泰来县二中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰来县二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =
6
A π
∠=
,则
B ∠=( )111]
A .
4π B .4π或34π C .3π或23π D .3
π
2. 在ABC ∆中,b =3c =,30B =,则等于( )
A B . C D .2
3. 已知双曲线
(a >0,b >0)的右焦点F ,直线x=
与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )
A .
B .
C .
D .
4. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )
A .[5,10]
B .(5,10)
C .[3,12]
D .(3,12)
5. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2 C .3 D .4
6. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1
B .2
C .3
D .4
7. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )
A .(0,+∞)
B .(1,+∞)
C .(0,1)
D .(1,2)
8. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )
A .{3}
B .{0,1}
C .{0,1,2}
D .{0,1,2,3}
9. 459和357的最大公约数( ) A .3 B .9
C .17
D .51
10.P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
11.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离
心率的倒数之和的最大值为( )
A .2
B .
C .
D .4
12.设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2
,下面的不等式在R 内恒成立的是( ) A .f (x )>0
B .f (x )<0
C .f (x )>x
D .f (x )<x
二、填空题
13.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .
14.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .
15.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件: ①f (x )=a x g (x )(a >0,a ≠1);
②g (x )≠0;
③f (x )g'(x )>f'(x )g (x );
若,则a= .
16.△ABC 中,
,BC=3,
,则∠C=
.
17.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .
18.多面体的三视图如图所示,则该多面体体积为(单位cm ) .
三、解答题
19.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;
(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.
20.已知集合A={x|x<﹣1,或x>2},B={x|2p﹣1≤x≤p+3}.
(1)若p=,求A∩B;
(2)若A∩B=B,求实数p的取值范围.
21.已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.
(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))
22.设F是抛物线G:x2=4y的焦点.
(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;
(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四
边形ABCD 面积的最小值.
23.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;
Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且
2
2
OM
OA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
24.已知f ()=﹣x ﹣1.
(1)求f (x );
(2)求f (x )在区间[2,6]上的最大值和最小值.
泰来县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】B
【解析】
试题分析:由正弦定理可得
:()
,sin0,,
sin24
sin
6
B B B
B
π
π
π
=∴=∈∴=或
3
4
π
,故选B.
考点:1、正弦定理的应用;2、特殊角的三角函数.
2.【答案】C
【解析】
考点:余弦定理.
3.【答案】D
【解析】解:∵函数f(x)=(x﹣3)e x,
∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,
令f′(x)>0,
即(x﹣2)e x>0,
∴x﹣2>0,
解得x>2,
∴函数f(x)的单调递增区间是(2,+∞).
故选:D.
【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.
4.【答案】A
【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)
即
解得:x=3,y=1
即4a﹣2b=3(a﹣b)+(a+b)
∵1≤a﹣b≤2,2≤a+b≤4,
∴3≤3(a﹣b)≤6
∴5≤(a﹣b)+3(a+b)≤10
故选A
【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.
5.【答案】C
【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,
因为P(x1<3)=P(x2≥a),
所以3﹣2=4﹣a,
所以a=3,
故选:C.
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
6.【答案】B
【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,
故选B.
7.【答案】A
【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)
则A∪B=(0,+∞)
故选:A.
【点评】本题考查了集合的化简与运算问题,是基础题目.
8.【答案】C
【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,
∵全集U=R,M={x|x>2},N={0,1,2,3},
∴∁M={x|x≤2},
∴∁M∩N={0,1,2},
故选:C
【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.
9.【答案】D
【解析】解:∵459÷357=1…102,
357÷102=3…51,
102÷51=2,
∴459和357的最大公约数是51,
故选:D.
【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.
10.【答案】A
【解析】解:如图设切点分别为M,N,Q,
则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q横坐标为a.
故选A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.
11.【答案】C
【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,
由椭圆和双曲线的定义可知,
设|MF1|=r1,|MF2|=r2,|F1F2|=2c,
椭圆和双曲线的离心率分别为e1,e2
∵∠F1MF2=,
∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①
在椭圆中,①化简为即4c2=4a2﹣3r1r2,
即=﹣1,②
在双曲线中,①化简为即4c2=4a12+r1r2,
即=1﹣,③
联立②③得,+=4,
由柯西不等式得(1+)(+)≥(1×+×)2,
即(+)2≤×4=,
即+≤,
当且仅当e
=,e2=时取等号.即取得最大值且为.
1
故选C.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.12.【答案】A
【解析】解:∵2f(x)+xf′(x)>x2,
令x=0,则f(x)>0,故可排除B,D.
如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,
但f(x)>x 未必成立,所以C也是错的,故选A
故选A.
二、填空题
13.【答案】A<G.
【解析】解:由题意可得A=,G=±,
由基本不等式可得A≥G,当且仅当a=b取等号,
由题意a,b是互异的负数,故A<G.
故答案是:A<G.
【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.
14.【答案】 6,12,2,n n a n n n n *
=⎧⎪
=+⎨≥∈⎪⎩N
【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅
11:6n a ==;
()()()
123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
故2
2:n n n a n
+≥= 15.【答案】 .
【解析】解:由得
,
所以
.
又由f (x )g'(x )>f'(x )g (x ),即f (x )g'(x )﹣f'(x )g (x )>0,也就是
,说明函数
是减函数,
即,故.
故答案为
【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.
16.【答案】
【解析】解:由,a=BC=3,c=,
根据正弦定理
=得:
sinC==,
又C 为三角形的内角,且c <a , ∴0<∠C <
,
则∠C=.
故答案为:
【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.
17.【答案】6.
【解析】解:∵|z|=1,
|z﹣3+4i|=|z﹣(3﹣4i)|≤|z|+|3﹣4i|=1+=1+5=6,
∴|z﹣3+4i|的最大值为6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
18.【答案】cm3.
【解析】解:如图所示,
由三视图可知:
该几何体为三棱锥P﹣ABC.
该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,
由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,
由几何体的正视图可得:AD+BD=AB=4cm,
故几何体的体积V=×8×4=cm3,
故答案为:cm3
【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.
三、解答题
19.【答案】
【解析】解:(1)
当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}
则P∩Q={1}
(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}
∵x∈P是x∈Q的充分条件,∴P⊆Q
∴,即实数a的取值范围是
【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型.20.【答案】
【解析】解:(1)当p=时,B={x|0≤x≤},
∴A∩B={x|2<x≤};
(2)当A∩B=B时,B⊆A;
令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;
当p≤4时,应满足,
解得p不存在;
综上,实数p的取值范围p>4.
21.【答案】
【解析】解:(1)f(x)是R上的奇函数
证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),
∴f(x)是R上的奇函数
(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,
f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)
2+1]<0恒成立,
2+x
2
因此得到函数f(x)是R上的增函数.
(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),
∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),
∴不等式进一步可化为f(m+1)<f(3﹣2m),
∵函数f(x)是R上的增函数,
∴m+1<3﹣2m,
∴
22.【答案】
【解析】解:(1)设切点.
由,知抛物线在Q点处的切线斜率为,
故所求切线方程为.
即y=x0x﹣x02.
因为点P(0,﹣4)在切线上.
所以,,解得x0=±4.
所求切线方程为y=±2x﹣4.
(2)设A(x1,y1),C(x2,y2).
由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C
的坐标满足方程组,
得x2﹣4kx﹣4=0,
由根与系数的关系知,
|AC|==4(1+k2),
因为AC⊥BD,所以BD
的斜率为﹣,从而BD的方程为y=
﹣x+1.
同理可求得|BD|=4(
1+),
S ABCD
=
|AC||BD|==8(2+k2
+)≥32.
当k=1时,等号成立.
所以,四边形ABCD面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.
23.【答案】
【解析】
Ⅰ由已知224
c
a b
a
=+=,又222
a b c
=+,解得22
3,1
a b
==,
所以椭圆C
的长轴长
Ⅱ以O为坐标原点长轴所在直线为x轴建立如图平面直角坐标系xOy,
不妨设椭圆C的焦点在x轴上,则由1可知椭圆C的方程为221
3
x
y
+=;
设A
11
(,)
x y,D
22
(,)
x y,则A
11
(,)
x y
--
∵
2
2
OM
OA OM
=⋅∴M
1
(2,0)
x
根据题意,BM满足题意的直线斜率存在,设
1
:(2)
l y k x x
=-,
联立
2
2
1
1
3
(2)
x
y
y k x x
⎧
+=
⎪
⎨
⎪=-
⎩
,消去y得22222
11
(13)121230
k x k x x k x
+-+-=,
22222222
111
(12)4(13)(123)12(413)0
k x k k x k x k
∆=--+-=-++>,
22211121222
12123
,,1313k x k x x x x x k k
--+=-⋅=++ 212111************
(2)(2)(5)4112313AD y y k x x k x x k x x kx k k k x x x x x x x k k --+---====-=----+
11111
(2)3AB y k x x k k x x ---===
1AD AB k k ∴⋅=- ∴AD ⊥AB
24.【答案】 【解析】解:(1)令
t=,则
x=
,
∴f (t )=, ∴f (x )
=
(x ≠1)…
(2)任取x 1,x 2∈[2,6],且x 1<x 2, f (x 1)﹣f (x 2)
=
﹣
=
,
∵2≤x 1<x 2≤6,∴(x 1﹣1)(x 2﹣1)>0,2(x 2﹣x 1)>0, ∴f (x 1)﹣f (x 2)>0, ∴f (x )在[2,6]上单调递减,…
∴当x=2时,f (x )max =2,当x=6时,f (x )min
=…。