高中物理必修3物理 全册全单元精选试卷(提升篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修3物理全册全单元精选试卷(提升篇)(Word版含解析)
一、必修第3册静电场及其应用解答题易错题培优(难)
1.在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=
5×104N/C、方向水平向右的匀强电场中.已知A、B的质量分别为m A=0.1 kg和m B=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.
(1)求B所受静摩擦力的大小;
(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A 从M到N的过程中,B的电势能增加了ΔE p=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.
【答案】(1)f=0.4N (2)2.1336W
【解析】
试题分析:(1)根据题意,静止时,对两物体受力分析如图所示:
由平衡条件所得:
对A有:m A gsin θ=F T①
对B有:qE+f0=F T②
代入数据得f0=0.4 N ③
(2)根据题意,A到N点时,对两物体受力分析如图所示:
由牛顿第二定律得:
对A有:F+m A gsin θ-F′T-F k sin θ=m A a ④
对B有:F′T-qE-f=m B a ⑤
其中f=μm B g ⑥
F k =kx ⑦
由电场力做功与电势能的关系得ΔE p =qEd ⑧ 由几何关系得x =
-
⑨
A 由M 到N ,由v -v =2ax 得A 运动到N 的速度v =⑩
拉力F 在N 点的瞬时功率P =Fv ⑪ 由以上各式,代入数据P =0.528 W ⑫
考点:受力平衡 、牛顿第二定律、能量转化与守恒定律、功率
【名师点睛】静止时,两物体受力平衡,列方程求解.A 从M 到N 的过程中做匀加速直线运动,根据牛顿第二定律,可列出力的关系方程.根据能量转化与守恒定律可列出电场力做功与电势能变化的关系方程.根据匀加速直线运动速度位移公式,求出运动到N 的速度,最后由功率公式求出功率.
2.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:
(1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。
【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小.
小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r
︒= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
3.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于
8
3
gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83
mg ,从A 至C 小球克服库仑力做的功为
23
mgR -,重力加速度为g .求:
(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;
(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】
(1)由动能定理求出小球第一次到达B 点时的动能.
(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.
(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小
球返回A 点前瞬间对圆弧杆的弹力. 【详解】
(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:
()
02
11cos602
KB A mgR E mv --=-
代入数据解得:5
6
KB E mgR =
(2)小球第一次过A 时,由牛顿第二定律得:
22A v Qq
N k mg m R R
+-=
由题可知:8
3
N mg =
联立并代入数据解得:
2Qq
k
mg R
= 由几何关系得,OC 间的距离为:
cos30R r R =
=︒
小球在C 点受到的库仑力大小 :
22Qq Qq
F k
k r ==⎫⎪⎝⎭
库
联立解得3
=
4
F mg 库 (3)从A 到C ,由动能定理得:
2
102
f A W mgR W mv ---=-电
从C 到A ,由动能定理得:
212
f A W mgR W mv +=
'-电
由题可知:W =
电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:
22A v Qq
N k mg m R R
'-'+=
联立以上解得:
(
283
N mg -'=
,
根据牛顿第三定律得,小球返回A 点时,对圆弧杆的弹力大小为(
283
mg -,方向向
下.
4.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。
已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。
(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2
=G
M E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'
E 引,如果它们满足
'0.02E E E -≤引引
引
,则该空间就可以近似为匀强场,也就是我们常说的重力场。
请估算地
球重力场可视为匀强场的高度h (取地球半径R =6400km );
(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G M
r
ϕ引(以无穷远处引力势为0)。
请你设定物理情景,简要叙述推导该表达式的主要步骤。
【答案】(1)引力场强度定义式F
E m
=引,推导见解析;(2)h =64976m ;(3)推导见解析.
【解析】 【分析】 【详解】
(1)引力场强度定义式F E m
=
引 2Mm F G
r
= 联立得
2M E G
r =引 (2)根据题意
2M E G
R =引 '2
M E G r =引 '0.02E E E -=引引
引
h r R R =-=
解得
h =64976m
(3)定义式引力势=
p E m
ϕ引,式中p E 为某位置的引力势能
把某物体从无穷远移动到某点引力做的功
=0-=-p p W E E 引
即
=-p E W 引
则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得
0Mm
W G
r =引> 所以
=-p Mm
E G
r =-M G
r
ϕ引
5.如图所示,在绝缘水平面上,相距L 的A 、B 两点处分别固定着两个带电荷量相等的正点电荷,a 、b 是AB 连线上的两点,其中4
L
Aa Bb ==
,O 为AB 连线的中点,一质量为m 、带电荷量为+q 的小滑块(可以看作质点)以初动能E 从a 点出发,沿直线AB 向b 点运动,其中小滑块第一次经过O 点时的动能为初动能的n 倍(1)n >,到达b 点时动能恰好为零,小滑块最终停在O 点重力加速度为g ,求: (1)小滑块与水平面间的动摩擦因数; (2)O 、b 两点间的电势差; (3)小滑块运动的总路程.
【答案】(1)k02E mgL μ= (2)k0(21)2Ob n E U q -=- (3)21
4
n s L +=
【解析】 【详解】 (1)由4
L
Aa Bb ==,0为AB 连线的中点知a 、b 关于O 点对称,则a 、b 两点间的电势差0ab U =;
设小滑块与水平面间的摩擦力大小为f ,在滑块从a 点运动到b 点的过程中,由动能定理得
k002
ab L
qU f E -⋅
=- 又摩擦力
f m
g μ=
解得
2k E mgL μ=
. (2)在滑块从O 点运动到b 点的过程中,由动能定理得
004
ob k L
qU f nE -⋅
=- 解得
ko
(21)2ob n E U q
-=-
. (3)对于小滑块从a 开始运动到最终在O 点停下的整个过程,由动能定理得
000a x k qU f E -=-
又
(21)2kO
aO Ob n E U U q
-=-=
解得
21
4
n s L +=
.
6.如图所示,AB 为固定在竖直平面内粗糙倾斜轨道,BC 为光滑水平轨道,CD 为固定在竖直平面内的光滑圆弧轨道,且AB 与BC 通过一小段光滑弧形轨道相连,BC 与弧CD 相切。
已知AB 长为L =10m ,倾角θ=37︒,BC 长s =4m ,CD 弧的半径为R =2m ,O 为其圆心,∠COD =143︒。
整个装置处在水平向左的匀强电场中,电场强度大小为E =1×103N/C 。
一质量为m =0.4kg 、电荷量为q =+3×10 -3C 的物体从A 点以初速度v A =15m/s 沿AB 轨道开始运动。
若物体与轨道AB 间的动摩擦因数为μ=0.2,sin 37︒=0.6,cos 37︒=0.8,g =10m/s 2,物体运动过程中电荷量不变。
求:
(1)物体在AB 轨道上运动时,重力和电场力的合力对物体所做的总功; (2)物体在C 点对轨道的压力大小为多少;
(3)用物理知识计算物体能否到达D 点,若能算出通过D 点的速度;若不能说明理由。
【答案】(1)W =0(2)27N(3)物体能到达D 点 【解析】 【详解】
(1)物体所受重力和电场力的合力大小为
5N F ===
设合力F 与竖直方向的夹角为α,则
3
tan 4
qE mg α=
= 即
37α︒=
所以物体在轨道AB 上运动时,重力和电场力的合力与轨道AB 垂直,对物体做的总功为W =0;
(2) 从A →B 过程,根据受力分析可知,物体下滑过程受到的滑动摩擦力为:
f =μF N =μ(m
g cos 37︒+qE sin 37︒)
代入数据解得:
f =1N
A →C 过程,由动能定理得:
221122
C A W fL qEs mv mv --=
- 可得:222
115m /s C v =
在C 点,由重力和轨道支持力的合力提供向心力,由牛顿第二定律得:
2C
mv N mg R
-= 代入数据解得:
N =27N
(3)重力和电场力的合力为:
5N F ===
方向与竖直方向成37︒斜向左下方,所以D 点即为圆周运动中的等效最高点,物体到达D 点的最小速度设为v D ,则:
2D
v F m R
=
解得:
5m /s D v =
要到达D 点,在C 点速度至少为v ,从C →D ,由动能定理得
2211(cos37)cos3722
D mg R R qER mv mv ︒︒-+-=
-
解得:
222115m /s v =
则知v =v C ,所以物体恰能到达D 点
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.在空间中取坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,如图所示.一电子从静止开始经电压U 加速后,从y 轴上的A 点以平行于x 轴的方向射入第一象限区域,A 点与原点O 的距离为h .不计电子的重力.
(1)若电子恰好从N 点经过x 轴,求匀强电场的电场强度大小E 0;
(2)匀强电场的电场强度E 大小不同,电子经过x 轴时的坐标也不同.试求电子经过x 轴时的x 坐标与电场强度E 的关系.
【答案】(1)024Uh E d =(2)Uh
x E
=或22d Uh x Ed =+
【解析】 【分析】
本题考查电子在电场中的受力及运动 【详解】
设电子的电荷量为e 、质量为m ,电子经过电场加速后获得速度v 0.则
2
012
eU mv =
(1)电子从A 点运动到N 点,有
00d v t =
eE a m
=
212
h at =
联立解得电场强度大小
02
4Uh
E d =
(2)讨论两种情况: ①当2
4Uh
E d ≥
时,电子从电场内经过x 轴,有
0x v t =
eE a m
= 212
h at =
联立解得x 坐标与电场强度E 的关系为
2
Uh
x E
= ②当2
4Uh
E d <
时,电子先离开电场,之后再经过x 轴在电场内运动时间为t 1,有 01d v t =
21112
y at =
1y v at =
在电场外运动时间为t 2,电子做匀速直线运动,有
02x d v t -=
12y h y v t -=
联立解得x 坐标与电场强度E 的关系为
22d Uh x Ed
=
+
8.图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成。
质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴)。
液滴开始下落时相对于地面的高度为h 。
设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g 。
若容器初始电势为零,求容器可达到的最高电势max V 。
【答案】max ()
mg h R V q
-= 【解析】 【详解】
设在某一时刻球壳形容器的电量为Q 。
以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器G 出口自由下落到容器口的过程。
根据能量守恒有
2122Qq Qq
mgh k
m mgR k h R R
+=++-v (1) 式中,v 为液滴在容器口的速率,k 是静电力常量。
由此得液滴的动能为
21(2)(2)2()Qq h R m mg h R k h R R
-=---v (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有
max (2)
(2)0()Q q h R mg h R k
h R R
---=-(3)
由此得
max ()mg h R R
Q kq
-=
(4) 容器的最高电势为
max
max Q V k
R
=(5) 由(4)和(5)式得
max ()
mg h R V q
-=
(6)
9.山地滑雪是人们喜爱的一项运动,一滑雪道ABC 的底部是一半径为R 的圆,圆与雪道相切于C 点,C 点的切线水平,C 点与水平雪地间距离为H ,如图所示,D 是圆的最高点,一运动员从A 点由静止下滑,刚好能经过圆轨道最高点D 旋转一周,再经C 后被水平抛出,当抛出时间为t 时,迎面水平刮来一股强风,最终运动员以速度v 落到了雪地上,已知运动员连同滑雪装备的总质量为m ,重力加速度为g ,不计遭遇强风前的空气阻力和雪道及圆轨道的摩擦阻力,求:
(1)A 、C 的高度差为多少时,运动员刚好能过D 点? (2)运动员刚遭遇强风时的速度大小及距地面的高度; (3)强风对运动员所做的功.
【答案】(1)52R h =
(2)1v =;2
212
h h gt =- (3)215
()22
W mv mg H R =
-+ 【解析】 【分析】 【详解】
(1)运动员恰好做完整的圆周运动,则在D 点有:mg =m 2
D
v R
从A 运动到D 的过程由动能定理得mg(h -2R)=12
mv 2D 联立解得h =
52
R . (2)运动员做平抛运动,运动时间t 时在竖直方向的速度为v y =gt ,从A 到C 由动能定理得
52
mgR =12mv 2C
所以运动员刚遭遇强风时的速度大小为v 1此时运动员下落高度为h 1=
12
gt 2
所以此时运动员距地面高度为h 2=H -h 1=H -
12
gt 2 (3)设强风对运动员所做的功为W ,在运动员的整个运动过程中,由动能定理知 W =
12mv 2-mg 52H R ⎛
⎫+ ⎪⎝
⎭.
10.如图所示,真空室中电极K 发出的电子(初速度不计)经过电势差为U 1的加速电场加速后,沿两水平金属板C 、D 间的中心线射入两板间的偏转电场,电子离开偏转电极时速度方向与水平方向成45°,最后打在荧光屏上,已知电子的质量为m 、电荷量为e ,C 、D 极板长为l ,D 板的电势比C 板的电势高,极板间距离为d ,荧光屏距C 、D 右端的距离为
1
6
.电子重力不计.求:
(1)电子通过偏转电场的时间t 0; (2)偏转电极C 、D 间的电压U 2; (3)电子到达荧光屏离O 点的距离Y . 【答案】(1)12m l eU (2)
12d U l (3)2
3
l 【解析】 【分析】 【详解】
(1)电子在离开B 板时的速度为v ,根据动能定理可得:2
112
eU mv = 得:1
2eU v m
=
电子进入偏转电场水平方向做匀速直线运动,则有:01
2l m t l v eU == (2)电子在偏转电极中的加速度:1
eU a md
=
离开电场时竖直方向的速度:201
2y U l e
v at d
mU == 离开电场轨迹如图所示:
电子的速度与水平方向的夹角:21
tan 45?=2y v U l
v
dU =
解得:1
22dU U l
=
(3)离开电场的侧向位移:21012
y at =
解得:12
l y =
电子离开电场后,沿竖直方向的位移:2tan 45=66
l l y =
︒ 电子到达荧光屏离O 点的距离:122
3
Y y y l =+= 【点睛】
本题考查带电粒子在电场中的运动,要注意明确带电粒子的运动可分加速和偏转两类,加速一般采用动能定理求解,而偏转采用的方法是运动的合成和分解.
11.如图所示,竖直面内的光滑绝缘轨道,处于竖直向下的匀强电场中.一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道滑下,已知小球的质量为m ,电荷量为-q ,匀强电场的场强大小为E ,斜轨道的倾角为α,圆轨道半径为R ,斜轨道与圆轨道平滑连接,小球的重力大于所受的电场力.
(1) 求小球沿轨道滑下的加速度的大小;
(2) 若使小球通过圆轨道顶端的B 点,求A 点距圆轨道最低点的竖直高度h 1至少为多大; (3) 若小球从距圆轨道最低点的竖直高度h 2=5R 处由静止释放,假设其能通过圆轨道顶端B 点,求从释放到B 点的过程中小球机械能的改变量. 【答案】(1)-mg qE sin m α
()(2)52
R (3)减少3qER .
【解析】 【详解】
(1)由牛顿第二定律有
(mg -qE )sin α=ma
解得
a =
-mg qE sin m
α
()
(2)球恰能过B 点有:
mg -qE =m 2B
v R
①
由动能定理,从A 点到B 点过程,则有:
2
112()()02
B mg qE h R mv ---=②
由①②解得
h 1=
52
R . (3)从释放到B 的过程中,因电场力做的总功为负功,电势能增加,则增加量:
ΔE =qE (h 2-2R )=qE (5R -2R )=3qER .
由能量守恒定律得机械能减少,且减少量为3qER . 答案:(1)
-mg qE sin m α
()(2)52
R (3)减少3qER .
12.如图甲所示,A 、B 为两块相距很近的平行金属板,A 、B 间电压为0AB U U =-,紧贴A 板有一电子源随时间均匀地飘出质量为m ,带电量为e 的电子(可视为初速度为零)。
在B 板右侧两块平行金属板M 、N 间加有如图乙所示的电压,电压的变化周期
2m
T L
eU =,板间中线与电子源在同意以水平线上,极板长L ,距偏转右边缘s 处有荧光屏,已知18
T
t =
时刻沿中线射入偏转极板间的电子恰好能射出偏转极板,假定金属外无电场,打在极板上的电子均被极板吸收,荧光屏足够大,试求:
(1)电子进入偏转极板时的速度; (2)4
T
t =
时刻沿中线射入偏转板间的电子刚出偏转板时与板间中线的距离; (3)经足够长时间t (t 远大于T )打到荧光屏上的电子数与电子源发射的电子数之比; (4)电子打在荧光屏上的范围(打在荧光屏最上端和最下端的长度)。
【答案】(1)0
02eU v m
=2)0(3)1732(4)38L
【解析】 【详解】
(1)由动能定理有
2
0012
e mv U =
, 即
02eU v m
=
(2)由
0L v t =
有:
0L t T v =
== 电子在电场方向先加速再减速,然后反向加速再减速,各段位移大小相等,故一个周期内,侧位移为零,电子在电场运动的两个周期内侧向位移也为零. (3)设两极板间距为d ,
eU a dm
=
, 若18
T
t =
时刻沿中线射入偏转板间的电子恰好能射出偏转极板(不打上极板),那么 2211132()2()22228
d T T
a t a =⨯-=⨯, 解得
3
8
d L =
设2t 时刻射入的电子恰好打不到下极板,则
22221122()2222
d T at a t =⨯-⨯- 经时间t (t >>T )打到荧光屏上的电子数与电子源发射的电子数之比
2117
322
t t k T -=
= (4)因为电子射出偏转板时,竖直方向速度为0,所以荧光屏上的范围
3
8
Y d L ==
三、必修第3册 电路及其应用实验题易错题培优(难)
13.小敏要将一量程为250μA 的微安表改装成量程为5V 的电压表。
由于微安表内阻未知,小敏先用多用电表粗测得其内阻约为1100Ω。
现有如下器材: A .待改装的微安表 B .标准电压表
C .电阻箱(0~99999. 9Ω)
D .滑动变阻器(0~10Ω) E. 学生电源 F.开关,导线若干
(1)按粗测的微安表内阻进行电压表改装,应将电阻箱阻值调节为_________Ω;
(2)
改装完成后,小敏利用上述器材设计了电路进行校准,请完成校准电路的实物图连线; (____)
(3)当标准电压表的示数为5. 00V 时,微安表的指针位置如图所示。
由此可以推测出所改装的电压表量程不是预期的5V ,而是______V (保留两位有效数字),导致该误差产生的原因可能是_________;
A .微安表的实际内阻大于所测得的1100Ω
B .微安表的实际内阻小于所测得的1100Ω
(4)要达到预期目的,不必再设计实验精确测量微安表的内阻,只需将电阻箱的阻值调整为______Ω即可。
【答案】18900 见解析 5.1 A 18500 【解析】 【分析】 【详解】
(1)[1]将电阻箱与微安表串联,电阻箱阻值
5V 1100Ω18900Ω250μA
g U R r I =
-=-= (2)[2]将改装的电压表与标准电压表并联,接入电路,滑动变阻器采用分压式接法,可以测量多组数据,连接电路如图所示
(3)[3]图中微安表示数为245μA 时电压表示数为5V ,因此满天偏时对应的电压值应为其电压表量程
245μA 5V
=250μA U
可求得量程为
5.1V U =
[4](4)由于加上相同的电压,电流小于预期值,一定是电阻偏大,而电阻箱调整没问题,一定是微安表内阻大于1100Ω,A 正确,B 错误。
故选A 。
[5]改装表的阻值减小量应为
5V 5V
400245μA 250μA
R ∆=
-=≈Ω 因此将电阻箱阻值减小为
18900Ω-400Ω=18500Ω
14.某小组设计实验对电流表内阻进行测量,电路如图甲,其中 A 1是标准电流表(量程 100mA ,内阻约15Ω),电流表A 2(量程略小于 100mA ,内阻约 18Ω)表刻度盘刻度完整但缺少刻度值。
R 1、R 2为电阻箱,实验步骤如下:
①使用螺丝刀,调整A 2机械调零旋钮,使指针指向“0”刻度; ②分别将 R 1和 R 2的阻值调至最大
③断开S 2,合上开关 S 1,调节 R 1 使A 2的指针达到满偏刻度,记下此时A 1的示数I 0 ④开关S 2 接到1,反复调节R 1和R 2,使A 1的示数仍为I 0,记录不同R 2 阻值和对应电流表A 2示数为I 0的 n 倍(n<1)即 n I 0。
⑤做出 n -1—R -1 图象,如图乙所示。
(1)根据图甲和题给条件,将图丙中的实物连线补充完整; (____)
(2)电流表A 2的量程为______(用所测物理量表示);根据图象可计算电流表A 2内阻为_____Ω;(保留两 位有效数字)
(3)一同学认为该电路可以进一步测量电流表A 1内阻,他把单刀双掷开关接到2,调整电阻箱 R 1 和 R 2阻值,使电流表A 1和电流表A 2示数恰当,并分别记下电流表示数 I 1,I 2 ,请用
R1、R2、I1和I2表示电流表 A1内阻R=_____________________________________ 。
【答案】I0202212
1
I
R R R
I
--
【解析】
【分析】
【详解】
(1)[1].电路连线如图:
(2) [2].使A2的指针达到满偏刻度时,此时A1的示数I0,可知电流表A2的量程为I0;
[3].根据电路的结构可得
2
2
00
2
A
R
nI I
R R
=
+
可得
2
2
1
1
A
R
n R
=+
所以11
n R
--
-图象斜率表示A2内阻,内阻为
2
2.0 1.0
20
0.05
A
R k
-
==Ω=Ω;
(3)[4].当单刀双掷开关接到2,根据并联关系
12
211
I R
I I R R
=
-+
所以
2
212
1
I
R R R R
I
=--
15.现要绘制一个额定电压2.5V、额定功率约0.7W的小灯泡的伏安特性曲线.
⑴为使绘制的图线更加准确,选择了合适的器材,如图所示.请在图甲中连好实物电路图______.
⑵合上开关前,滑动变阻器的滑动触头应置于滑动变阻器的______(填“左端”或“右端”).
⑶根据实验数据,描绘出的U-I图象如图乙所示,某同学将该小灯泡连接在一个电动势为
3.0V、内电阻为6Ω的电源上,组成一个闭合电路,则此时该小灯泡实际功率约为
________W.(结果保留两位有效数字)
【答案】左端0.38W
【解析】
【分析】
【详解】
(1)[]1如下图所示,
因小灯泡的内阻较小,电流表采用外接法,要绘制小灯泡的伏安特性曲线,为使绘制的图线更加准确,需要多组电压、电流的实验数据,因此滑动变阻器需要分压式接法,所以实物电路图的连接如上图。
(2)[]2合上开关前,首先检查电路连接是否正确,无误后,为保证实验安全,并且使小灯
泡上的电压从零开始变化,滑动变阻器的滑动触头应先置于滑动变阻器的左端。
(3)[]3将该小灯泡连接在一个电动势为3.0V 、内电阻为6Ω的电源上,因该电路的短路电流是0.5A,其U —I 图线如上图直线,两图线的交点坐标,就是小灯泡在电路中的实际工作电压和电流,由上图线得数据:1U =1.6V 1I =0.24A,据电功率公式得
111P U I ==0.38W
故小灯泡实际功率约为0.38W
16.在研究金属电阻阻值与温度的关系时,为了能够较准确地测出金属电阻的阻值,设计了如图所示的电路。
除了金属电阻x R 外,还提供的实验器材有:学生电源E ,灵敏电流计G 。
滑动变阻器R 、R S ,,定值电阻R 1、R 2,电阻箱R 0,开关S ,控温装置,导线若干。
①按照电路图连接好电路后,将R 0调至适当数值,R 的滑片调至最右端。
R S 的滑片调至最下端,闭合开关S ;
②把R 的滑片调至适当位置,调节R 0,并逐步减小R S 的阻值,直到R S 为零时,电流计G 指针不发生偏转,记录R 0的阻值和R x 的温度; ③多次改变温度,重复实验; ④实验完毕,整理器材。
根据上述实验回答以下问题:
(1)上述②中,电流计G 指针不发生偏转时,a 点电势_________(选填“大于”“等于”或“小于”)b 点电势。
(2)用R 0、R 1、R 2表示R x ,R x =_________ (3)本实验中R s 的作用为_________
(4)若只考虑系统误差,用该方法测得的R x 的阻值_________(选填“大于”“等于”或“小于”)R x 的真实值。
【答案】等于
1
02
R R R 保护电流计 等于 【解析】 【分析】 【详解】
[1]当电流计阻值不偏转时,没有电流流过电流计,电流计两端电势相等,即a 点电势等于b 点电势。
[2]电流计指针不偏转,没有电流流过电流计,电桥平衡,由此可知
12
x R R R R = 解得
1
02
x R R R R =
[3]本实验中R s 的作用是保护电流计。
[4]若只考虑系统误差,用该方法测得的R x 的阻值等于R x 的真实值。
17.(1)某同学欲将量程为200μA 的电流表G 改装成电压表.
①该同学首先采用如图所示的实验电路测量该电流表的内阻R g ,图中R 1、R 2为电阻箱.他按电路图连接好电路,将R 1的阻值调到最大,闭合开关S 1后,他应该正确操作的步骤是_____.(选出下列必要的步骤,并将其序号排序) a .记下R 2的阻值
b .调节R 1的阻值,使电流表的指针偏转到满刻度
c .闭合S 2,调节R 1和R 2的阻值,使电流表的指针偏转到满刻度的一半
d .闭合S 2,保持R 1不变,调节R 2的阻值,使电流表的指针偏转到满刻度的一半 ②如果按正确操作步骤测得R 2的阻值为500Ω,则R g 的阻值大小为____;(填写字母代号)
A .250Ω
B .500Ω
C .750Ω
D .1000Ω
③为把此电流表G 改装成量程为2.0V 的电压表,应选一个阻值为____Ω的电阻与此电流表串联.
【答案】bda B 9500 【解析】 【分析】 【详解】
①[1].该题是使用半偏法测电流表的内阻,故调节R 1的阻值,先使电流表的指针偏转到满
刻度,然后再闭合
S 2,保持R 1不变,调节R 2的阻值,使电流表的指针偏转到满刻度的一半,故操作顺序为bda ;
②[2].此时R 2的阻值与R g 的阻值相等,故R g 的阻值大小也为500Ω,故B 正确,ACD 错误,故选B ;
③[3].电流表G 满偏时的两端电压为
U g =200×10-6A×500Ω=0.1V
改装成量程为2.0V 的电压表时,串联电阻的电压应该为2.0V -0.1V=1.9V ,电流为I g =200μA ; 故串联电阻的大小为
9500V g
g
U U R I -=
=Ω .
18.在“测定金属的电阻率”的实验中,用螺旋测微器测量金属丝直径d 时的刻度位置如图所示,用米尺测出金属丝的长度L ,金属丝的电阻大约为5 Ω,用伏安法测出金属丝的电阻R ,然后由S
R
L
ρ= 算出该金属材料的电阻率.
(1)从图中读出金属丝的直径d = _______mm.
(2) (i )为测金属丝的电阻, 取来两节新的干电池、开关和若干导线及下列器材: ①电压表0~3 V ,内阻10 kΩ ②电压表0~15 V ,内阻50 kΩ ③电流表0~0.6 A ,内阻0.05 Ω ④电流表0~3 A ,内阻0.01 Ω ⑤滑动变阻器0~10 Ω ⑥滑动变阻器0~100 Ω (3)下列说法正确的是(___________) A .电压表应选用器材① B .电流表应选用器材④ C .实验时通电时间不宜过长 D .d 值只需在金属丝中央测量一次即可。