08高考理科数学函数与导数检测题

合集下载

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数2008年高考数学试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y =的定义域为( C ) A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一6)若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e -B .2x eC .21x e +D .22x e +4.(全国一7)设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2B .12C .12-D .2-5.(全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D )A .(10)(1)-+∞,, B .(1)(01)-∞-,, C .(1)(1)-∞-+∞,, D .(10)(01)-,, 6.(全国二3)函数1()f x x x=-的图像关于( C ) A .y 轴对称B . 直线x y -=对称ABCDC . 坐标原点对称D . 直线x y =对称8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a9.(北京卷2)若0.52a =,πlog 3b =,22πlog sin 5c =,则( A )A .a b c >>B .b a c >>C .c a b >>D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.(四川卷10)设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D )(A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C )(A)13 (B)2 (C)132 (D)21313.(天津卷3)函数1y =04x ≤≤)的反函数是A(A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤)(C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤)14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。

【VIP专享】2008年高考数学试题分类汇编——函数与导数

【VIP专享】2008年高考数学试题分类汇编——函数与导数

A. a b c
B. b a c
11.(北京卷 5)函数 f (x) (x 1)2 1(x 1) 的反函数为( B )
A. f 1(x) 1 x 1(x 1)
C. f 1(x) 1 x 1(x ≥1) D. f 1(x) 1 x 1(x ≥1)
12.(福建卷 11)如果函数 y=f(x)的图象如右图,那么导函数 y=f(x)的图象可能是 A
s
O
A

tO
s
B.
3.(全国一 4)曲线 y x3 2x 4 在点 (1,3) 处的切线的倾斜角为(
A.30°
B.45°
C.60°
tO
4.(全国一 8)若函数 y f (x) 的图象与函数 y ln x 1的图象关于直线 y x 对称,
则 f (x) ( A )
A. e2x2
B. e2x
一. 选择题:
2008 年高考数学试题分类汇编 函数与导数
1.(全国一 1)函数 y 1 x x 的定义域为( D )
A.{x | x ≤1}
C.{x | x ≥或1 ≤x 0}
B.{x | x ≥ 0}
D.{x | 0 ≤≤x 1}
2.(全国一 2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一 过程中汽车的行驶路程 s 看作时间 t 的函数,其图像可能是( A )
D.120°
D.
s
tO
D

D. b < c < a
t
B)
A. f 1(x) 1 x 1(x 1)
C. f 1(x) 1 x 1(x 2)
9.(安徽卷 9).设函数 f (x) 2x 1 1(x 0), 则 f (x) ( A ) x

2008高考试卷分类汇编02----函数与导数2

2008高考试卷分类汇编02----函数与导数2

2008高考试卷分类汇编02----函数与导数2三、解答题80.(安徽理20)(本小题满分12分) 设函数1()(01)ln f x x x x x=>≠且(Ⅰ)求函数()f x 的单调区间;(Ⅱ)已知12ax x >对任意(0,1)x ∈成立,求实数a 的取值范围。

解 (Ⅰ) '22ln 1(),ln x f x x x+=-若 '()0,f x = 则 1x e=列表如下(Ⅱ) 在 12ax x > 两边取对数, 得1ln 2ln a x x>,由于01,x <<所以1ln 2ln a x x>(*)由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e≤=-,为使(*)式对所有(0,1)x ∈成立,当且仅当ln 2a e >-,即ln 2a e >-设函数323()(1)1,32a f x x x a x a =-+++其中为实数。

(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。

解: (1)'2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 '(1)0f = 即 310,1a a a -++==∴ (2) 方法一由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 220x x --≥,20x -≤≤∴, 于是x 的取值范围是}{|20x x -≤≤ 方法二由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立 于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22202x x x +≤+20x -≤≤∴, 于是x 的取值范围是}{|20x x -≤≤已知函数22()(1)x b f x x -=-,求导函数()f x ',并确定()f x 的单调区间.解:242(1)(2)2(1)()(1)x x b x f x x ----'=- 3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减. 当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;(Ⅱ)求函数()f x 的单调区间.解:(Ⅰ)因为函数()()2g x f x =-为奇函数,所以,对任意的x ∈R ,()()g x g x -=-,即()2()2f x f x --=-+.又32()3f x x ax bx c =+++所以32323232x ax bx c x ax bx c -+-+-=----+. 所以22a a c c =-⎧⎨-=-+⎩,.解得02a c ==,.(Ⅱ)由(Ⅰ)得3()32f x x bx =++.所以2()33(0)f x x b b '=+≠. 当0b <时,由()0f x '=得x =x 变化时,()f x '的变化情况如下表:所以,当0b <时,函数()f x 在(-∞-,上单调递增,在(上单调递减,在)+∞上单调递增.当0b >时,()0f x '>,所以函数()f x 在()-∞+∞,上单调递增.已知函数321()23f x x x =+-.(Ⅰ)设}{n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-(n ∈N*)在函数'()y f x =的图象上,求证:点(,)n n S 也在'()y f x =的图象上; (Ⅱ)求函数()f x 在区间(1,)a a -内的极值.解:(Ⅰ)证明: 因为321()2,3f x x x =+-所以'2()2f x x x =+,由点211(,2)(N )n n n a a a n +++-∈在函数'()y f x =的图象上,221122n n n n a a a a ++-=+ 所以12n n a a +-=,}{n a 是13,2a d ==的等差数列 所以2(1)32=22n n n S n n n -=+⨯+,又因为'2()2f n n n =+,所以()n S f n '=,故点(,)n n S 也在函数'()y f x =的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,令()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.已知函数()ln(1)f x x x =+- (Ⅰ)求()f x 的单调区间;(Ⅱ)记()f x 在区间[]0,n (n ∈N*)上的最小值为n b 令ln(1)n n a n b =+- ①如果对一切nc <c 的取值范围;②求证:1313211224242 1.n na a a a a a a a a a a a -+++<解:(I )因为()ln(1)f x x x =+-,所以函数定义域为(1,)-+∞,且'1()111x f x xx-=-=++。

2008年高考数学导数汇编答案

2008年高考数学导数汇编答案

参考答案 1.解(1)'22ln 1(),x f x +=-若 '()0,f x =则1x =列表如下(2)在12ax x > 两边取对数, 得1ln 2ln a x x>,由于01,x <<所以1ln 2ln a x x>(1)由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e≤=-, 为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2a e >-,即ln 2a e >-2.解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a xx =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤.当103a <<时,令()sin 3h x x ax =-,则()c o s 3h x x a'=-.故当[)0arccos 3x a ∈,时,()0h x '>.因此()h x 在[)0arccos 3a ,上单调增加.故当(0arccos 3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos 3)x a ∈,时,sin sin ()2cos 3x x f x ax x=>>+.当0a ≤时,有π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥.因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.3.解:(Ⅰ)因为2(),()2.f x a x b x cf x a x b '=++=+所以又因为曲线()y f x =通过点(0,2a +3),故(0)23,(0),2 3.f a f c c a =+==+而从而又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-=即-2a +b =0,因此b=2a .(Ⅱ)由(Ⅰ)得2392(23)4(),44bc a a a =+=+-故当34a =-时,bc 取得最小值-94.此时有33,.22b c =-=从而233333(),(),42222f x x x fx x '=--+=--2333()()()422x xg x f x c x x e--=-=+-所以23()(()()(4).4xxg x f x f x e x e--''=-=--令()0g x '=,解得122, 2.x x =-= 当(,2),()0,()(,2)x g x g x x '∈-∞-<∈-∞-时故在上为减函数; 当(2,2)()0,()(2,).x g x g x x '∈->∈+∞时,故在上为减函数 当(2,)()0()(2,)x g x g x x '∈+∞<∈+∞时,,故在上为减函数.由此可见,函数()g x 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).4.解:242(1)(2)2(1)()(1)x x b x f x x ----'=- 3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-.当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减. 当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.5.(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x ,由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,得221122n n n n a a a a ++-=+,即11()(2)0,n n n n a a a a -+---=又0(N ),n a n +>∈所以12n n a a +-=,又因为13a =,所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=,故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,由()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表: 注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.6.解1,1,1()(),1,kx x xF x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩,21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪≥⎪⎩对于1()(1)1F x kx x x=-<-,当0k ≤时,函数()F x 在(,1)-∞上是增函数;当0k >时,函数()F x在1(,1-∞-上是减函数,在(1-上是增函数;对于()(1)F x k x =-≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数;当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。

福建历年高考理科数学试题及答案汇编十二函数和导数

福建历年高考理科数学试题及答案汇编十二函数和导数

福建历年高考理科数学试题及答案汇编十二函数和导数试题1、4.(5分)(2008福建)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣22、9.(5分)(2008福建)函数f(x)=cosx(x∈R)的图象按向量(m,0)平移后,得到函数y=﹣f′(x)的图象,则m的值可以为()A.B.πC.﹣π D.﹣3、12.(5分)(2008福建)已知函数y=f′(x),y=g′(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()A.B.C.D.4.(5分)(2009福建)(1+cosx)dx等于()A.πB.2 C.π﹣2 D.π+25、5.(5分)(2009福建)下列函数f(x)中,满足“对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)的是()A.f(x)=B.f(x)=(x﹣1)2C.f(x)=e x D.f(x)=ln(x+1)6、10.(5分)(2009福建)函数f(x)=ax2+bx+c(a≠0)的图象关于直线对称.据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程m[f(x)]2+nf(x)+p=0的解集都不可能是()A.{1,2} B.{1,4} C.{1,2,3,4} D.{1,4,16,64}7、14.(4分)(2009福建)若曲线f(x)=ax2+lnx存在垂直于y轴的切线,则实数a的取值范围是.8、4.(5分)(2010福建)函数的零点个数为()A.3 B.2 C.1 D.09、10.(5分)(2010福建)对于具有相同定义域D的函数f(x)和g(x),若存在函数h (x)=kx+b(k,b为常数)对任给的正数m,存在相应的x0∈D使得当x∈D且x>x0时,总有,则称直线l:y=ka+b为曲线y=f(x)和y=g(x)的“分渐进线”.给出定义域均为D={x|x>1}的四组函数如下:①f(x)=x2,g(x)=②f(x)=10﹣x+2,g(x)=③f(x)=,g(x)=④f(x)=,g(x)=2(x﹣1﹣e﹣x)其中,曲线y=f(x)和y=g(x)存在“分渐近线”的是()A.①④ B.②③ C.②④ D.③④10、15.(4分)(2010福建)已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时f(x)=2﹣x给出结论如下:①任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k﹣1,2k).其中所有正确结论的序号是.11、5.(5分)(2011福建)(e x+2x)dx等于()A.1 B.e﹣1 C.e D.e2+112、9.(5分)(2011福建)对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(﹣1),所得出的正确结果一定不可能是()A.4和6 B.3和1 C.2和4 D.1和213、10.(5分)(2011福建)已知函数f(x)=e x+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:①△ABC一定是钝角三角形;②△ABC可能是直角三角形;③△ABC可能是等腰三角形;④△ABC不可能是等腰三角形.其中,正确的判断是()A.①③ B.①④ C.②③ D.②④.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z).x2+1≥2|x|(x∈R)D.(x∈R)好取自阴影部分的概率为().B.C.D.16、7.(5分)(2012福建)设函数,则下列结论错误的是()A.D(x)的值域为{0,1} B.D(x)是偶函数17、10.(5分)(2012福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]18、15.(4分)(2012福建)对于实数a和b,定义运算“*”:a*b=设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是.19、8.(5分)(2013福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,20、10.(5分)(2013福建)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)2a数图象正确的是().B.C.D.22、7.(5分)(2014福建)已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数.y=B.B.C.D.25、14.(4分)(2015福建)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是.解答题1、19.(12分)(2008福建)已知函数.(Ⅰ)设{a n}是正数组成的数列,前n项和为S n,其中a1=3.若点(a n,a n+12﹣2a n+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,S n)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a﹣1,a)内的极值.2、22.(14分)(2008福建)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.3、20.(14分)(2009福建)已知函数f(x)=x3+ax2+bx,且f′(﹣1)=0.(1)试用含a的代数式表示b,并求f(x)的单调区间;(2)令a=﹣1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t 的最小值,并证明你的结论;(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).4、19.(13分)(2010福建)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶.假设该小船沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.5、20.(14分)(2010福建)已知函数f(x)=x3﹣x,其图象记为曲线C.(1)求函数f(x)的单调区间;(2)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,则为定值.6、18.(13分)(2011福建)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x﹣6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.7、20.(14分)(2012福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.8、17.(13分)(2013福建)已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.9、20.(14分)(2014福建)已知函数f(x)=e x﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<ce x.10、20.(7分)(2015福建)已知函数f(x)=ln(1+x),g(x)=kx,(k∈R)(1)证明:当x>0时,f(x)<x;(2)证明:当k<1时,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>g(x);(3)确定k的所以可能取值,使得存在t>0,对任意的x∈(0,t),恒有|f(x)﹣g(x)|<x2.答案1、解:∵由f(a)=2∴f(a)=a3+sina+1=2,a3+sina=1,则f(﹣a)=(﹣a)3+sin(﹣a)+1=﹣(a3+sina)+1=﹣1+1=0.故选B2、解:y=﹣f'(x)=sinx,而f(x)=cosx(x∈R)的图象按向量(m,0)平移后得到y=cos (x﹣m),所以cos(x﹣m)=sinx,故m可以为.故选A.3、解:从导函数的图象可知两个函数在x0处斜率相同,可以排除B,再者导函数的函数值反映的是原函数的斜率大小,可明显看出y=f(x)的导函数的值在减小,所以原函数应该斜率慢慢变小,排除AC,故选D.4、解:∵(x+sinx)′=1+cosx,∴(1+cosx)dx=(x+sinx)=+sin﹣=π+2.故选D5、解:∵对任意x1、x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2),∴函数在(0,+∞)上是减函数;A、由反比例函数的性质知,此函数函数在(0,+∞)上是减函数,故A正确;B、由于f(x)=(x﹣1)2,由二次函数的性质知,在(0,1)上是减函数,在(1,+∞)上是增函数,故B不对;C、由于e>1,则由指数函数的单调性知,在(0,+∞)上是增函数,故C不对;D、根据对数的整数大于零得,函数的定义域为(﹣1,+∞),由于e>1,则由对数函数的单调性知,在(0,+∞)上是增函数,故D不对;故选A.6、解:∵f(x)=ax2+bx+c的对称轴为直线x=令设方程m[f(x)]2+nf(x)+p=0的解为f1(x),f2(x)则必有f1(x)=y1=ax2+bx+c,f2(x)=y2=ax2+bx+c那么从图象上看,y=y1,y=y2是一条平行于x轴的直线它们与f(x)有交点由于对称性,则方程y1=ax2+bx+c的两个解x1,x2要关于直线x=对称也就是说x1+x2=同理方程y2=ax2+bx+c的两个解x3,x4也要关于直线x=对称那就得到x3+x4=,在C中,可以找到对称轴直线x=2.5,也就是1,4为一个方程的解,2,3为一个方程的解所以得到的解的集合可以是{1,2,3,4}而在D中,{1,4,16,64}找不到这样的组合使得对称轴一致,也就是说无论怎么分组,都没办法使得其中两个的和等于另外两个的和故答案D不可能故选D.7、解:由题意该函数的定义域x>0,由.因为存在垂直于y轴的切线,故此时斜率为0,问题转化为x>0范围内导函数存在零点.再将之转化为g(x)=﹣2ax与存在交点.当a=0不符合题意,当a>0时,如图1,数形结合可得显然没有交点,当a<0如图2,此时正好有一个交点,故有a<0.故答案为:{a|a<0}8、解:当x≤0时,令x2+2x﹣3=0解得x=﹣3;当x>0时,令﹣2+lnx=0解得x=100,所以已知函数有两个零点,故选:B.9、解:f(x)和g(x)存在分渐近线的充要条件是x→∞时,f(x)﹣g(x)→0.对于①f(x)=x2,g(x)=,当x>1时便不符合,所以①不存在;对于②f(x)=10﹣x+2,g(x)=肯定存在分渐近线,因为当时,f(x)﹣g(x)→0;对于③f(x)=,g(x)=,,设λ(x)=x﹣lnx,>0,且lnx<x,所以当x→∞时x﹣lnx越来愈大,从而f(x)﹣g(x)会越来越小,不会趋近于0,所以不存在分渐近线;对于④f(x)=,g(x)=2(x﹣1﹣e﹣x),当x→+∞时,,因此存在分渐近线.故,存在分渐近线的是②④选C故选C10、解:①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2),正确;②取x∈(2m,2m+1),则∈(1,2];f()=2﹣,从而f(x)=2f()=…=2m f()=2m+1﹣x,其中,m=0,1,2,…从而f(x)∈[0,+∞),正确;③f(2n+1)=2n+1﹣2n﹣1,假设存在n使f(2n+1)=9,即存在x1,x2,﹣=10,又,2x变化如下:2,4,8,16,32,显然不存在,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.11、解:(e x+2x)dx=(e x+x2)|01=e+1﹣1=e故选C.12、解:f(1)=asin1+b+c ①f(﹣1)=﹣asin1﹣b+c ②①+②得:f(1)+f(﹣1)=2c∵c∈Z∴f(1)+f(﹣1)是偶数故选:D13、解:由于函数f(x)=e x+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,且横坐标依次增大由于此函数是一个单调递增的函数,故由A到B的变化率要小于由B到C的变化率.可得出角ABC一定是钝角故①对,②错.由于由A到B的变化率要小于由B到C的变化率,由两点间距离公式可以得出AB<BC,故三角形不可能是等腰三角形,由此得出③不对,④对.故选B.14、解:A选项不成立,当x=时,不等式两边相等;B选项不成立,这是因为正弦值可以是负的,故不一定能得出sinx+≥2;C选项是正确的,这是因为x2+1≥2|x|(x∈R)⇔(|x|﹣1)2≥0;D选项不正确,令x=0,则不等式左右两边都为1,不等式不成立.综上,C选项是正确的.故选:C.15、解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.16、解:A显然正确;∵=D(x),∴D(x)是偶函数,B正确;∵D(x+1)==D(x),∴T=1为其一个周期,故C错误;∵D()=0,D(2)=1,D()=0,显然函数D(x)不是单调函数,故D正确;故选:C.17、解:在①中,反例:f(x)=在[1,3]上满足性质P,但f(x)在[1,3]上不是连续函数,故①不成立;在②中,反例:f(x)=﹣x在[1,3]上满足性质P,但f(x2)=﹣x2在[1,]上不满足性质P,故②不成立;在③中:在[1,3]上,f(2)=f()≤,∴,故f(x)=1,∴对任意的x1,x2∈[1,3],f(x)=1,故③成立;在④中,对任意x1,x2,x3,x4∈[1,3],有=≤≤=[f(x1)+f(x2)+f(x3)+f(x4)],∴[f(x1)+f(x2)+f(x3)+f(x4)],故④成立.故选D.18、解:∵2x﹣1≤x﹣1时,有x≤0,∴根据题意得f(x)=即f(x)=画出函数的图象从图象上观察当关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根时,m的取值范围是(0,),当﹣x2+x=m时,有x1x2=m,当2x2﹣x=m时,由于直线与抛物线的交点在y轴的左边,得到,∴x1x2x3=m()=,m∈(0,)令y=,则,又在m∈(0,)上是增函数,故有h(m)>h(0)=1∴<0在m∈(0,)上成立,∴函数y=在这个区间(0,)上是一个减函数,∴函数的值域是(f(),f(0)),即故答案为:19、解:对于A项,x0(x0≠0)是f(x)的极大值点,不一定是最大值点,因此不能满足在整个定义域上值最大,故A错误;对于B项,f(﹣x)是把f(x)的图象关于y轴对称,因此,﹣x0是f(﹣x)的极大值点,故B错误;对于C项,﹣f(x)是把f(x)的图象关于x轴对称,因此,x0是﹣f(x)的极小值点,故C错误;对于D项,﹣f(﹣x)是把f(x)的图象分别关于x轴、y轴做对称,因此﹣x0是﹣f(﹣x)的极小值点,故D正确.故选:D.20、解:对于A=N*,B=N,存在函数f(x)=x﹣1,x∈N*,满足:(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;对于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函数,满足:(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项B是“保序同构”;对于A={x|0<x<1},B=R,存在函数f(x)=tan(),满足:(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项C是“保序同构”;前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.故选D.21、解:由题意可知图象过(3,1),故有1=log a3,解得a=3,选项A,y=a﹣x=3﹣x=单调递减,故错误;选项B,y=x3,由幂函数的知识可知正确;选项C,y=(﹣x)3=﹣x3,其图象应与B关于x轴对称,故错误;选项D,y=log a(﹣x)=log3(﹣x),当x=﹣3时,y=1,但图象明显当x=﹣3时,y=﹣1,故错误.故选:B.22、解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D23、解:A.函数的定义域为[0,+∞),定义域关于原点不对称,故A为非奇非偶函数.B.f(﹣x)=|sin(﹣x)|=|sinx|=f(x),则f(x)为偶函数.C.y=cosx为偶函数.D.f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则f(x)为奇函数,故选:D24、解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.25、解:由于函数f(x)=(a>0且a≠1)的值域是[4,+∞),故当x≤2时,满足f(x)≥4.当x>2时,由f(x)=3+log a x≥4,∴log a x≥1,∴log a2≥1,∴1<a≤2,故答案为:(1,2].解答题1、解:(Ⅰ)证明:因为,所以f′(x)=x2+2x,由点(a n,a n+12﹣2a n+1)(n∈N+)在函数y=f′(x)的图象上,又a n>0(n∈N+),所以(a n﹣1﹣a n)(a n+1﹣a n﹣2)=0,所以,又因为f′(n)=n2+2n,所以S n=f'(n),故点(n,S n)也在函数y=f′(x)的图象上.(Ⅱ)解:f'(x)=x2+2x=x(x+2),由f'(x)=0,得x=0或x=﹣2.①当,此时f(x)无极小值;②当a﹣1<0<a,即0<a<1时,f(x)的极小值为f(0)=﹣2,此时f(x)无极大值;③当a≤﹣2或﹣1≤a≤0或a≥1时,f(x)既无极大值又无极小值.2、解:(1)因为f(x)=ln(1+x)﹣x,所以函数定义域为(﹣1,+∞),且f′(x)=﹣1=.由f′(x)>0得﹣1<x<0,f(x)的单调递增区间为(﹣1,0);由f’(x)<0得x>0,f(x)的单调递减区间为(0,+∞).(2)因为f(x)在[0,n]上是减函数,所以b n=f(n)=ln(1+n)﹣n,则a n=ln(1+n)﹣b n=ln(1+n)﹣ln(1+n)+n=n.(i)因为对n∈N*恒成立.所以对n∈N*恒成立.则对n∈N*恒成立.设,n∈N*,则c<g(n)对n∈N*恒成立.考虑.因为=0,所以g(x)在[1,+∞)内是减函数;则当n∈N*时,g(n)随n的增大而减小,又因为=1.所以对一切n∈N,g(n)>1因此c≤1,即实数c的取值范围是(﹣∞,1].(ⅱ)由(ⅰ)知.下面用数学归纳法证明不等式(n∈N+)①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.3、解:(1)依题意,得f′(x)=x2+2ax+b,由f′(﹣1)=1﹣2a+b=0得b=2a﹣1从而f(x)=x3+ax2+(2a﹣1)x,故f′(x)=(x+1)(x+2a﹣1)令f′(x)=0,得x=﹣1或x=1﹣2a①当a>1时,1﹣2a<﹣1当x变化时,根据f′(x)与f(x)的变化情况得,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1)②当a=1时,1﹣2a=﹣1,此时有f′(x)≥0恒成立,且仅在x=﹣1处f′(x)=0,故函数f(x)的单调增区间为R、③当a<1时,1﹣2a>﹣1,同理可得,函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a)综上:当a>1时,函数f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞),单调减区间为(1﹣2a,﹣1);当a=1时,函数f(x)的单调增区间为R;当a<1时,函数f(x)的单调增区间为(﹣∞,﹣1)和(1﹣2a,+∞),单调减区间为(﹣1,1﹣2a)(2)(Ⅰ)由a=﹣1得f(x)=x3﹣x2﹣3x令f′(x)=x2﹣2x﹣3=0得x1=﹣1,x2=3由(1)得f(x)增区间为(﹣∞,﹣1)和(3,+∞),单调减区间为(﹣1,3),所以函数f(x)在处x1=﹣1,x2=3处取得极值,故M(﹣1,),N(3,﹣9)观察f(x)的图象,有如下现象:①当m从﹣1(不含﹣1)变化到3时,线段MP的斜率与曲线f(x)在点P处切线的斜率f (x)之差Kmp﹣f′(m)的值由正连续变为负、②线段MP与曲线是否有异于M,P的公共点与Kmp﹣f′(m)的m正负有着密切的关联;③Kmp﹣f′(m)=0对应的位置可能是临界点,故推测:满足Kmp﹣f′(m)的m就是所求的t最小值,下面给出证明并确定的t最小值、曲线f(x)在点P(m,f(m))处的切线斜率f′(m)=m2﹣2m﹣3;线段MP的斜率Kmp=,当Kmp﹣f′(m)=0时,解得m=﹣1或m=2,直线MP的方程为y=(x+),令g(x)=f(x)﹣(x+),当m=2时,g′(x)=x2﹣2x在(﹣1,2)上只有一个零点x=0,可判断f(x)函数在(﹣1,0)上单调递增,在(0,2)上单调递减,又g(﹣1)=g(2)=0,所以g(x)在(﹣1,2)上没有零点,即线段MP与曲线f(x)没有异于M,P的公共点、当m∈(2,3]时,g(0)=﹣>0,g(2)=﹣(m﹣2)2<0,所以存在δ∈(0,2]使得g(δ)=0,即当m∈(2,3]时,MP与曲线f(x)有异于M,P的公共点综上,t的最小值为2.(Ⅱ)类似(1)于中的观察,可得m的取值范围为(1,3].4、解:(1)如图设小艇的速度为v,时间为t相遇,则由余弦定理得:OC2=AC2+OA2﹣2×AC×OAcos∠OAC即:v2t2=400+900t2﹣1200tcos60°=900t2﹣600t+400=当t=时,取得最小值,此时,v=30(2)要用时最小,则首先速度最高,即为:30海里/小时,则由(1)可得:OC2=AC2+OA2﹣2×AC×OAcos∠OAC即:(30t)2=400+900t2﹣1200tcos60°解得:t=,此时∠BOD=30°此时,在△OAB中,OA=OB=AB=20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇.5、解:(1)由f(x)=x3﹣x得f′(x)=3x2﹣1=,当和时,f′(x)>0;当,时,f′(x)<0,因此,f(x)的单调递增区间为和,单调递减区间为,.(2)曲线C与其在点P1处的切线方程为y=(3x12﹣1)(x﹣x1)+x13﹣x1,即即y=(3x12﹣1)x﹣2x13,由解得x=x1或x=﹣2x1故x2=﹣2x1,进而有S1=|(x3﹣3x13x+2x13)dx|=,用x2代替x1,重复上述计算过程,可得x3=﹣2x2和,又x2=﹣2x1≠0,所以S2≠0,因此有6、解:(Ⅰ)因为x=5时,y=11,所以+10=11,故a=2(Ⅱ)由(Ⅰ)可知,该商品每日的销售量y=所以商场每日销售该商品所获得的利润为从而,f′(x)=10[(x﹣6)2+2(x﹣3)(x﹣6)]=30(x﹣6)(x﹣4)于是,当x变化时,f(x)、f′(x)的变化情况如下表:3,6)内的极大值点,也是最大值点.所以,当x=4时,函数f(x)取得最大值,且最大值等于42答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.7、解:(Ⅰ)求导函数,可得f′(x)=e x+2ax﹣e∵曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴k=2a=0,∴a=0∴f(x)=e x﹣ex,f′(x)=e x﹣e令f′(x)=e x﹣e<0,可得x<1;令f′(x)>0,可得x>1;∴函数f(x)的单调减区间为(﹣∞,1),单调增区间为(1,+∞)(Ⅱ)设点P(x0,f(x0)),曲线y=f(x)在点P处的切线方程为y=f′(x0)(x﹣x0)+f (x0)令g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0)∵曲线在该点处的切线与曲线只有一个公共点P,∴g(x)有唯一零点∵g(x0)=0,g′(x)=(1)若a≥0,当x>x0时,g′(x)>0,∴x>x0时,g(x)>g(x0)=0当x<x0时,g′(x)<0,∴x<x0时,g(x)>g(x0)=0,故g(x)只有唯一零点x=x0,由P的任意性a≥0不合题意;(2)若a<0,令h(x)=,则h(x0)=0,h′(x)=e x+2a令h′(x)=0,则x=ln(﹣2a),∴x∈(﹣∞,ln(﹣2a)),h′(x)<0,函数单调递减;x∈(ln(﹣2a),+∞),h′(x)>0,函数单调递增;①若x0=ln(﹣2a),由x∈(﹣∞,ln(﹣2a)),g′(x)>0;x∈(ln(﹣2a),+∞),g′(x)>0,∴g(x)在R上单调递增∴g(x)只有唯一零点x=x0;②若x0>ln(﹣2a),由x∈(ln(﹣2a),+∞),h(x)单调递增,且h(x0)=0,则当x∈(ln(﹣2a),x0),g′(x)<0,g(x)>g(x0)=0任取x1∈(ln(﹣2a),x0),g(x1)>0,∵x∈(﹣∞,x1),∴g(x)<ax2+bx+c,其中b=﹣e﹣f′(x0).c=∵a<0,∴必存在x2<x1,使得∴g(x2)<0,故g(x)在(x2,x1)内存在零点,即g(x)在R上至少有两个零点;③若x0<ln(﹣2a),同理利用,可得g(x)在R上至少有两个零点;综上所述,a<0,曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P(ln(﹣2a),f(ln(﹣2a)).8、解:函数f(x)的定义域为(0,+∞),.(1)当a=2时,f(x)=x﹣2lnx,,因而f(1)=1,f′(1)=﹣1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),即x+y﹣2=0(2)由,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a.又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.解:(1)由f(x)=e x﹣ax,得f′(x)=e x﹣a.又f′(0)=1﹣a=﹣1,解得a=2,∴f(x)=e x﹣2x,f′(x)=e x﹣2.由f′(x)=0,得x=ln2,当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增;∴当x=ln2时,f(x)有极小值为f(ln2)=e ln2﹣2ln2=2﹣ln4.f(x)无极大值.(2)令g(x)=e x﹣x2,则g′(x)=e x﹣2x,由(1)得,g′(x)=f(x)≥f(ln2)=e ln2﹣2ln2=2﹣ln4>0,即g′(x)>0,∴当x>0时,g(x)>g(0)>0,即x2<e x;(3)首先证明当x∈(0,+∞)时,恒有x3<e x.证明如下:令h(x)=x3﹣e x,则h′(x)=x2﹣e x.由(2)知,当x>0时,x2<e x,从而h′(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=﹣1<0,即x3<e x,取x0=,当x>x0时,有x2<x3<e x.因此,对任意给定的整数c,总存在x0,当x∈(x0,+∞)时,恒有x2<ce x.10、(1)证明:令F(x)=f(x)﹣x=ln(1+x)﹣x,x>0,则有F′(x)=﹣1=﹣,∵x>0,∴F′(x)<0,∴F(x)在(0,+∞)上单调递减,∴F(x)<F(0)=0,∴x>0时,f(x)<x;(2)证明:令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),则有G′(x)=﹣k=,当k≤0时,G′(x)>0,∴G(x)在(0,+∞)上单调递增,∴G(x)>g(0)=0,故对任意正实数x0均满足题意.当0<k<1时,令G′(x)=0,得.取,对任意x∈(0,x0),恒有G′(x)>0,∴G(x)在(0,x0)上单调递增,G(x)>G(0)=0,即f(x)>g(x).综上,当k<1时,总存在x0>0,使得对任意的x∈(0,x0),恒有f(x)>g(x);(3)解:当k>1时,由(1)知,对于任意x∈(0,+∞),g(x)>x>f(x),故g(x)>f(x),|f(x)﹣g(x)|=g(x)﹣f(x)=kx﹣ln(1+x),令M(x)=kx﹣ln(1+x)﹣x2,x∈(0,+∞),则有,故当时,M′(x)>0,M(x)在[0,)上单调递增,故M(x)>M(0)=0,即|f(x)﹣g(x)|>x2,∴满足题意的t不存在.当k<1时,由(2)知存在x0>0,使得对任意的任意x∈(0,x0),f(x)>g(x).此时|f(x)﹣g(x)|=f(x)﹣g(x)=ln(1+x)﹣kx,令N(x)=ln(1+x)﹣kx﹣x2,x∈[0,+∞),则有,故当时,N′(x)>0,M(x)在[0,)上单调递增,故N(x)>N(0)=0,即f(x)﹣g(x)>x2,记x0与中较小的为x1,则当x∈(0,x1)时,恒有|f(x)﹣g(x)|>x2,故满足题意的t不存在.当k=1,由(1)知,当x∈(0,+∞)时,|f(x)﹣g(x)|=g(x)﹣f(x)=x﹣ln(1+x),令H(x)=x﹣ln(1+x)﹣x2,x∈[0,+∞),则有,当x>0,H′(x)<0,∴H(x)在[0,+∞)上单调递减,故H(x)<H(0)=0,故当x>0时,恒有|f(x)﹣g(x)|<x2,此时,任意实数t满足题意.综上,k=1.21。

2008年高考理科数学试题(浙江卷)

2008年高考理科数学试题(浙江卷)

2008年高考北京理科数学详解一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()U A B ð等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤【标准答案】: D【试题分析】: C U B=[-1, 4],()U A B ð={}|13x x -≤≤ 【高考考点】:集合【易错提醒】: 补集求错【备考提示】: 高考基本得分点 2.若0.52a =,πlog 3b =,22πlog sin5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >> 【标准答案】: A【试题分析】:利用估值法知a 大于1,b 在0与1之间,c 小于0. 【高考考点】: 函数的映射关系,函数的图像。

【易错提醒】: 估值出现错误。

【备考提示】: 大小比较也是高考较常见的题型,希望引起注意。

3.“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【标准答案】: B【试题分析】: 函数()()f x x ∈R 存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必有条件显然成立。

【高考考点】: 充要条件,反函数,映射关系,函数单调性。

【易错提醒】: 单调性与一一对应之间的关系不清楚 【备考提示】: 平时注意数形结合训练。

4.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线【标准答案】: D【试题分析】: 把P 到直线1x =-向左平移一个单位,两个距离就相等了,它就是抛物线的定义。

2013最新题库大全2005-2008年高考数学(理)试题分项 专题03 函数与导数

2013最新题库大全2005-2008年高考数学(理)试题分项 专题03 函数与导数
T (2.6) 2 ,T (0.2) 0 .按此方案,第 6 棵树种植点的坐标应为 (1, 2) ;第 2008 棵树种
植点的坐标应为
(3, 402)

8.(2008 安徽卷 13)函数 f ( x) 9. (2008 江苏卷 8) 直线 y -1.
x 2 1 log 2 ( x 1)
3

A. a < b < c
B. c < a < b
C. bБайду номын сангаас< a < c
D. b < c < a
第 1 页 共 81 页
9.(2008 北京卷 2)若 a 20.5 , b log π 3 , c log 2 sin A. a b c B. b a c
2π ,则( A ) 5 C. c a b D. b c a

2.(2008 全国一 2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过 程中汽车的行驶路程 s 看作时间 t 的函数,其图像可能是( A ) s s s s
O A.
t
O B.
t
O C.
t O D.
t
3. (2008 全国一 6) 若函数 y f ( x 1) 的图像与函数 y ln 称,则 f ( x) ( A. e 2 x 1 B ) B. e 2 x C. e 2 x 1 D. e 2 x 2
3 2 2
2 3
1
, f
1
( x) 是 f ( x) 的 反 函 数 , 若 mn 16
(m) f 1 (n) 的值为( A )
C.4 D.10
31.(2008 福建卷 4)函数 f(x)=x3+sinx+1(x R),若 f(a)=2,则 f(-a)的值为 B A.3 B.0 C.-1 D.-2 32.(2008 福建卷 12)已知函数 y=f(x),y=g(x)的导函数的图象如下图,那么 y=f(x),y=g(x)的图 象可能是 D

2008年高考理科数学试题及参考答案(全国卷Ⅰ)

2008年高考理科数学试题及参考答案(全国卷Ⅰ)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅰ卷一、选择题 1.函数y =)A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .e 2x-1B .e 2xC .e 2x+1D . e 2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .B .C .D .A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +> 参考答案一、选择题 1、C 2、A 3、A 4、D 5、C 6、B 7、D 8、A 9.D 10.D . 11.B . 12.B. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得a=CBc b C A c sin sin ,sin sin = acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A BA B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。

最新2008年高考数学导数汇编答案

最新2008年高考数学导数汇编答案

2008年高考数学导数汇编答案2008年高考数学导数汇编答案1、解 (1)'22ln 1(),ln x f x x x +=-若 '()0,f x = 则 1x e= 列表如下x 1(0,)e1e 1(,1)e(1,)+∞'()f x+0 --()f x单调增极大值1()f e单调减单调减(2)在 12a xx > 两边取对数, 得 1ln 2ln a x x >,由于01,x <<所以1ln 2ln a x x>(1)由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e ≤=-, 为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2ae >-,即ln 2a e >-2、解:(Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数.(Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥.又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤.当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-.故当[)0arccos3x a ∈,时,()0h x '>.因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>• ⎪⎝⎭≥.因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.3、解:(Ⅰ)因为2(),()2.f x ax bx c f x ax b '=++=+所以又因为曲线()y f x =通过点(0,2a +3),故(0)23,(0),2 3.f a f c c a =+==+而从而又曲线()y f x =在(-1,f (-1))处的切线垂直于y 轴,故(1)0,f '-=即-2a +b =0,因此b=2a .(Ⅱ)由(Ⅰ)得2392(23)4(),44bc a a a =+=+-故当34a =-时,bc 取得最小值-94.此时有33,.22b c =-=从而233333(),(),42222f x x x f x x '=--+=--2333()()(),422x x g x f x c x x e --=-=+-所以23()(()()(4).4x x g x f x f x e x e --''=-=--令()0g x '=,解得122, 2.x x =-=当(,2),()0,()(,2)x g x g x x '∈-∞-<∈-∞-时故在上为减函数; 当(2,2)()0,()(2,).x g x g x x '∈->∈+∞时,故在上为减函数 当(2,)()0()(2,)x g x g x x '∈+∞<∈+∞时,,故在上为减函数.由此可见,函数()g x 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).4、解:242(1)(2)2(1)()(1)x x b x f x x ----'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--.令()0f x '=,得1x b =-. 当11b -<,即2b <时,()f x '的变化情况如下表:当11b ->,即2b >时,()f x '的变化情况如下表:所以,当2b <时,函数()f x 在(1)b -∞-,上单调递减,在(11)b -,上单调递增,在(1)+∞,上单调递减.当2b >时,函数()f x 在(1)-∞,上单调递减,在(11)b -,上单调递增,在(1)b -+∞,上单调递减. 当11b -=,即2b =时,2()1f x x =-,所以函数()f x 在(1)-∞,上单调递减,在(1)+∞,上单调递减.5、(Ⅰ)证明:因为321()2,3f x x x =+-所以f ′(x )=x 2+2x ,由点211(,2)(N )n n n a a a n +++-∈在函数y =f ′(x )的图象上,得221122n n n n a a a a ++-=+,即11()(2)0,n n n n a a a a -+---=又0(N ),n a n +>∈所以12n n a a +-=,又因为13a =,所以2(1)32=22n n n S n n n -=+⨯+,又因为f ′(n )=n 2+2n ,所以()n S f n '=,故点(,)n n S 也在函数y=f ′(x )的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,由()0,f x '=得02x x ==-或. 当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值;②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值;③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.6、解1,1,1()(),1,kx x xF x f x kx kx x ⎧-<⎪-=-=⎨⎪≥⎩,21,1,(1)'(),1,k x x F x k x ⎧-<⎪-⎪=⎨⎪≥⎪⎩对于1()(1)1F x kx x x=-<-,当0k ≤时,函数()F x 在(,1)-∞上是增函数;当0k >时,函数()F x在(,1-∞上是减函数,在(1上是增函数;对于()(1)F x k x =-≥,当0k ≥时,函数()F x 在[)1,+∞上是减函数;当0k <时,函数()F x 在211,14k ⎡⎫+⎪⎢⎣⎭上是减函数,在211,4k ⎡⎫++∞⎪⎢⎣⎭上是增函数。

北京历年高考理科数学试题及答案汇编十二函数和导数

北京历年高考理科数学试题及答案汇编十二函数和导数

北京历年高考理科数学试题及答案汇编十二函数和导数(2008-2018)试题1、12.(5分)(2008北京)如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ;= .(用数字作答)2、13.(5分)(2008北京)已知函数f(x)=x2﹣cosx,对于[﹣,]上的任意x1,x2,有如下条件:①x1>x2;②x12>x22;③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是.3、3.(5分)(2009北京)为了得到函数的图象,只需把函数y=lgx的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度4、9.(5分)(2009北京)= .5、11.(5分)(2009北京)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为.6、13.(5分)(2009北京)若函数则不等式的解集为.7、12.(5分)(2009北京)已知函数若f(x)=2,则x= .8、14.(5分)(2010北京)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为.9、6.(5分)(2011北京)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为(A,C为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A.75,25 B.75,16 C.60,25 D.60,1610、13.(5分)(2011北京)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是.11、8.(5分)(2012北京)某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()A.5B.7C.9D.1112、5.(5分)(2013北京)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣113、2.(5分)(2014北京)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)14、7.(5分)(2015北京)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2} 15、8.(5分)(2015北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油16、14.(5分)(2015北京)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.17、5.(5分)(2016北京)已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>018、14.(5分)(2016北京)设函数f(x)=.①若a=0,则f(x)的最大值为 2 ;②若f(x)无最大值,则实数a的取值范围是.19、(5)(5分)(2017北京)已知函数1()3()3x xf x=-,则()f x(A)是奇函数,且在R上是增函数(B)是偶函数,且在R上是增函数(C)是奇函数,且在R上是减函数(D)是偶函数,且在R上是减函数20、(8)(5分)(2017北京)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg3≈0.48)(A )1033(B )1053(C )1073(D )109321、(11)(5分)(2018北京)设函数()cos 6f x x πω⎛⎫=- ⎪⎝⎭()0ω>。

2008年高考数学函数与导数部分汇编

2008年高考数学函数与导数部分汇编

2008年高考数学试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y =D )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤ D .{|01}x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一4)曲线324y x x =-+在点(13),处的切线的倾斜角为( B ) A .30°B .45°C .60°D .120°4.(全国一8)若函数()y f x =的图象与函数l 1y =的图象关于直线y x =对称,则()f x =( A ) A .22ex -B .2exC .21ex +D .2+2ex5.(全国二4)函数1()f x x x=-的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称6.(全国二5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C )A .a <b <cB .c <a <bC . b <a <cD . b <c <a 7.(全国二7)设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( A )A .1B .12C .12- D .1-8.(安徽卷6)函数2()(1)1(0)f x x x =-+≤的反函数为( C ) A.1()11)f x x -=≥B .1()11)f x x -=≥C.1()12)f x x -=≥D .1()12)f x x -=≥9.(安徽卷9).设函数1()21(0),f x x x x=+-< 则()f x ( A )A .有最大值B .有最小值C .是增函数D .是减函数 10.(北京卷2)若372log πlog 6log 0.8a b c ===,,,则( A ) A .ab c >> B .b a c >>C .c a b >>D .b c a >>11.(北京卷5)函数2()(1)1(1)f x x x =-+<的反函数为( B )A.1()11)f x x -=> B.1()11)f x x -=> C.1()11)f x x -=≥D.1()11)f x x -=≥12.(福建卷11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是( A )13.(广东卷8)命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( A )A 、若l o g20a≥,则函数()log (0,1)a f x x a a =>≠A .B .C .D .在其定义域内不是减函数 B 、若l o g20a<,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数 C 、若l o g20a≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数 D 、若l o g20a<,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数14.(广东卷9)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( A )A 、1a <- B 、1a >- C 、1a e <-D 、1a e>- 15.(海南卷4)设()ln f x x x =,若0'()2f x =,则0x =( B )A. 2eB. eC.ln 22D. ln 2 16.(湖北卷6)已知()f x 在R上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则( A )A.-2B.2C.-98D.98 17.(湖北卷8)函数1()1f x n x=域为( D )A.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃ 18.(福建卷4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为( B )A.3B.0C.-1D.-2 19.(湖南卷4)函数)0()(2≤=x x x f 的反函数是( B ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x f B )0()(.1≤--=-x x x f C )0()(.21≤-=-x x x f D20.(湖南卷6)下面不等式成立的是( A )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 21.(江西卷3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( B )A .[0,1]B .[0,1)C .[0,1)(1,4] D .(0,1) 22.(江西卷4)若01x y <<<,则( C )A .33y x< B .log 3log 3x y <C .44log log x y <D .11()()44x y <23.(江西卷12)已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( C )A . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞- 24.(辽宁卷2)若函数(1)()y x x a =+-为偶函数,则a =( C )A .2-B .1-C .1D .225.(辽宁卷6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦, B .[]10-, C .[]01, D .112⎡⎤⎢⎥⎣⎦, 27.(辽宁卷8)将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( A )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a28.(山东卷3)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )29.(山东卷4)给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3B .2C .1D .030.(山东卷5)设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A )A .1516B .2716- C .89D .18 31.(山东卷12)已知函数()l o g (21x af x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( AA .101ab -<<<B .101b a -<<<C .101b a -<<<-D .1101a b --<<<32.(陕西卷7)已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( D )A .10B .4C .1D .2-33.(陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y x y +=++(x y ∈R ,),(1)2f =,则(2)f -等于( A )A .2B .3C .6D .934.(四川卷2)函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( C ) (A)()112x ye x R =-∈ (B)()21x y e x R =-∈ (C)()()112xy e x R =-∈ (D)()21xy e x R =-∈35.(四川卷9)函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C )(A)13 (B)2 (C)132(D)21336.(天津卷3)函数14)y x =≤≤的反函数是( A ) A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤C .21(13)y xx =-≤≤ D .21(04)y x x =-≤≤37.(天津卷10)设1a>,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( B )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,38.(重庆卷6)函数1210-=xy(0<x ≤1)反函数是( D )(A)1)10y x => (B)y =x >110)(C) y =110<x ≤)1(D) y 110<x ≤)139.(重庆卷7)函数f (x B ) (A)25(B)12(D)140.(重庆卷12)函数f (x ≤x ≤2π)的值域是( C ) (A)[-11,44] (B)[-11,33] (C)[-11,22] (D)[-22,33] 二. 填空题:1.(安徽卷13)函数2()f x =的定义域A .B .C .D .x为 .[3,)+∞ 2.(北京卷13)如图,函数()f x 的图象是折线段ABC ,其中A B C,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .3.(北京卷14)已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >;②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .②4.(湖北卷13)方程223x x -+=的实数解的个数为 . 2 5.(湖南卷15)设[]x 表示不超x 的最大整数,(如[]145,22=⎥⎦⎤⎢⎣⎡=)。

2008年高考数学试题分类汇编——函数与导数(一)

2008年高考数学试题分类汇编——函数与导数(一)

2008年高考数学试题分类汇编函数与导数(一)一. 选择题:1.(全国一1)函数y = C ) A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一6)若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e -B .2x eC .21x e +D .22x e +4.(全国一7)设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2B .12C .12-D .2-5.(全国一9)设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( D )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,, D .(10)(01)- ,, 6.(全国二3)函数1()f x x x=-的图像关于( C )A .B .C .D .A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a9.(北京卷2)若0.52a =,πlog 3b =,22πlog sin 5c =,则( A )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.(四川卷10)设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D )(A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C )(A)13 (B)2 (C)132 (D)21313.(天津卷3)函数1y =04x ≤≤)的反函数是A(A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤)(C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤)14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B(A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。

2008高考浙江数学理科试卷含详细解答(全word版)

2008高考浙江数学理科试卷含详细解答(全word版)

2008年普通高等学校统一考试(浙江卷)数学(理科)试题本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B )如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率:()(1)kkn kn n P k C p p -=-球的表面积公式 S=42R π其中R 表示球的半径 求的体积公式V=343R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的. (1)已知a 是实数,1a i i-+是纯虚数,则a =( )(A )1 (B )-1 (C(D )解析:A 本小题主要考查复数的概念.由()(1)111(1)(1)22a i a i i a a iii i ----+==-++-是纯虚数,则102a -=且10,2a +≠故a =1.(2)已知U=R ,A={}|0x x >,B={}|1x x ≤-,则()()u u A C B B C A = ( ) (A )∅ (B ){}|0x x ≤ (C ){}|1x x >- (D ){}|01或x x x >≤-解析:D 本小题主要考查集合运算.u A C B = {}|0x x >u B C A = {}|1x x ≤-()()u u A C B B C A ∴={}|01或x x x >≤-(3)已知a ,b 都是实数,那么“22a b >”是“a >b ”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件解析:D 本小题主要考查充要条件相关知识.依题“a >b ”既不能推出 “a >b ”;反之,由“a >b ”也不能推出“22b a >”.故“22b a >”是“a >b ”的既不充分也不必要条件. (4)在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) (A )-15 (B )85 (C )-120 (D )274解析:A 本小题主要考查二项式定理展开式具体项系数问题.本题可通过选括号 (即5个括号中4个提供x ,其余1个提供常数)的思路来完成.故含4x 的项的系数为(1)(2)(3)(4)(5)15.-+-+-+-+-=- (2008)(5)在同一平面直角坐标系中,函数3cos()([02])22,xy x ππ=+∈的图象和直线12y =的交点个数是( )(A )0 (B )1 (C )2 (D )4 解析:C 本小题主要考查三角函数图像的性质问题.原函数可化为:])20[)(232cos(ππ,∈+=x x y =sin ,[0,2].2xx π∈作出原函数图像,截取[0,2]x π∈部分,其与直线21=y 的交点个数是2个.(6)已知{}n a 是等比数列,25124,a a ==,则12231n n a a a a a a ++++ =( )(A )16(14n --) (B )16(12n --) (C )323(14n --) (D )323(12n --)解析:C 本小题主要考查等比数列通项的性质.由3352124a a q q==⋅=⋅,解得1.2q =数列{}1n n a a +仍是等比数列:其首项是128,a a =公比为1.4所以,1223118[1()]324(14)1314nn n n a a a a a a -+-+++==--(7)若双曲线22221x y ab-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3 (B )5 (C(D解析:D 本小题主要考查双曲线的性质及离心率问题.依题不妨取双曲线的右准线2ax c=,则左焦点1F 到右准线的距离为222aa c c cc++=,左焦点1F 到右准线的距离为2ac c-22c a c-=,依题222222223,2c ac a c c a c a c++==--即225c a =,∴双曲线的离心率c e a==(浙江2008)(8)若cos 2sin αα+=则tan α=( ) (A )12(B )2 (C )12-(D )2-解析:B 本小题主要考查三角函数的求值问题.由cos 2sin αα+=cos 0,α≠两边同时除以cos α得12tan ,αα+=平方得222(12tan )5sec 5(1tan ),ααα+==+2tan 4tan 40αα∴-+=,解得tan 2.α=或用观察法.(9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=, 则c的最大值是( )(A )1 (B )2 (C(D2解析: C 本小题主要考查向量的数量积及向量模的相关运算问题.||||1,0,a b a b ==⋅=展开2()()0||()||||cos ,a c b c c c a b c a b θ-⋅-=⇒=⋅+=⋅+||||cos ,c a b θθ∴=+=则c;或者利用数形结合, a,b对应的点A,B 在圆221x y +=上,c对应的点C 在圆222x y +=上即可.(10)如图,AB 是平面a 的斜线段...,A 为斜足,若点P 在平面a 内运动, 使得△ABP 的面积为定值,则动点P 的轨迹是( ) (A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线安徽高中数学 http://sx.ahjxz ABCD解析:B 本小题其实就是一个平面斜截一个圆柱表面的问题. 考虑到三角形面积为定值,底边一定,从而P 到直线 AB 的距离为定值,若忽略平面的限制,则P 轨迹类似为一以AB 为轴心的圆柱面,加上后者平面的交集,轨迹为椭圆! 还可以采取排除法,直线是不可能的,在无穷远处,点到直线的距离为无穷大, 故面积也为无穷大,从而排除C 与D,又题目在斜线段下标注重点符号,从而改成垂 直来处理,轨迹则为圆,故剩下椭圆为答案!2008年普通高等学校招生全国统一考试浙江卷数学(理科) 第Ⅱ卷(共100分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二.填空题:本大题共7小题,每小题4分,共28分.(11)已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =_______. 解析:本小题主要考查三点共线问题.2(1,),AB a a =+ 32(1,),BC a a =-2322210,a a a a a a ⇒+=-⇒--=1a ∴=+(舍负).(12)已知12、F F 为椭圆221259xy+=的两个焦点,过1F 的直线交椭圆于A 、B 两点若2212F A F B +=,则A B =_________.解析:本小题主要考查椭圆的第一定义的应用.依题直线AB 过椭圆的左焦点1F ,在2F AB ∆ 中,22||||||420F A F B AB a ++==,又22||||12F A F B +=,∴||8.AB =(13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,若)cos cos c A a C -=,则cos A =3解析:本小题主要考查三角形中正弦定理的应用.依题由正弦定理得:sin )cos sin cos B C A A C-⋅=⋅,cos sin()sin B A A C B ⋅=+=,∴cos 3A =(14)如图,已知球O 点面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,则球O 点体积等于___________.ABCD EF解析:9π2.本小题主要考查球的内接几何体体积计算问题.其关键是找出球心,从而确定球的半径.由题意,三角形DAC,三角形DBC 都是直角三角形,且有公共斜边.所以DC 边的中点就是球心(到D 、A 、C 、B 四点距离相等),所以球的半径就是线段DC 长度的一半.(08浙江)(15)已知t 为常数,函数22y x x t=--在区间[0,3]上的最大值为2,则t=_______.解析:1,本小题主要考查二次函数问题.对称轴为1,x=下方图像翻到x轴上方.由区间[0,3]上的最大值为2,知max (3)32,y f t ==-=解得15,或t =检验5t =时, (0)52f =>不符,而1t =时满足题意.(16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).解析:40 本小题主要考查排列组合知识.依题先排除1和2的剩余4个元素有222228A A ⋅= 种方案,再向这排好的4个元素中插入1和2捆绑的整体,有15A 种插法,∴不同的安排方案共有221225240A A A ⋅⋅=种.(17)若0,0a b ≥≥,且当0,0,1x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有1ax by +≤,则以a,b 为坐标点P (a ,b )所形成的平面区域的面积等于__________.解析:1,本小题主要考查线性规划的相关知识.由1ax by +≤恒成立知,当0x =时,1by ≤恒成立,∴01b ≤≤;同理01a ≤≤,∴以a ,b 为坐标点(,)P a b所形成的平面区域是一个正方形,所以面积为1.三.解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. (18)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直, BE//CF ,∠BCF=∠CEF=90︒,AD=(Ⅰ)求证:AE//平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为60︒?18.本题主要考查空间线面关系、空间向量的概念与运算等 基础知识,同时考查空间想象能力和推理运算能力. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结D G , 可得四边形BCG E 为矩形,又ABCD 为矩形,所以∥AD EG ,从而四边形AD G E 为平行四边形, 故∥AE D G .因为AE ⊄平面D C F ,D G ⊂平面D C F ,所以∥AE 平面D C F .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,AB BC ⊥,得AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角.在R t △EFG中,因为EG AD ==2EF =,所以60CFE ∠= ,1FG =. 又因为CE EF ⊥,所以4C F =, 从而3BE CG ==.于是sin 2BH BE BEH =∠=因为tan AB BH AHB =∠ , 所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以,CB CF 和CD 分别作为x 轴,y 轴和z 轴, 建立空间直角坐标系C xyz -.设,,AB a BE b CF c ===, 则(000),,C,),A a,0),B,0),E b ,(00),,F c . (Ⅰ)证明:(0),,AE b a =-,0),CB =,(00),,BE b =, 所以0CB CE = ,0CB BE =,从而CB AE ⊥,CB BE ⊥,所以C B ⊥平面ABE .因为C B ⊥平面D C F ,所以平面∥ABE 平面D C F . 故∥AE 平面D C F .(Ⅱ)解:因为(0),EF c b =-,0),CE b =,所以0EF CE = ,||2E F =,从而3()02,,b c b -+-=⎧=解得34,b c ==.所以0),E ,(040),,F .设(1),,n y z =与平面AEF 垂直,则0n AE =,0n EF =,解得(1n a=.又因为BA ⊥平面BEFC ,(00),,BA a =,所以||1|cos |2||||,BA n n BA BA n <>===,得到92a =.D AB EFCHG所以当AB 为92时,二面角A EF C --的大小为60 .(19)(08浙江)一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79.(Ⅰ)若袋中共有10个球,(i )求白球的个数;(ii )从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望 等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分. (Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A , 设袋中白球的个数为x ,则2102107()19x C P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ155130123121212122E ξ=⨯+⨯+⨯+⨯=.(Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n=,所以2y n <,21≤y n -,故112≤y n -.记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551y P B n =+⨯-231755210≤+⨯=.所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n .故袋中红球个数最少.(20)已知曲线C 是到点P (13,28-)和到直线58y =-距离相等的点的轨迹. l 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,M A l M B x ⊥⊥轴(如图). (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得2Q B Q A为常数.本题主要考查求曲线的轨迹方程、想方法和综合解题能力.满分15分. (Ⅰ)解:设(),N x y 为C 上的点,则||N P =N到直线58y =-的距离为58y +58y +化简,得曲线C 的方程为21()2y x x =+.(Ⅱ)解法一:设22,x x M x ⎛⎫+ ⎪⎝⎭,直线:l y k xk =+,则(),B x kx k +,从而|||1|Q B x =+.在Rt △QMA中,因为222||(1)14x Q M x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k M A k⎛⎫+- ⎪⎝⎭=+.所以222222(1)||||||(2)4(1)x Q A Q M M A kx k +=-=++ .||Q A =2||12||||Q B x Q A k x k+=+.当2k=时,2||||Q B Q A =,从而所求直线l 方程为220x y -+=.解法二:设22,x x M x ⎛⎫+ ⎪⎝⎭,直线:l y kx k=+,则(),B x kx k +,从而||1|Q B x =+.过Q (10),-垂直于l 的直线11:(1)l y x k=-+.因为||||QA MH =,所以||Q A =l l2||12||||Q B x Q A k x k+=+.当2k=时,2||||Q B Q A =,从而所求直线l 方程为220x y -+=.方法三:解:(Ⅰ)设曲线C 上任意一点(),M x y ,则 图758y +.化简,得曲线C 的方程21()2y x x =+.(Ⅱ)设直线l 的倾斜角为α,点M 2(,)2x x x +在x 轴上的射影为E ,则 1QE x =+,22x x EM +=, 1cos x Q B α+=,()()llQ A Q MQ E EM==+ ()2π1cos cos()22x x x αα+=++-1cos sin 2x x αα=+⋅+.()222211/cos 1cos sin cos cos sin 22Q B x x x x Q Ax αααααα++∴==+⋅++.2Q B Q A是与x 无关的常数,∴当且仅当1cos sin 2αα=,即t an 2α=时,231cos Q B Q Aα==为常数.此时,直线l 的方程为()21y x =+,即220x y -+=.(08浙江)(21)已知a 是实数,函数())f x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[]0,2上的最小值.(i )写出()g a 的表达式;(ii )求a 的取值范围,使得6()2g a -≤≤-.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:函数的定义域为[0),+∞,()f x '==(0x >).若0a ≤,则()0f x '>,()f x 有单调递增区间[0),+∞. 若0a >,令()0f x '=,得3a x =,当03a x <<时,()0f x '<,当3ax >时,()0f x '>.()f x 有单调递减区间03,a ⎡⎤⎢⎥⎣⎦,单调递增区间3,a⎛⎫+∞ ⎪⎝⎭.(Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增,所以()(0)0g a f ==. 若06a <<,()f x 在03,a ⎡⎤⎢⎥⎣⎦上单调递减,在23,a ⎛⎤⎥⎝⎦上单调递增,所以()3a g a f ⎛⎫== ⎪⎝⎭6a ≥,()f x 在[02],上单调递减,所以()(2))g a f a ==-.综上所述,00()06)6,,,,.a g a a a a ≤⎧⎪⎪=-<<⎨-≥ (ii )令6()2g a -≤≤-.若0a ≤,无解.若06a <<,解得36a ≤<. 若6a ≥,解得62a ≤≤+.故a的取值范围为32a ≤≤+.(22)已知数列{}n a ,0n a ≥,10a =,22111()n n n a a a n N ∙+++-=∈.记12n n S a a a =+++ .112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++ .求证:当n N ∙∈时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <.22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能, 同时考查逻辑推理能力.满分14分. (Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <. ②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+-2121()(1)k k k k a a a a ++++=-++,所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.安徽高中数学 http://sx.ahjxz 根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121,,,k n =- (2≥n ),得22231()(1)n n a a a a n a ++++--= .因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112≥k k k k a a a a +++=+,得111(2313)12≤,,,,≥k k k a k n n a a ++=-+ 所以23421(3)(1)(1)(1)2≤≥n n n a a a a a a -+++ , 于是2222232211(3)(1)(1)(1)2()22≤≥n n n n n n a a n a a a a a ---=<++++ ,故当3≥n 时,21111322n n T -<++++< , 又因为123T T T <<,所以3n T <.。

江西历年高考理科数学试题及答案汇编十二函数和导数

江西历年高考理科数学试题及答案汇编十二函数和导数

江西历年高考理科数学试题及答案汇编十二函数和导数试题1、3.(5分)(2008江西)若函数y=f(x)的值域是,则函数的值域是()A.B.C.D.2、9.(5分)(2008江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.3、12.(5分)(2008江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)4、14.(4分)(2008江西)不等式的解集为.5、2.(5分)(2009江西)函数的定义域为()A.(﹣4,﹣1)B.(﹣4,1)C.(﹣1,1)D.(﹣1,1]6、5.(5分)(2009江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.4 B.﹣C.2 D.﹣7、11.(5分)(2009江西)一个平面封闭区域内任意两点距离的最大值称为该区域的“直径”,封闭区域边界曲线的长度与区域直径之比称为区域的“周率”,下面四个平面区域(阴影部分)的周率从左到右依次记为τ1,τ2,τ3,τ4,则下列关系中正确的为()A.τ1>τ4>τ3>τ2 B.τ3>τ4>τ1>τ2 C.τ4>τ2>τ3>τ1 D.τ3>τ2>τ4>τ18、12.(5分)(2009江西)设函数的定义域为D,若所有点(s,f(t))(s,t∈D)构成一个正方形区域,则a的值为()A.﹣2 B.﹣4 C.﹣8 D.不能确定9、15.(4分)(2009江西)若不等式≤k(x+2)﹣的解集为区间[a,b],且b﹣a=2,则k= .10、5.(5分)(2010江西)等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=()A.26B.29C.212D.21511、9.(5分)(2010江西)给出下列三个命题:①函数与是同一函数;②若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(2x)与的图象也关于直线y=x对称;③若奇函数f(x)对定义域内任意x都有f(x)=f(2﹣x),则f(x)为周期函数.其中真命题是()A.①② B.①③ C.②③ D.②12、12.(5分)(2010江西)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图象大致为()A.B.C.D.13、3.(5分)(2011江西)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0] C.(,+∞) D.(0,+∞)14、4.(5分)(2011江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)15、10.(5分)(2011江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.16、2.(5分)(2012江西)下列函数中,与函数y=定义域相同的函数为()A.y=B.y=C.y=xe x D.y=17、3.(5分)(2012江西)若函数f(x)=,则f(f(10))=()A.l g101 B.2C.1D.018、10.(5分)(2012江西)如图,已知正四棱锥S﹣ABCD所有棱长都为1,点E是侧棱SC 上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为().B.C.D.19、11.(5分)(2012江西)计算定积分(x2+sinx)dx= .A.(0,1)B.[0,1)C.(0,1] D.[0,1]21、6.(5分)(2013江西)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S11 l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是().B.C.D.(1)= .225、3.(5分)(2014江西)已知函数f(x)=5,g(x)=ax﹣x(a∈R),若f[g(1)]=1,A.1B.2C.3D.﹣126、8.(5分)(2014江西)若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.C.D.1﹣标是.解答题1、22.(14分)(2008江西)已知函数f(x)=++,x∈(0,+∞)(1)当a=8时,求f(x)的单调区间;(2)对任意正数a,证明:1<f(x)<2.2、17.(12分)(2009江西)设函数f(x)=,(1)求函数f(x)的单调区间;(2)若k>0,求不等式f′(x)+k(1﹣x)f(x)>0的解集.3、19.(12分)(2010江西)设函数f(x)=lnx+ln(2﹣x)+ax(a>0).(1)当a=1时,求f(x)的单调区间.(2)若f(x)在(0,1]上的最大值为,求a的值.4、19.(12分)(2011江西)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值5、21.(14分)(2012江西)若函数h(x)满足①h(0)=1,h(1)=0;②对任意a∈[0,1],有h(h(a))=a;③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)=(λ>﹣1,p>0)(1)判函数h(x)是否为补函数,并证明你的结论;(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=(n∈N+)时h(x)的中介元为x n,且S n=,若对任意的n∈N+,都有S n<,求λ的取值范围;(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.6、22.(14分)(2013江西)已知函数f(x)=,a为常数且a>0.(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.7、19.(12分)(2014江西)已知函数f(x)=(x2+bx+b)(b∈R)(1)当b=4时,求f(x)的极值;(2)若f(x)在区间(0,)上单调递增,求b的取值范围.答案1、解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B2、解:又∵a1b1+a2b2﹣(a1b2+a2b1)=(a1﹣a2)b1﹣(a1﹣a2)b2=(a2﹣a1)(b2﹣b1)>0∴a1b1+a2b2>(a1b2+a2b1)而1=(a1+a2)(b1+b2)=a1b1+a2b1+a1b2+a2b2<2(a1b1+a2b2)∴解法二:取,,,即可.故选A3、解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8故选B.4、解:∵,∴,∴,∴∴x∈(﹣∞,﹣3]∪(0,1]答案:(﹣∞,﹣3]∪(0,1].5、解:由题意知,函数的定义域为,解得﹣1<x<1,故选C.6、解:f′(x)=g′(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴y=f(x)在点(1,f(1))处切线斜率为4.故选:A.7、解:由题意,设图形的边长或直径为a,则第一个图的直径为a,后三个图形的直径都是a,第一个封闭区域边界曲线的长度为4a,所以t1=,第二个封闭区域边界曲线的长度为×2,所以t2==π;第三个封闭区域边界曲线的长度为a+2×+2×2×=3a,所以t3==3,第四个封闭区域边界曲线的长度为2a,所以t4==2,所以τ4>τ2>τ3>τ1故选C.8、解:由题意可知:所有点(s,f(t))(s,t∈D)构成一个正方形区域,则对于函数f(x),其定义域的x的长度和值域的长度是相等的,f(x)的定义域为ax2+bx+c≥0的解集,设x1、x2是方程ax2+bx+c=0的根,且x1<x2则定义域的长度为|x1﹣x2|==,而f(x)的值域为[0,],则有,∴,∴a=﹣4.故选B.9、解:设y1=,y2=k(x+2)﹣,则在同一直角坐标系中作出其图象草图如所示y1图象为一圆心在原点,半径为3的圆的上半部分,y2图象为过定点A(﹣2,﹣)的直线.据此,原不等式解集可理解为:半圆上圆弧位于直线下方时圆弧上点的横坐标x所对应的集合.观察图形,结合题意知b=3,又b﹣a=2,所以a=1,即直线与半圆交点N的横坐标为1,代入y1==2,所以N(1,2)由直线过定点A知直线斜率k==.故答案为:.10、解:考虑到求导中f′(0),含有x项均取0,得:f′(0)=a1a2a3…a8=(a1a8)4=212.故选:C.11、解:对于函数=ln=ln,要求tan∈R,而函数则要求tan>0,故①中2个函数解析式不同,即对应关系不同,而且定义域也不同,故不是同一个函数,故排除A.若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数y=f(x)与函数y=g(x)互为反函数,故函数y=f(2x)与也互为反函数,故它们的图象也关于直线y=x对称,故②正确.验证③,f(﹣x)=f[2﹣(﹣x)]=f(2+x),又通过奇函数得f(﹣x)=﹣f(x),∴f(x+2)=﹣f(x),∴f(4+x)=f(x),所以f(x)是周期为4的周期函数,故选:C.12、解:最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A.故选A.13、解:要使函数的解析式有意义自变量x须满足:即0<2x+1<1解得故选A14、解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.15、解:如图,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧与小圆点M转过的圆弧相等.以切点A在如图上运动为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×1=θ,小圆圆弧的长为l2=2θ×=θ,即l1=l2,∴小圆的两段圆弧与圆弧长相等,故点M1与点M′重合,即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,M、N的轨迹为相互垂直的线段.观察各选项,只有选项A符合.故选A.16、解:∵函数y=的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满足;对于B,其定义域为{x|x>0},故B不满足;对于C,其定义域为{x|x∈R},故C不满足;对于D,其定义域为{x|x≠0},故D满足;综上所述,与函数y=定义域相同的函数为:y=.故选D.17、解:因为函数f(x)=,所以f(10)=lg10=1;f(f(10)=f(1)=2.故选B.18、解:由题意可知截面下面部分的体积为V(x),不是SE=x的线性函数,可采用排除法,排除C,D;又当截面为BDE,即x=时,V(x)=,当侧棱SC上的点E从SC的中点向点C移动时,V(x)越来越小,故排除B;故选:A.19、解:由题意,定积分===.故答案为:.20、解:由题意,自变量满足,解得0≤x<1,即函数y=的定义域为[0,1)故选B21、解:由于S1=x2dx=|=,S2=dx=lnx|=ln2,S3=e x dx=e x|=e2﹣e.且ln2<<e2﹣e,则S2<S1<S3.故选:B.22、解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.23、解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.24、解:要使函数有意义,则x2﹣x>0,即x>1或x<0,故函数的定义域为(﹣∞,0)∪(1,+∞),故选:A.26、解:若f(x)dx=﹣1,则:f(x)=x2﹣2,∴x2﹣2=x2+2(x2﹣2)dx=x2+2()=x2﹣,显然A不正确;若f(x)dx=,则:f(x)=x2﹣,∴x2﹣=x2+2(x2﹣)dx=x2+2()=x2﹣,显然B正确;若f(x)dx=,则:f(x)=x2+,∴x2+=x2+2(x2+)dx=x2+2()=x2+2,显然C不正确;若f(x)dx=1,则:f(x)=x2+2,∴x2+2=x2+2(x2+2)dx=x2+2()=x2+,显然D不正确;故选:B.27、解:设P(x,y),则y=e﹣x,∵y′=﹣e﹣x,在点P处的切线与直线2x+y+1=0平行,∴﹣e﹣x=﹣2,解得x=﹣ln2,∴y=e﹣x=2,故P(﹣ln2,2).故答案为:(﹣ln2,2).解答题1、解:(1)当a=8时,,求得,于是当x∈(0,1]时,f'(x)≥0;而当x∈[1,+∞)时,f'(x)≤0.即f(x)在(0,1]中单调递增,而在[1,+∞)中单调递减.(2)对任意给定的a>0,x>0,由,若令,则abx=8①,且②.(一)先证f(x)>1:因为,,,又由,得a+b+x≥6.所以==.(二)再证f(x)<2:由①、②式中关于x,a,b的对称性,不妨设x≥a≥b,则0<b≤2.(ⅰ)当a+b≥7,则a≥5,所以x≥a≥5,因为,,此时,.(ⅱ)当a+b<7③,由①得,,,因为,所以④,同理得⑤.于是⑥.今证明⑦:因为,故只要证,即证ab+8>(1+a)(1+b),即证a+b<7.据③可得此式显然成立,因此⑦得证.再由⑥可得得f(x)<2.综上所述,对任何正数a,x,皆有1<f(x)<2.2、解:(1)∵f(x)=∴由f'(x)=0,得x=1,因为当x<0时,f'(x)<0;当0<x<1时,f'(x)<0;当x>1时,f'(x)>0;所以f(x)的单调增区间是:[1,+∝);单调减区间是:(﹣∞,0),(0,1](2)由f'(x)+k(1﹣x)f(x)==>0,得:(x﹣1)(kx﹣1)<0,故:当0<k<1时,解集是:{x|1<x<};当k=1时,解集是:φ;当k>1时,解集是:{x|<x<1}.3、解:对函数求导得:,定义域为(0,2)(1)当a=1时,f′(x)=﹣+1,当f′(x)>0,即0<x<时,f(x)为增函数;当f′(x)<0,<x<2时,f(x)为减函数.所以f(x)的单调增区间为(0,),单调减区间为(,2)(2)函数f(x)=lnx+ln(2﹣x)+ax(a>0).因为a>0,x∈(0,1],所以>0,所以函数为单调增函数,(0,1]为单调递增区间.最大值在右端点取到.所以a=.4、解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)<f′()=+2a,由0<+2a,解得a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0 当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为5、解:(1)函数h(x)是补函数,证明如下:①h(0)==1,h(1)==0;②任意a∈[0,1],有h(h(a))=h()==a③令g(x)=(h(x))p,有g′(x)==,又因为λ>﹣1,p>0,所以当x∈(0,1)时,g′(x)<0,所以g(x)在(0,1)上是减函数,故h(x)在(0,1)上是减函数由上证,函数h(x)是补函数(2)当p=(n∈N*),由h(x)=x得,(i)当λ=0时,中介元x n=,(ii)当λ>﹣1且λ≠0时,由(*)得=∈(0,1)或=∉(0,1),得中介元x n=,综合(i)(ii):对任意的λ>﹣1,中介元为x n=,于是当λ>﹣1时,有S n===,当n无限增大时,无限接近于0,S n无限接近于,故对任意的非零自然数n,S n<等价于,即λ∈[3,+∞)(3)当λ=0时,h(x)=,中介元为.(i)0<p≤1时,,中介元为≤,所以点(x p,h(x p))不在直线y=1﹣x的上方,不符合条件;(ii)当p>1时,依题意只需>1﹣x在x∈(0,1)时恒成立,也即x p+(1﹣x)p<1在x∈(0,1)时恒成立设φ(x)=x p+(1﹣x)p,x∈(0,1),则φ′(x)=p(x p﹣1﹣(1﹣x)p﹣1)令φ′(x)=0,得x=,且当x∈(0,)时,φ′(x)<0,当x∈(,1)时,φ′(x)>0,又φ(0)=φ(1)=1,所以x∈(0,1)时,φ(x)<1恒成立.综上,p的取值范围是(1,+∞)6、(1)证明:∵==a(1﹣2|x|),=a(1﹣2|x|),∴,∴f(x)的图象关于直线x=对称.(2)解:当时,有f(f(x))=.∴f(f(x))=x只有一个解x=0又f(0)=0,故0不是二阶周期点.当时,有f(f(x))=.∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点.当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,.由f(0)=0,,,.故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为.(3)由(2)得,.∵x2为函数f(x)的最大值点,∴,或.当时,S(a)=.求导得:S′(a)=.∴当时,S(a)单调递增,当时,S(a)单调递减.当时,S(a)=,求导得.∵,从而有.∴当时,S(a)单调递增.7、解:(1)当b=4时,f(x)=(x2+4x+4)=(x),则=.由f′(x)=0,得x=﹣2或x=0.当x<﹣2时,f′(x)<0,f(x)在(﹣∞,﹣2)上为减函数.当﹣2<x<0时,f′(x)>0,f(x)在(﹣2,0)上为增函数.当0<x<时,f′(x)<0,f(x)在(0,)上为减函数.∴当x=﹣2时,f(x)取极小值为0.当x=0时,f(x)取极大值为4;(2)由f(x)=(x2+bx+b),得:=.由f(x)在区间(0,)上单调递增,得f′(x)≥0对任意x∈(0,)恒成立.即﹣5x2﹣3bx+2x≥0对任意x∈(0,)恒成立.∴对任意x∈(0,)恒成立.∵.∴.∴b的取值范围是.。

2008年高考“导数”题(文)

2008年高考“导数”题(文)
函数 f ( x) 在 x = 1 处的导数 f ′(1) = y 4 3 2 1 O A C
2


-2
B 1 2 3 4 5 6
x
解: f ( f (0)) = f (4) = 2; f ′(1) = k AB = − 2.
4. 辽宁卷)设 P 为曲线 C: y = x + 2 x + 3 上的点,且曲线 C 在点 P 处 . 辽宁卷) ( 上的点, :
当 x < − 3 时, g ′( x ) > 0,
g ( x ) 在 ( −∞ , − 3) 上为增函数 上为增函数; g ( x ) 在 ( − 3,1) 上为减函数 上为减函数;
当 − 3 < x < 1 时, g ′( x ) < 0, 当 x > 1 时, g ′( x ) > 0,
上为增函数; g ( x ) 在 (1, +∞ ) 上为增函数
解: y '= 2ax ,于是切线的斜率
k = y'
x =1
= 2a ,
∴有 2 a = 2 ⇒ a = 1 .
3. 北京卷) . 北京卷) ( 如图, 函数 f ( x) 的图象是折线段 ABC , 如图, 其中 A,B,C
4) (2 0) (6 4) 的坐标分别为 (0,,,,, ,则 f ( f (0)) =
取何值, 解:若 x=0,则不论 a 取何值, f = , 当 x>0 即 x ∈ ( 0 , 1] 时, f > 显然成立; ( x ) ≥0 显然成立;
4

(x ) =
a x 3 − 3 x + 1 ≥ 0 可化为, a ≥ 可化为,
3 1 − 3 , x2 x

2008年高考试题分类(3)(数学-导数)

2008年高考试题分类(3)(数学-导数)

03 导数的应用一、选择题 1.(福建11)如果函数y=f (x )的图象如右图,那么 导函数/()y f x =的图象可能是( A )2.(辽宁6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,3.(全国Ⅰ4)曲线324y x x =-+在点(13),处的切线的倾斜角为( B ) A .30°B .45°C .60°D .120°4.(全国Ⅱ)设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( A )A .1B .12C .12-D .1-二、填空题1.(北京13)如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =_________;2函数()f x 在1x =处的导数(1)f '=_________.2-2.(江苏14)13)(3+-=x ax x f 对于[]1,1-∈x 总有0)(≥x f 成立,则a = 4三、解答题 1.(安徽20)(本小题满分12分) 设函数323()(1)1,32a f x x x a x a =-+++其中为实数。

(Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。

解: (1) '2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 '(1)0f =即 310,1a a a -++==∴ (2) 方法一由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 220x x --≥,20x -≤≤∴ 于是x 的取值范围是}{|20x x -≤≤方法二由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22202x xx +≤+ 20x -≤≤∴于是x 的取值范围是}{|20x x -≤≤2.(北京17)(本小题共13分)已知函数32()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值;(Ⅱ)求函数()f x 的单调区间.解:(Ⅰ)因为函数()()2g x f x =-为奇函数,所以,对任意的x ∈R ,()()g x g x -=-,即()2()2f x f x --=-+. 又32()3f x x ax bx c =+++所以32323232x ax bx c x ax bx c -+-+-=----+.所以22a a c c =-⎧⎨-=-+⎩,.解得02a c ==,.(Ⅱ)由(Ⅰ)得3()32f x x bx =++. 所以2()33(0)f x x b b '=+≠.当0b <时,由()0f x '=得x =x 变化时,()f x '的变化情况如下表:所以,当0b <时,函数()f x 在(-∞-,上单调递增,在(上单调递减,在)+∞上单调递增.当0b >时,()0f x '>,所以函数()f x 在()-∞+∞,上单调递增. 3.(福建21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称. (Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. 解:(1)由函数f (x )图象过点(-1,-6),得m -n =-3, ……① 由f (x )=x 3+mx 2+nx -2,得f ′(x )=3x 2+2mx +n , 则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n ; 而g (x )图象关于y 轴对称,所以-3262⨯+m =0,所以m =-3, 代入①得n =0.于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>得x>2或x <0,故f (x )的单调递增区间是(-∞,0),(2,+∞); 由f ′(x )<0得0<x <2,故f (x )的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f ′(x )=3x (x -2), 令f ′(x )=0得x =0或x=2.当x 变化时,f ′(x )、f (x )的变化情况如下表:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (O )=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值; 当a ≥3时,f (x )在(a -1,a +1)内无极值.综上得:当0<a <1时,f (x )有极大值-2,无极小值,当1<a <3时,f (x )有极小值-6,无极大值;当a=1或a ≥3时,f (x )无极值. 4.(宁夏)(本小题满分12分) 设函数()bf x ax x=-, ()y f x =在点(2(2))f ,处的切线方程为74120x y --=. (Ⅰ)求()f x 的解析式;(Ⅱ)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值. .解:(Ⅰ)方程74120x y --=可化为734y x =-. 当2x =时,12y =. ················································································································· 2分 又2()b f x a x '=+, 于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,,解得13.a b =⎧⎨=⎩,故3()f x x x=-. ······················································································································· 6分 (Ⅱ)设00()P x y ,为曲线上任一点,由231y x'=+知曲线在点00()P x y ,处的切线方程为002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭.令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x ⎛⎫- ⎪⎝⎭,. 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00(22)x x ,. ················ 10分所以点00()P x y ,处的切线与直线0x =,y x =所围成的三角形面积为016262x x-=. 故曲线()y f x =上任一点处的切线与直线0x =,y x =所围成的三角形的面积为定值,此定值为6. ····················································································································································· 12分 5.(江西21)已知函数4322411()(0)43f x x ax a x a a =+-+> (1)求函数()y f x =的单调区间;(2)若函数()y f x =的图像与直线1y =恰有两个交点,求a 的取值范围. 解:(1)因为322()2(2)()f x x ax a x x x a x a '=+-=+- 令()0f x '=得1232,0,x a x x a =-== 由0a >时,()f x '在()0f x '=根的左右的符号如下表所示所以()f x 的递增区间为(2,0)(,)a a -+∞与()f x 的递减区间为(2)(0)a a -∞-,与, (2)由(1)得到45()(2)3f x f a a =-=-极小值,47()()12f x f a a ==极小值 4()(0)f x f a ==极大值要使()f x 的图像与直线1y =恰有两个交点,只要44571312a a -<<或41a <,即a >01a ≤<. 6.(湖南21)已知函数43219()42f x x x x cx =+-+有三个极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08高考理科数学函数与导数检测题
一、选择题(每小题5分)
1. 函数12log (43)y x =- ( )
A .3(,)4-∞
B .(-∞
C .3(,1]4
D . 3(,1)4 2.函数()ln ||f x x x =的图像是:( )
A B C D
3.设0x 是方程ln 4x x +=的解,则0x 在下列哪个区间内:( )
A .(3,4)
B .(2,3)
C .(1,2)
D .(0,1)
4.已知32()26f x x x a =-+(a 是常数),在[]2,2-上有最大值3,那么在[]2,2-上的最小值是( )
A .5-
B .11-
C .29-
D .37-
5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B.450x y +-= C .430x y -+= D .430x y ++=
6.函数x
x x f ln )(=
的最大值为( ) A.1-e B.e C.2e D.10
7.已知函数)(x f 的导数为x x x f 44)(3-=',且图象过点(0,-5),当函数)(x f 取得极 大值-5时,x 的值应为( )
A. –1
B. 0
C. 1
D. ±1
8.点P 在曲线y = x3- x +23上移动时,过点P 的切线的倾斜角的取值范畴是( )
A . [0,π)
B 、(0,2π)∪[34
π,π) C .[0,2π)∪(2π,
34π] D 、[0,2π)∪[34π,π) 二、填空题(每题5分,共20分,其中15题第一空2分,第二空3分)
9.如图所示,曲线是幂函数αx y =在第一象限内的
图象,
已知α分不取2,21
,1,1-四个值,则相应图象依次为: 10.函数22(0)()1(0)x x f x x x -≤⎧=⎨+>⎩ ,则[(2)]f f -= ;若()10f x =,则x= 。

11.点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线
2+=x y 的距离的最小值是
12. 已知函数32()f x ax bx cx =++在点0x 处取得极小值,其
导函数'()y f x =的图象通过点(1,0),(2,0),如图所示.则0x =
13.函数y=x -2sinx 在(0, 2π)内的单调增区间为 .
14.向高为8m ,底面边长为8m 的倒置正四棱锥形的容器内注水,其速度为每分钟338m ,则当水深为5m 时,水面上升的速度为 .
三、解答题(共80分)
15.(本小题满分12分)
已知).1,0(11log )(≠>-+=a a x
x x f a
(Ⅰ)求)(x f 的定义域; (Ⅱ)判定)(x f 的奇偶性并予以证明;
(Ⅲ)求使)(x f >0的x 取值范畴.
16.(本小题12分)
已知曲线y=1
x , (1) 求曲线在点P(1,1)处的切线方程。

(2)求曲
线过点Q(1,0)的切线方程。

(3)求满足斜率为1
3
的曲线的切线方程。

17.(本小题14分)
设函数R
=,5
-
)
(3
6
+
x
f∈
x
x
x
(Ⅰ)求)
)
(有3个
f=
x
(x
f的单调区间和极值;(Ⅱ)若关于x的方程a
不同实根,求实数a的取值范畴.(Ⅲ)已知当)1
k
∈x
x时恒成
+∞
f
x
)
)
(

(
,
,1(-
立,求实数k的取值范畴.
18.(本小题满分14分) 已知函数21()2
f x ax x c =-+()a c ∈R 、满足条件:①(1)0f =;②对一切x ∈R ,都有()0f x ≥. (Ⅰ)求a 、c 的值;
(Ⅱ)是否存在实数m ,使函数()()g x f x mx =-在区间[],2m m +上有最小值-5?若存在,要求出实数m 的值;若不存在,请讲明理由.
19.(本小题14分)
请您设计一个帐篷。

它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。

试咨询当帐篷的顶点O到底面中心
o的距离为多少时,帐篷的体积最大?
1
本小题要紧考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际咨询题的能力。

20.(本小题14分)
已知函数()1
1
ax x
f x e
x -
+ =
-。

(Ⅰ)设0
a>,讨论()
y f x
=的单调性;
(Ⅱ)若对任意()
0,1
x∈恒有()1
f x>,求a的取值范畴。

相关文档
最新文档