图中C 位置时也恰好能平衡,已知AB 弦是AC 弦的两倍,则( )
A .小球在C 位置时的电量是
B 位置时电量的一半 B .小球在
C 位置时的电量是B 位置时电量的四分之一
C .小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小
D .小球2在B 点对碗的压力大小大于小球2在C 点时对碗的压力大小 【答案】C 【解析】 【详解】
AB .对小球2受力分析,如图所示,小球2受重力、支持力、库仑力,其中F 1为库仑力F 和重力mg 的合力,根据三力平衡原理可知,F 1=F N .由图可知,△OAB ∽△BFF 1
设半球形碗的半径为R ,AB 之间的距离为L ,根据三角形相似可知,
1F mg F
OA OB AB
== 即
1F mg F
R R L
== 所以
F N =mg ①
L
F mg R
=
② 当小球2处于C 位置时,AC 距离为
2
L
,故 '1
2
F F =
, 根据库仑定律有:
2
A B
Q Q F k
L
=
'
2
1
()
2
A C
Q Q
F k
L
=
所以
1
8
C
B
Q
Q
=,
即小球在C位置时的电量是B位置时电量的八分之一,故AB均错误;
CD.由上面的①式可知F N=mg,即小球2在B点对碗的压力大小等于小球2在C点时对碗的压力大小,故C正确,D错误。

故选C。

11.如图所示,两个可视为质点的带同种电荷的小球a和b,放置在一个光滑绝缘半球面内,已知小球a和b的质量分别为m1、m2,电荷量分别为q1、q2,两球处于平衡状态时α<β.则以下判断正确的是
A.m1>m2B.m1<m2
C.q1>q2D.q1<q2
【答案】A
【解析】
【分析】
根据两小球处于平衡状态,通过对两个小球进行受力分析,进行正交分解后,列出关系式,即可解决问题。

【详解】
A和B小球受力分析如下,对小球A:
1
cos sin
F F
θα
=

11
sin cos
m g F F
θα
+=

对小球B:
2
cos sin
F F
θβ
=

22
sin cos
m g F F
θβ
+=

通过上式可知:
12
sin sin
F F
αβ
=,
由于αβ
<,则sin sin
αβ
<,所以
12
F F
>,由于cos cos
αβ
>,则有:
12
cos cos
F F
αβ
>
所以有:
12
sin sin
m g F m g F
θθ
+>+
库库
可推导出:12m m >,故选A 。

【点睛】
考察对物体的受力分析和正交分解的运用。

12.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处的电势为φ=k
q
r
(q 的正负对应φ的正负)。

假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )
A .若左右两部分的表面积相等,有12E E >,12ϕϕ>
B .若左右两部分的表面积相等,有12E E <,12ϕϕ<
C .不论左右两部分的表面积是否相等,总有12E E >,34E E =
D .只有左右两部分的表面积相等,才有12
E E >,34E E = 【答案】C 【解析】 【详解】
A 、设想将右侧半球补充完整,右侧半球在M 点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M 点的电场强度方向向左,根据对称性和矢量叠加原则可知,E 1方向水平向左,E 2方向水平向右,左侧部分在M 点产生的场强比右侧电荷在M 点产生的场强大,E 1>E 2,根据几何关系可知,分割后的右侧部分各点到M 点的距离均大于左侧部分各点到M 点的距离,根据k
q
r
ϕ=,且球面带负电,q 为负,得:φ1
<φ2,故AB 错误;
C 、E 1>E 2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M 、N 点的电场强度大小都相等,故左半球壳在M 、N 点的电场强度大小相等,方向相同,故C 正确,
D 错误。

13.如图所示,16个电荷量均为+q(q>0)的小球(可视为点电荷),均匀分布在半径为R 的圆周上若将圆周上P 点的一个小球的电荷量换成-2q ,则圆心 0点处的电场强度为
A .2
2kq
R ,方向沿半径向左 B .2
2kq
R ,方向沿半径向右 C .2
3kq
R ,方向沿半径向左 D .
2
3kq
R ,方向沿半径向右 【答案】D 【解析】
该点场强可以看成是与P 对称的那个电荷+q 和P 点的电荷-2q 在该点场强的叠加,根据点电荷的场强公式得+q 的点电荷在圆心O 点处的电场强度大小为2
q
k R ,方向向右,点电荷-2q 在圆心O 点处的电场强度大小为22q k R ,方向向右,所以叠加来是2
3q
k R ,方向沿半径
向右.故选择D.
【点睛】该题考查了场强叠加原理,还有对对称性的认识.由于成圆周对称性,所以如果没改变电荷之前肯定圆心处场强为0,而该点场强是所有电荷在该点场强的叠加,可以把这些电荷归为两类:一种是要移去的电荷,另一种是其他电荷.不管怎样,总之这两种电荷产生的合场强为0,所以只要算出改变的电荷在该点的场强和与它对称的电荷的场强即可得到.
14.如图所示,一倾角为30 的粗糙绝缘斜面固定在水平面上,在斜面的底端A 和顶端B 分别固定等量的同种负电荷。

质量为m 、带电荷量为−q 的物块从斜面上的P 点由静止释放,物块向下运动的过程中经过斜面中点O 时速度达到最大值v m ,运动的最低点为Q (图中没有标出),则下列说法正确的是( )
A .P 、Q 两点场强相同
B .U PO = U OQ
C .P 到Q 的过程中,物体先做加速度减小的加速,再做加速度增加的减速运动
D .物块和斜面间的动摩擦因数12
μ= 【答案】C 【解析】 【分析】 【详解】
ABD .物块在斜面上运动到O 点时的速度最大,加速度为零,又电场强度为零,所以有
sin30cos300mg mg μ︒-︒=
所以物块和斜面间的动摩擦因数为
3tan μθ==
由于运动过程中
sin30cos300mg mg μ︒-︒=
所以物块从P 点运动到Q 点的过程中受到的合外力为电场力,因此最低点Q 与释放点P 关于O 点对称,根据等量的异种点电荷周围电势的对称性可知,P 、Q 两点的电势相等,则有U OP = U OQ ,根据等量的异种点电荷产生的电场特征可知,P 、Q 两点的场强大小相等,方向相反,故ABD 错误;
C .根据点电荷的电场特点和电场的叠加原理可知,沿斜面从B 到A 电场强度先减小后增大,中点O 的电场强度为零。

设物块下滑过程中的加速度为a ,根据牛顿第二定律有
qE ma =
物块下滑的过程中电场力qE 先方向沿斜面向下逐渐减少后沿斜面向上逐渐增加,所以物块的加速度大小先减小后增大,所以P 到O 电荷先做加速度减小的加速运动,O 到Q 电荷做加速度增加的减速运动,故C 正确。

故选C 。

15.两个等量异种电荷A 、B 固定在绝缘的水平面上,电荷量分别为+Q 和-Q ,俯视图如图所示。

一固定在水平桌面的足够长的光滑绝缘管道与A 、B 的连线垂直,且到A 的距离小于到B 的距离,管道内放一个带负电小球P(可视为试探电荷),现将电荷从图示C 点静止释放,C 、D 两点关于O 点(管道与A 、B 连线的交点)对称。

小球P 从C 点开始到D 点的运动过程中,下列说法正确的是( )
A .先做减速运动,后做加速运动
B .经过O 点的速度最大,加速度也最大
C .O 点的电势能最小,C 、
D 两点的电势相同 D .C 、D 两点受到的电场力相同 【答案】C 【解析】 【分析】 【详解】
A .根据电场分布和力与运动的关系可知带电小球先做加速运动,后做减速运动,选项A 错误;
B .经过O 点的速度最大,沿着光滑绝缘管道方向上的加速度为零,选项B 错误;
C .带电小球P 在O 点的电势能最小,C 、
D 两点的电势相同,选项C 正确; D .C 、D 两点受到的电场力方向不同,故电场力不同,选项D 错误。

故选C 。

二、第九章 静电场及其应用解答题易错题培优(难)
16.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为
37︒。

该区间存在与轨道平面平行的水平向左的匀强电场。

一质量为m 、带正电的小球在
轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求: (1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。

【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】
【详解】 (1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r

= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
17.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .
(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .
①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;
②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.
【答案】(1) ①02GM a L =
②2T = (2) ①2
k k II =2ke E E r =Ⅰ
②T T ⅠⅡ
为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】
(1)①根据万有引力定律和牛顿第二定律有:2
002GM M a L
=
解得0
2
GM a L =
②由运动学公式可知,224π2
L
a T =⋅
解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿
第二定律有22
2ke mv r r
=
解得:2
2k 122ke E mv r
==Ⅰ
模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r 2.根据库仑定律和牛顿第二定律 对电子有:22121mv ke r r =,解得2
2k11121=22ke E mv r r
=
对于原子核有:2
2222=Mv ke r r ,解得22
k22221=22ke E Mv r r
=
系统的总动能:E k Ⅱ=E k1+ E k2=()22
12222ke ke r r r r
+=
即在这两种模型中,系统的总动能相等.
②模型Ⅰ中,根据库仑定律和牛顿第二定律有
22224πke m r r T =Ⅰ
,解得232
24πmr T ke =Ⅰ 模型Ⅱ中,电子和原子核的周期相同,均为T Ⅱ 根据库仑定律和牛顿第二定律
对电子有221224πke m r r T =⋅Ⅱ, 解得22
1224πke T r r m =Ⅱ
对原子核有222224πke M r r T =⋅Ⅱ, 解得222224πke T r r M
=Ⅱ
因r 1+r 2=r ,可解得:()
23
22
4πmMr T ke M m =+Ⅱ
所以有
T M m T M
+=Ⅰ
Ⅱ 因为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便.
18.如图所示,两异种点电荷的电荷量均为Q ,绝缘竖直平面过两点电荷连线的中点O 且与连线垂直,平面上A 、O 、B 三点位于同一竖直线上,AO BO L ==,点电荷到O 点的距离也为L 。

现有电荷量为q -、质量为m 的小物块(可视为质点),从A 点以初速度
0v 向B 滑动,到达B 点时速度恰好减为零。

已知物块与平面的动摩擦因数为μ。

求:
(1)A 点的电场强度的大小;
(2)物块运动到B 点时加速度的大小和方向; (3)物块通过O 点的速度大小。

【答案】(1)2Q
E k =;(2)2qkQ a g μ=-,方向竖直向上;(3)02
v = 【解析】 【分析】 【详解】
(1)正、负点电荷在A 点产生的场强
)
02
222Q
Q E k
k
L L
==
A 点的电场强度的大小
02
222kQ
E E L
==
(2)由牛顿第二定律得
qE mg ma μ-=
解得
2qkQ
a g μ=
-
方向竖直向上;
(3)小物块从A 到B 过程中,设克服阻力做功W f ,由动能定理得
201
202
f mgL W mv -=-
小物块从A 到O 过程中。

相关文档
最新文档