义乌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义乌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知在数轴上0和3之间任取一实数,则使“”的概率为( )
2log 1x A .
B .
C .
D .
1
4
1
8
2
3112
2. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为(
)
A .9.6
B .7.68
C .6.144
D .4.9152
3. 已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( )
A .f (a+1)≥f (b+2)
B .f (a+1)>f (b+2)
C .f (a+1)≤f (b+2)
D .f (a+1)<f (b+2)
4. 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:
(1)α∥β⇒l ⊥m ,(2)α⊥β⇒l ∥m ,(3)l ∥m ⇒α⊥β,(4)l ⊥m ⇒α∥β,其中正确命题是(
)
A .(1)与(2)
B .(1)与(3)
C .(2)与(4)
D .(3)与(4)
5. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=(
)
A .
B .
﹣C .4D .
6. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )
A .48
B .36
C .24
D .18
【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.7. (+
)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为(
)
A .120
B .210
C .252
D .45
8. 一个几何体的三视图如图所示,则该几何体的体积是(
)
A .64
B .72
C .80
D .
112
【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.
9. 已知函数,则( )(5)2()e
22()2x
f x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩
(2016)f -=A .
B .
C .1
D .
2
e e 1
e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.10.已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )
A .
B .
C .
D .6
11.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为(
)
A .8
B .5
C .9
D .27
12.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3
B .2
C .3
D .4
二、填空题
13.已知函数,,则 ,的值域
21,0()1,0
x x f x x x ⎧-≤=⎨->⎩()21x g x =-((2))f g =[()]f g x 为
.
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.14.下列命题:
①终边在y 轴上的角的集合是{a|a=
,k ∈Z};
②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;
③把函数y=3sin (2x+)的图象向右平移
个单位长度得到y=3sin2x 的图象;
④函数y=sin (x ﹣
)在[0,π]上是减函数
其中真命题的序号是 .
15.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单P t 位:小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了
0e
kt
P P -=0P k 10%消除的污染物,则需要___________小时.
27.1%【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用.16.设全集
______.
17.等差数列中,,公差,则使前项和取得最大值的自然数是________.
{}n a 39||||a a =0d <n S 18.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .
三、解答题
19.已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2
,且{b n }为递增数列,若c n =
,求证:c 1+c 2+c 3+…+c n <1.
20.已知和均为给定的大于1的自然数,设集合,,,...,,集合
..。
,,,,...,
.(1)当,
时,用列举法表示集合;
(2)设、
,
..。
,
..。
,其中
、
,
,
,...,.证明:若
,则
.
21.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b 设函数的图象关于点对称,且.
()()2
n f x x R =×+Îa b (,1)12
p
(1,2)w Î(I )若,求函数的最小值;
1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.
()(4
f x f p
£)(x f y 【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
22.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;
(Ⅱ)当x∈时,求f(x)取得最大值和最小值时的x的值.
23.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.
(1)证明:EF∥平面PAC;
(2)证明:AF⊥EF.
24.已知函数,且.
(Ⅰ)求的解析式;
(Ⅱ)若对于任意,都有,求的最小值;
(Ⅲ)证明:函数的图象在直线的下方.
义乌市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】C 【解析】
试题分析:由得,由几何概型可得所求概率为.故本题答案选C.2log 1x <02x <<202
303
-=-考点:几何概型.2. 【答案】C
【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x ,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C .
3. 【答案】B
【解析】解:∵y=log a |x ﹣b|是偶函数∴log a |x ﹣b|=log a |﹣x ﹣b|∴|x ﹣b|=|﹣x ﹣b|
∴x 2﹣2bx+b 2=x 2+2bx+b 2
整理得4bx=0,由于x 不恒为0,故b=0由此函数变为y=log a |x|
当x ∈(﹣∞,0)时,由于内层函数是一个减函数,又偶函数y=log a |x ﹣b|在区间(﹣∞,0)上递增故外层函数是减函数,故可得0<a <1综上得0<a <1,b=0
∴a+1<b+2,而函数f (x )=log a |x ﹣b|在(0,+∞)上单调递减∴f (a+1)>f (b+2)故选B .
4. 【答案】B
【解析】解:∵直线l ⊥平面α,α∥β,∴l ⊥平面β,又∵直线m ⊂平面β,∴l ⊥m ,故(1)正确;∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;
∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;
∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误;故选B .
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
5. 【答案】B
【解析】解:∵f (x )是定义在R 上周期为2的奇函数,∴f (log 35)=f (log 35﹣2)=f (log 3),∵x ∈(0,1)时,f (x )=3x ﹣1
∴f (log 3)═﹣故选:B
6. 【答案】C
【解析】根据分层抽样的要求可知在社区抽取户数为.
C 249
2
108180270360180108=⨯=++⨯7. 【答案】 B 【解析】
【专题】二项式定理.
【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n ,可求常数项.【解答】解:由已知(
+
)2n (n ∈N *)展开式中只有第6项系数为
最大,
所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=
,
令5﹣
=0解得k=6,
所以展开式的常数项为=210;
故选:B
【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n ,利用通项求特征项.8. 【答案】C.【
解
析
】
9. 【答案】B
【解析】,故选B .(2016)(2016)(54031)(1)f f f f e -==⨯+==10.【答案】C .【解析】解:∵2a =3b =m ,∴a=log 2m ,b=log 3m ,∵a ,ab ,b 成等差数列,∴2ab=a+b ,∵ab ≠0,
∴+=2,
∴=log m 2, =log m 3,∴log m 2+log m 3=log m 6=2,解得m=.
故选 C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
11.【答案】C
【解析】解:令log 2(x 2+1)=0,得x=0,令log 2(x 2+1)=1,得x 2+1=2,x=±1,令log 2(x 2+1)=2,得x 2+1=4,x=.
则满足值域为{0,1,2}的定义域有:
{0,﹣1,﹣ },{0,﹣1, },{0,1,﹣
},
{0,1, },{0,﹣1,1,﹣ },{0,﹣1,1,
},
{0,﹣1,﹣,
},{0,1,﹣
,
},{0,﹣1,1,﹣
,
}.
则满足这样条件的函数的个数为9.
故选:C .
【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.
12.【答案】A
【解析】解:∵l 1:x+y ﹣7=0和l 2:x+y ﹣5=0是平行直线,
∴可判断:过原点且与直线垂直时,中的M 到原点的距离的最小值∵直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0,
∴两直线的距离为=,
∴AB 的中点M 到原点的距离的最小值为+
=3
,
故选:A
【点评】本题考查了两点距离公式,直线的方程,属于中档题.
二、填空题
13.【答案】,. 2[1,)-+∞【
解
析
】
14.【答案】 ③ .
【解析】解:①、终边在y 轴上的角的集合是{a|a=,k ∈Z},故①错误;
②、设f (x )=sinx ﹣x ,其导函数y ′=cosx ﹣1≤0,∴f (x )在R 上单调递减,且f (0)=0,∴f (x )=sinx ﹣x 图象与轴只有一个交点.
∴f (x )=sinx 与y=x 图象只有一个交点,故②错误;
③、由题意得,y=3sin[2(x ﹣)+]=3sin2x ,故③正确;
④、由y=sin (x ﹣)=﹣cosx 得,在[0,π]上是增函数,故④错误.
故答案为:③.
【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.
15.【答案】15
【解析】由条件知,所以.消除了的污染物后,废气中的污染物数量为
5000.9e
k
P P -=5e
0.9k
-=27.1%,于是,∴,所以小时.
00.729P 000.729e kt P P -=315e 0.7290.9e kt k --===15t =
16.【答案】{7,9}
【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9},故答案为:{7,9}。
17.【答案】或【解析】
试题分析:因为,且,所以,所以,所以,所以
0d <39||||a a =39a a =-1128a d a d +=--150a d +=,所以,所以取得最大值时的自然数是或.
60a =0n a >()15n ≤≤n S 考点:等差数列的性质.
【方法点晴】本题主要考查了等差数列的性质,其中解答中涉及到等差数列的通项公式以及数列的单调性等知识点的应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据数列的单调性,得出,所以是解答的关键,同时结论中自然数是或是结论的一个150a d +=60a =易错点.18.【答案】
【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=
,
三角形AB 1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则
,
则h=
故点A 1到平面AB 1D 1的距离为.
故答案为:.
三、解答题
19.【答案】已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 2
,且{b n }为递增数列,若c n =
,求证:c 1+c 2+c 3+…+c n <1.
【考点】数列的求和;等比数列的通项公式.
【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.【分析】(Ⅰ)设数列{a n }的公比为q ,从而可得3(1++
)=9,从而解得;
(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.【解析】解:(Ⅰ)设数列{a n}的公比为q,
则3(1++)=9,
解得,q=1或q=﹣;
故a n=3,或a n=3•(﹣)n﹣3;
(Ⅱ)证明:若a n=3,则b n=0,与题意不符;
故a2n+3=3•(﹣)2n=3•()2n,
故b n=log2=2n,
故c n==﹣,
故c1+c2+c3+…+c n=1﹣+﹣+…+﹣
=1﹣<1.
【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.
20.【答案】
【解析】
21.【答案】
22.【答案】
【解析】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,
由f′(x)=0,得x1=,x2=,x1<x2,
∴由f′(x)<0得x<,x>;
由f′(x)>0得<x<;
故f(x)在(﹣∞,)和(,+∞)单调递减,
在(,)上单调递增;
(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈,当时,即a≥4
①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.
②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在单调递增,在上单调递减,
因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,
∴当0<a<1时,f(x)在x=1处取得最小值;
当a=1时,f(x)在x=0和x=1处取得最小值;
当1<a<4时,f(x)在x=0处取得最小值.
23.【答案】
【解析】(1)证明:如图,
∵点E,F分别为CD,PD的中点,
∴EF∥PC.
∵PC⊂平面PAC,EF⊄平面PAC,
∴EF∥平面PAC.
(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,
又ABCD是矩形,∴CD⊥AD,
∵PA∩AD=A,∴CD⊥平面PAD.
∵AF⊂平面PAD,∴AF⊥CD.
∵PA=AD,点F是PD的中点,∴AF⊥PD.
又CD∩PD=D,∴AF⊥平面PDC.
∵EF⊂平面PDC,
∴AF⊥EF.
【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.
24.【答案】
【解析】【知识点】导数的综合运用利用导数研究函数的单调性
【试题解析】(Ⅰ)对求导,得,
所以,解得,
所以.
(Ⅱ)由,得,
因为,
所以对于任意,都有.
设,则.
令,解得.
当x变化时,与的变化情况如下表:
所以当时,.
因为对于任意,都有成立,
所以.
所以的最小值为.
(Ⅲ)证明:“函数的图象在直线的下方”
等价于“”,
即要证,
所以只要证.
由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.
设,
所以,
令,解得.
由,得,所以在上为增函数.
所以,即.
所以.
故函数的图象在直线的下方.。