变压器原理和常识
电力工程中的变压器的工作原理与应用

电力工程中的变压器的工作原理与应用电力工程中的变压器是一种非常重要的设备,它能将电能从一个电路传输到另一个电路。
变压器被广泛应用于各种电力设备和工业设备中,包括发电厂、变电站、电力输电线路、电动机等等。
本文将介绍变压器的工作原理和几种常见的应用。
一、变压器的工作原理变压器是一种利用电磁感应原理工作的设备,它可以将高电压和低电压之间的电能转换。
简单来说,变压器由两部分组成:一个是高压线圈,另一个是低压线圈。
当高压线圈中的电流改变时,会在另一个线圈中感应出一个电流。
这个过程被称为电磁感应。
变压器的工作原理可以用一个简单的公式来表示:Vp / Vs = Np / Ns其中,Vp是高压线圈的电压,Vs是低压线圈的电压,Np是高压线圈的匝数,Ns是低压线圈的匝数。
这个公式告诉我们,当高压线圈上的电压增加时,低压线圈上的电压也会相应地增加;反之亦然。
二、电力工程中变压器的应用1. 变压器在发电厂中的应用发电厂是变压器应用最广泛的地方之一。
在发电过程中,发电机产生高电压电流,这些电流需要转化成低电压电流才能被输送到电网。
这时候就需要用到变压器了。
变压器将高电压电流转化成低电压电流,然后送到变电站。
2. 变压器在变电站中的应用变电站收到来自发电厂的电流后,需要对它进行处理和分配。
这时候变压器再次发挥了作用。
变压器可以把电压从一个级别降到另一个级别。
3. 变压器在电力输电中的应用当电力需要从一个地方输送到另一个地方时,会使用电力输电线路。
电力输电线路需要用到高电压电流,这些电流需要再次转化成低电压电流才能被使用。
这时候,变压器再次发挥了作用,将高电压电流转化成低电压电流。
4. 变压器在工业设备中的应用除了在电力工程中使用外,变压器还广泛应用于工业设备中。
电动机需要稳定的电流才能运转,而变压器可以提供稳定的电流。
除此之外,变压器还可以用来控制电流,保护设备。
综上所述,电力工程中的变压器具有重要的应用价值。
本文介绍了变压器的工作原理和几种常见的应用。
变压器原理介绍

变压器原理介绍
变压器是一种基于电磁感应原理工作的电力设备,它主要用于改变交流电的电压大小。
其主要由两个或多个线圈(一般称为初级线圈和次级线圈)组成,这些线圈通过一个共同的铁芯连接,使得线圈之间的耦合达到最大。
变压器的工作原理是基于法拉第电磁感应定律和电感耦合的原理。
当交流电通过初级线圈时,流经导线的电流会产生磁场,这个磁场会通过铁芯传导到次级线圈中,使其产生感应电动势。
这样,当初级线圈上的交流电电压变化时,次级线圈上也会产生相应大小的电压变化。
根据变压器的原理,可以推导出两个重要的公式:
1. 变压器的电压比等于次级线圈的匝数与初级线圈的匝数之比,即:
电压比 = 次级线圈匝数 / 初级线圈匝数
2. 变压器的电流比等于初级线圈的匝数与次级线圈的匝数之比,即:
电流比 = 初级线圈匝数 / 次级线圈匝数
根据这两个公式,可以实现电压的升高或降低,并且在变压器中保持功率守恒。
当电压比大于1时,变压器被称为升压变压器,用于将低电压升高到高电压;而当电压比小于1时,变压器被称为降压变压器,用于将高电压降低为低电压。
变压器广泛应用于电力系统中,用于将发电厂产生的高电压输
送到远距离,并在配电站等地方将电压降低供给用户使用。
同时,变压器也被广泛用于各种电子设备中,用于提供不同的电压供给不同的电路部件。
变压器的工作原理

变压器的工作原理引言概述:变压器是电力系统中常见的电气设备,它起着改变电压大小的重要作用。
本文将详细介绍变压器的工作原理,包括一、变压器的基本构造;二、变压器的工作原理;三、变压器的主要应用领域;四、变压器的维护与保养;五、变压器的未来发展方向。
一、变压器的基本构造1.1 主要构件:变压器由铁芯、一次绕组和二次绕组组成。
铁芯通常由硅钢片叠压而成,以减小磁阻和磁损耗。
1.2 绕组:一次绕组和二次绕组分别绕在铁芯上。
一次绕组与电源相连,二次绕组与负载相连。
1.3 绝缘材料:绕组之间和绕组与铁芯之间采用绝缘材料进行绝缘,以防止电路短路和绝缘击穿。
二、变压器的工作原理2.1 磁感应定律:当一次绕组中有交流电流通过时,产生的磁场会感应到二次绕组中,从而在二次绕组中产生感应电动势。
2.2 变压器原理:根据磁感应定律,当一次绕组中的匝数与二次绕组中的匝数不同时,可以实现电压的升降。
2.3 能量传递:变压器通过磁场的耦合,将一次绕组中的电能传递到二次绕组,实现电压的变换。
三、变压器的主要应用领域3.1 电力系统:变压器广泛应用于电力系统中,用于升压和降压,以适应不同电压等级的输电和配电需求。
3.2 电子设备:变压器也被应用于各类电子设备中,用于提供适宜的电压和电流,以满足设备的工作要求。
3.3 工业领域:在工业生产中,变压器被用于控制机电的启动和运行,以及供应各种设备所需的电能。
四、变压器的维护与保养4.1 温度控制:变压器在工作过程中会产生热量,需要通过散热器进行散热,保持合适的工作温度。
4.2 油浸绝缘:变压器通常采用油浸绝缘,需要定期检查绝缘油的质量和绝缘材料的状态,以确保变压器的正常运行。
4.3 维护记录:及时记录变压器的运行状况、维护情况和故障处理过程,为后续的维护工作提供参考和依据。
五、变压器的未来发展方向5.1 高效节能:未来的变压器将更加注重能源的高效利用,减少能量损耗和环境污染。
5.2 智能化控制:随着科技的发展,变压器将逐渐实现智能化控制,提高运行的稳定性和可靠性。
变压器的基本原理和结构

8 油箱
油箱用于存放绝缘油,起 到绝缘和冷却的作用。
9 绝缘材料
绝缘材料用于隔离和保护 绕组和其他元素。
变压器的分类
按用途分类
电力变压器、工业变 压器
按环境分类
户内变压器、户外变 压器
按冷却方式分类
干式变压器、油浸变 压器
按频率分类
低频变压器、高频变 压器
变压器的特点
1 低损耗
变压器具有较低的电能转换损耗,高能量利 用效率。
变压器的基本原理和结构
变压器是一种电力设备,基于电磁感应定律和互感现象工作。它由磁芯、一 次线圈、二次线圈等组件构成,具有高效率、安全可靠和低成本等特点。
变压器的基本原理
1 电磁感应定律
2 互感现象
根据法拉第电磁感应定律, 当磁通量发生变化时,会 在相邻的线圈中引发感应 电动势。
互感现象是指一次线圈中 的变化电流引起二次线圈 中感应电压的现象。
2 一次线圈
3 二次线圈
一次线圈是输入侧的线圈, 通过电流的变化产生磁场。
二次线圈是输出侧的线圈, 通过磁感应产生感应电动 势。
4 绕组
绕组是指一次线圈和二次 线圈的线圈绕制。
5 端子
端子用于连接变压器的输 入和输出电路。
6 冷却系统
冷却系统可以有效散热, 保证变压器正常工作。
7 外部壳体
外部壳体保护内部元件, 并提供绝缘和安全性能。
2 绝缘材料耐用
选用耐高温、耐电压波动的绝缘材料,保证 变压器长期稳定工作。
3 效率高
变压器的能量转换效率高,能够大幅减பைடு நூலகம்能 源浪费。
4 维护方便
变压器结构简单,易于检修和维护。
5 安全可靠
变压器具备过流、过压等保护措施,减少事 故的发生。
变压器的工作原理及原、副线圈之间的几个关系

变压器的工作原理及原、副线圈之间的几个关系王其学一、变压器的工作原理变压器的工作原理是电磁感应.当原线圈中加交变电压时,原线圈就有交变电流,它在铁芯中产生交变的磁通量,这个交变磁通量既穿过原线圈,也穿过副线圈,在原、副线圈中都要产生感应电动势.如果副线圈电路是闭合的,在副线圈中就产生交变电流,它也在铁芯中产生交变的磁通量,这个交变磁通量既穿过原线圈,也穿过副线圈,在原、副线圈中同样要引起感应电动势.其能量转化的过程为:例1.一理想变压器的副线圈为200匝,输出电压为10V ,则铁芯内的磁通量变化率的最大值为( )A. 0.07Wb/sB. 5 Wb/sC. 7.05 Wb/sD.14.1 Wb/s解析:根据法拉第电磁感应定律知:n 圈线圈的感应电动势的大小等于线圈匝数n 与磁通量的变化率t ∆Φ∆的乘积,即 E =n t∆Φ∆,因为 原、副线圈的内阻不计,则有U =E ,200匝线圈输出电压为10V ,每匝为120V,此电压为有效值,最大值为20V =0.07V ,则t∆Φ∆=0.07 Wb/s正确选项为A评注:变压器原、副线圈的电压值及电流值均指有效值.例 2.在绕制变压器时,某人误将两个线圈绕在图示变压器铁芯的左右两个臂上,当通以交流电时,每个线圈产生的磁通量都只有一半通过另一个线圈,另一半通过中间的臂,如图1所示,已知线圈1、2的匝数比为n 1:n 2=2:1,在不接负载的情况下( )A.当线圈1输入电压220V 时,线圈2输出电压为110VB.当线圈1输入电压220V 时,线圈2输出电压为55VC.当线圈2输入电压110V 时,线圈1输出电压为220VD.当线圈2输入电压110V 时,线圈1输出电压为110V解析:设线圈1两端输入电压为U 1时,线圈2输出压为 U 2.根据法拉第电磁感应定律有:U 1=n 111t ∆Φ∆,U 2= n 22t∆Φ∆ 根据题意,当线圈1输入电压220V 时,Φ1=2Φ2 ,即122t t∆Φ∆Φ=∆∆,得:11112222U 24U 1n n t n n t∆Φ⨯∆===∆Φ∆ 解得U 2=55V ,图1当线圈2输入电压110V 时,同理Φ2′=2Φ1′,'2'222''1111U 21U n n t n n t∆Φ⨯∆===∆Φ∆ 所以 U 1′=U 2′=110V 正确选项为B 、D评注:根据题给的条件知,每个线圈产生的磁通量都只有一半通过另一个线圈,通过两个线圈之间的磁通量关系为Φ1=2Φ2,Φ2′=2Φ1′,若不加分析的认为在任何条件下公式Φ1=Φ2都成立,结果出现错解.二、理想变压器原、副线圈之间的关系式(1)功率的关系显然,理想变压器也是一种理想化的物理模型,理想变压器的特点是:变压器铁芯内无漏磁―――磁能无损失,原、副线圈的内阻不计――不产生焦耳热,电能无损失,因此副线圈的输出功率与原线圈的输入功率相等,公式为:P 1=P 2 (2)电压关系由于互感过程中,没有漏磁,所以变压器原、副线圈中每一匝线圈的磁通量的变化率均相等。
变压器的工作原理、结构和常见故障

变压器的结构、组成和维护保养一、变压器的主要类型⑴按绕组分为:ϕ双绕组变压器κ三绕组变压器λ自耦变压器⑵按相数分为:ϕ单相变压器κ三相变压器λ多相变压器(3)按用途分为:ϕ升压变压器κ降压变压器λ隔离变压器(4)按冷却方式ϕ油浸自冷变压器κ干式空气自冷变压器λ油浸风冷变压器μ油浸水冷变压器二、工作原理利用电磁感应的原理来改变交流电压的装臵,从一个电路向另一个电路传递电能或传输信号的一种电器是电能传递或作为信号传输的重要元件。
三、变压器的结构1、一次绕组(原绕组)-电源侧2、二次绕组(副绕组)-负载侧3、变压器铁心-磁路部分四、变压器组成部分1.铁心铁心由心柱和铁轭两部分组成。
心柱用来套装绕组,铁轭将心柱连接起来,使之形成闭合磁路。
为减少铁心损耗,铁心用厚0.30-0.35mm的硅钢片叠成,片上涂以绝缘漆,以避免片间短路。
按照铁心的结构,变压器可分为心式和壳式两种。
2.绕组定义:变压器的电路部分,用纸包或纱包的绝缘扁线或圆线(铜或铝)绕成。
一次绕组:输入电能的绕组。
二次绕组:输出电能的绕组。
高压绕组的匝数多,导线细;低压绕组的匝数少,导线粗。
从高,低压绕组的相对位臵来看,变压器的绕组可分为同心式和交迭式。
同心式结构:同心式绕组的高、低压绕组同心地套装在心柱上。
特点:同心式绕组结构简单、制造方便,国产电力变压器均采用这种结构。
交迭式结构:交迭式绕组的高、低压绕组沿心柱高度方向互相交迭地放臵。
特点:交迭式绕组用于特种变压器中。
3.油/油箱/冷却/安全装臵器身装在油箱内,油箱内充满变压器油。
变压器油是一种矿物油,具有很好的绝缘性能。
变压器油起两个作用:①在变压器绕组与绕组、绕组与铁心及油箱之间起绝缘作用。
②变压器油受热后产生对流,对变压器铁心和绕组起散热作用。
油箱有许多散热油管,以增大散热面积。
为了加快散热,有的大型变压器采用内部油泵强迫油循环,外部用变压器风扇吹风或用自来水冲淋变压器油箱。
这些都是变压器的冷却装臵。
变压器基本知识介绍

2.1 一层密绕:布线只占一层,紧密的线与线间没有空隙,整 齐不可交叉堆积(如图6.1)
高频变压器制作方法
2.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20% 以内算合格(如图6.2)
2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以 上
低频类变压器制作方法介绍
三、 配线
低频有针脚式和引脚式两种,其配线方法也不 相同(详情参见作业指导书)
低频类变压器制作方法介绍
四、 焊 锡
1. 操作步骤 1.1 将Pin 脚沾适量助焊剂。 1.2 焊锡:将脚插入锡槽,深度如下图所示。 1.3 焊锡后不得有漏焊、虚焊现象且焊锡光亮 2. 注意事项 2.1 焊锡时部间约为2-3秒,如果线包接有保险丝,不可焊得太久 2.2 焊温(作业指导书要求) 2.3 锡温需每隔两个小时测试并记录
变压器材料介绍
三、胶带(Tape)
2.高压测试:在测试条件AC4.0KV,50Hz 1mA 1min 下,将3圈胶 带均匀缠绕在导电圆棒上,使胶带与圆棒紧密接触,高压表 笔一支接圆棒,另一支接触胶带表面,胶带不击穿。
变压器材料介绍
四、漆包线(WIRE)
1.漆包线是一条铜线(或导体)经由处理将凡立水被覆在铜线 表面,由于凡立水有绝缘功能,此时铜线经由缠绕变成线圈, 即可用于电磁感应的各种应用 2.我们常用的漆包线:直焊性聚氨酯漆包线(QA)、聚酯漆包 线(QZ)、聚胺基甲酸脂漆(UEW)、聚脂瓷漆包线(PEW)等 3.漆包线耐热等级分为:A级(105°C)、E级(120°C)、B 级(130°C)、F级(155°C)、H级(180°C) 4.漆包线常识:2UEW 耐温120°C,可以直接焊锡;而PEW 耐 温155°C,180°C,焊锡时须脱漆皮
第2章 变压器的工作原理和运行分析

SN SN ,I 2 N 3U 1 N 3U 2 N
注意!对于三相系统,额定值都是指线间值。
第二节 变压器空载运行
空载:一次侧绕组接到电源,二次侧绕组开路。 一、电磁现象
u1
Φm
i0
Φ 1σ
e1 e1σ
N1
N2
e2
u20
i
二、参考方向的规定
e
i i
e
e
三、变压原理、电压变比
对于变压器的原边回路,根据电路理论有:
u1 i0 r1 e1 e1
空载时 i0r1 和 e1σ 都很小,如略去不 计,则 u1 = - e1 。设外加电压 u1 按 正弦规律变化,则 e1 、Φ 和e2 也都 按正弦规律变化。 设主磁通 m sin t ,则:
u1
Φm
u1
Φm
e1
e2
ωt 0 180° 360°
现在的问题是,要产生上述大小的主磁通 Φm ,需 要多大(什么样)的激磁电流 Im ?
励磁电流的大小和波形受磁路饱和、磁滞及涡 流的影响。
1、磁路饱和对励磁电流的影响
mm mm
i0 tt
00
i0i0 tt
00
i0 i0
tt
tt
磁路不饱和时,i0 ∝φ,其波形为正弦波。
磁路饱和时,i0与φ 不成线性关系,φ越大,磁路 越饱和,i0/φ比值越大,励磁电流的波形为尖顶波。
六、漏抗 漏电势的电路模型与励磁特性的电路模型类似, 只是漏磁通所经路径主要为空气,磁阻大,磁通量 小,磁路不饱和,因此可以忽略漏磁路的铁耗,即 漏电势的电路模型中的等效电阻为零,即漏电势
变压器的工作原理、用途及分类介绍

变压器的工作原理、用途及分类介绍变压器的工作原理、用途及分类变压器的基本工作原理变压器是一种利用电磁感应原理将一种数值的交变电压变换为同一频率的另一种数值的交变电压。
一、变压器的基本工作原理变压器是一种利用电磁感应原理将一种数值的交变电压变换为同一频率的另一种数值的交变电压。
1.变压器是静止的电器,它可以根据需要将交流电压升高或降低。
2.在改变电压的同时,电压的频率保持不变。
3.工作原理:根据电磁感应定律U1=-e1=N1dΦ/dt U2=e2=-N2dΦ/d t U1/U2=e1/e2=N1/N2=KU 即:变压器一、二次绕组的电压比就等于一、二次绕组的匝数比。
二、变压器的用途在生产、输送、分配和使用电能的整个电力系统中,变压器是一个重要的电器设备。
1.高压输电:变压器是电能传输的主要设备,当输送电能的容量一定时,电压越高,输电线上的电流越小,输电导线面积越小,线路损耗越小。
2.低压配电:在用户侧,为了安全和绝缘方便,要求逐步把输电电压降到配电电压。
3.测量、阻抗变换等其他特殊用途。
输电时,把交流电功率P= √3UIcosø从电厂输送到用户,当P和cosø一定时,U愈高,I愈小,这可以节省输电线材料,减小线路损耗。
三、变压器的分类1、按相数的不同:变压器可分为单相变压器、三相变压器和多相变压器;2、按绕组数目不同:变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器;3、按冷却方式不同:变压器可分为油浸式变压器、充气式变压器和干式变压器。
油浸式变压器又可分为:油浸自冷式、油浸风冷式和强迫油循环变压器。
4、按用途不同:变压器可分为电力变压器、特种变压器、仪用互感器、试验用的高压变压器等。
变压器的基本结构与工作原理

变压器的基本结构与工作原理变压器,这个名字一听就有点高大上,但其实它的工作原理就像我们日常生活中的很多事情,简单而又神奇。
你想啊,就像你把一杯热水倒入另一杯冷水,温度就会慢慢平衡一样,变压器也在电流的世界里做着类似的事情。
那今天就来聊聊这个小家伙的基本结构和它是怎么工作的吧!1. 变压器的基本结构1.1 铁心首先,变压器的核心部分就是铁心。
这玩意儿可不简单,想象一下,它就像是变压器的脊梁骨,得承受一切。
一般来说,铁心是由很多层薄铁片叠成的,目的是为了减少能量的损耗。
你知道的,越薄越轻,热量就不容易散发,节省电力也省心。
它的工作方式就像一个优雅的舞者,轻轻地在电流中舞动,把能量传递得流畅无比。
1.2 绕组接下来,绕组就是变压器的“心脏”了。
它们一般分为高压绕组和低压绕组,就像是两个兄弟,一个负责“高大上”,一个负责“接地气”。
电流在高压绕组里走得飞快,像个风一样呼啸而过;而在低压绕组里,它则慢慢变得温和,适合我们日常使用。
这个过程就像一个调皮的小孩子,时而奔放,时而安静,总是给我们带来惊喜。
2. 变压器的工作原理2.1 电磁感应好了,讲到这里,很多人可能会问,这变压器到底是怎么工作的呢?其实,变压器的工作原理主要是依靠电磁感应。
简单来说,就是一个线圈里有电流流动时,周围就会产生磁场。
这个磁场就像是魔法一样,能影响到另一个线圈。
你想啊,如果你在火锅店里,锅里煮的火锅冒着热气,旁边的食材也会被吸引过来一样。
电流通过高压绕组产生的磁场,就能让低压绕组里的电流悄悄跑出来。
2.2 电压转换当我们把电流传递给低压绕组的时候,电压就会发生变化。
就像我们常说的“换个地方看看”,有时候会让事情变得更好。
在变压器中,电压的高低取决于绕组的圈数比。
如果高压绕组的圈数多,那么电压就高;反之,如果低压绕组的圈数少,电压就低。
这个过程就像打麻将,手里的牌决定了你能出的招数,变压器的“牌”也是这样定的。
3. 变压器的应用3.1 生活中的变压器变压器的应用可谓无处不在。
变压器的工作原理、分类及结构相关知识讲解

(4)铁心所用材料的导磁性能越好,则励磁电抗越大,空载电 流越小。因此变压器的铁心均用高导磁的材料硅钢片叠成。
(5)气隙对空载电流影响很大,气隙越大,空载电流越大。因 此要严格控制铁心叠片接缝之间的气隙。
(5) U 1
E 2 I0r E 1
2、等效电路
•
•
•
•
U I I E 由公式:
•
1 E1
0 R1 j
0 x1
1 I0Z1 可知
空载变压器可以看作是两个电抗线圈串联的电路。
其中一个是没有铁 心的线圈,其阻抗
为Z 1=R1+jX 1;
另一个是带有铁心 的线圈,其阻抗为
Zm=Rm+jXm
即
在三相变压器中额定电压为线电压。
额定电流 I1N / I2 N ( A )
指在额定容量下,变压器在连续运行时允许通过的 最大电流有效值。在三相变压器中指的是线电流。
单位:A
三者关系: 单相:SN U1N I1N U2 N I2 N 三相:SN 3 U1N I1N 3 U2 N I2 N
额定频率fN
同心式绕组
交迭式绕组
根据绕组和铁心的相对位置,变压器有壳式结构和心式结构 两种,如以下两图所示。
(三)其它结构部件 如下图所示,油浸式电力变压器的结构中还包括油箱、绝缘套
管、储油柜、安全气道等。
二、变压器的分类
按用途分:电力变压器和特种变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三 绕组变压器和多绕组变压器。
500kV变压器原理及结构(自耦变压器)

c)在正常情况下,主变压器不允许超过铭牌的额定值运行。正常运行时,变压器的外加一 次电压可比额定电压高,但不宜超过额定电压的110%。
d)500kV #2主变三侧582167、20267接地开关为快速接地开关,30267为普通接地开关, 合上以后主变三侧接地,只有在主变检修时才能将此三把接地开关合上。
变压器日常巡视检查应包括以下内容:
a)500kV#2主变正常送电时,按调度令从500kV侧对主变充电(充电时不投断路器充电保护) ,空载运行正常后,在220kV侧并列。停电时先停35kV侧、再停220kV侧、最后停 500kV侧。
b)500kV#2主变220kV侧电压互感器、避雷器配备有独立隔离开关和接地开关,编号分别 为2029、2028、20297、20287,主变正常运行时电压互感器、避雷器的独立隔离开 关应合上。隔离开关的作用是当电压互感器或避雷器需要检修时,起到隔离作用。
变压器日常巡视检查应包括以下内容:
j)为了防止油劣化过速以及绝缘老化,强油循环变压器上层油温最高不得超过85℃,绕组 温度最高不得超过105℃;正常监视油面温度不超过75℃,绕组温度不超过95℃。
k)长期停用及检修后的变压器,投入运行前,应对变压器及其保护,信号装置进行全面的 检查,应核对保护连接片投切是否正确。
自耦变压器运行原理 结构及运行注意事项
1
第一节 工作原理、分类及结构
一、变压器的工作原理 • 变压器是利用电磁感应原理从一个电路向另一个
电路传递能量或传输信号的一种电器
要部件——铁心和套在铁心上的两个绕组。两绕 组只有磁耦合而没有电的联系
变压器的构造与工作原理

变压器的构造与工作原理变压器是一种利用电磁感应原理来变换交流电压和电流的电器设备。
它主要由铁心、线圈和外壳等构成。
下面将详细介绍变压器的构造和工作原理。
1.构造:(1)铁心:变压器的铁心通常采用高导磁性能的软磁材料,如硅钢片。
它将空气磁场集中,提高磁路的磁通密度,以增加变压器的效率。
(2)线圈:变压器的线圈包括两个部分,主线圈和副线圈。
主线圈通常连接到电源上,用于输入电能;副线圈通常连接到负载上,用于输出电能。
线圈由导电材料制成,通常是绝缘铜线。
(3)外壳:外壳是变压器的外部保护部分,通常由金属材料制成,具有防护、散热等功能。
2.工作原理:(1)变压器基本原理:变压器利用电磁感应原理工作。
当主线圈通电时,由于通过主线圈的电流在铁心中产生磁场,磁场会产生磁通(磁力线)。
(2)磁感应原理:根据法拉第电磁感应定律,在变压器中,当交流电通过主线圈时,它会产生变化的磁场。
而这个变化的磁场会先通过铁心再通过副线圈,从而在副线圈中产生感应电动势。
(3)变压器的运算原理:变压器转换电压的原理是基于励磁电流和互感。
即主线圈中的电流产生一个磁通,而这个磁通又能感应副线圈中的电动势,从而产生输出电压和电流。
(4)变比:根据变压器的运算原理,变压器的变比是主线圈和副线圈的匝数之比。
当主线圈的匝数大于副线圈时,变压器为升压变压器;反之,为降压变压器。
变压器的变比决定了输入电压和输出电压之间的关系。
变压器的工作过程:首先,交流电源的电流流过主线圈,产生电流的磁场。
磁场穿过铁心,再穿过副线圈,从而在副线圈中产生感应电动势。
副线圈中的感应电动势会导致电流的流动,从而产生输出电压和电流。
根据变压器的变比,输出电压可以是输入电压的升压或降压。
总结:变压器通过改变交流电的电压和电流来实现电能的传输和分配。
它的构造包括铁心、线圈和外壳等部分,而工作原理是基于电磁感应原理实现的。
变压器的工作过程是通过主线圈产生磁场,进而在副线圈中产生感应电动势,实现电能的输入和输出。
变压器的构成与工作原理

变压器的定义、作用、工作原理、基本构成1、变压器定义、作用在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。
例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必须通过降压变成适用的电压等级,供给动力设备及日常用电设备使用。
变压器首要构成构件是初级线圈、次级线圈和铁芯(磁芯),此外还有一些辅助部件。
线圈有两个或两个以上的绕组,其间接电源的绕组叫初级线圈,别的的绕组叫次级线圈。
它可以转换交流电压、电流和阻抗。
铁芯心的作用是加强两个线圈间的磁耦合。
为了削减铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联络,线圈由绝缘铜线(或铝线)绕成。
1.铁芯。
铁芯是变压器电磁感应的通路,由硅钢片组成,为了降低铁心中的发热损耗,铁心由厚度为0.23—0.5mm的硅钢片叠装而成。
采用硅钢片叠装可以减少涡流。
变压器的一、二次绕组都绕在铁芯上。
2.绕组。
绕组是变压器的电路部分,分高、低压绕组,即一、二次绕组。
绕组由绝缘的铜线或铝线绕成的多层线圈构成,套装在铁芯上。
3.油箱。
它是变压器的外壳,内装铁芯、绕组和变压器油,起一定的散热作用。
4.储油柜。
当变压器油的体积随温度的变化而膨胀或缩小时,储油柜起着储油和补油的作用,以保证油箱内充满油。
储油柜还能减少油与空气的接触面,防止油被过快氧化和受潮。
5.吸湿器。
储油柜内的油通过吸湿器与空气相通。
6.散热器。
它用来降低变压器的温度。
为提高变压器油冷却效果,可采用风冷、强(迫)油(循环)风冷和强油水冷等措施。
7.安全气道。
当变压器内部有故障、油温升高、油剧烈分解产生大量气体使油箱内压力剧增时,会将安全气道的玻璃冲碎,从而避免油箱爆炸或变形。
8.高、低压绝缘套管(瓷套管)。
它是将变压器高、低压引线引至油箱外部的绝缘装置,也起固定引线的作用。
9.分接开关。
变压器详细讲解

变压器详细讲解变压器是一种电气设备,主要用于将交流电能从一种电压等级转换为另一种电压等级。
变压器的工作原理基于电磁感应现象,利用两个或多个线圈之间的磁场变化来实现电压的转换。
以下是变压器详细讲解:1. 基本结构:变压器主要由磁性材料制成的铁芯和绕组组成。
铁芯用于传递磁场,绕组则用于承载电流。
绕组通常用导线绕制,并分为高压绕组和低压绕组。
2. 原理:当交流电流通过高压绕组时,会在铁芯上产生磁场。
磁场的变化进而在低压绕组中产生电动势,从而实现电压的转换。
电压转换的大小取决于绕组之间的匝数比例。
3. 分类:根据用途和结构,变压器可分为以下几类:a. 配电变压器:用于配电系统,将高压电能转换为低压电能供给用户。
b. 电力变压器:用于发电、输电和配电系统中,实现电压的升高和降低。
c. 仪用变压器:用于电气测量和控制设备,提供标准电压信号。
d. 特殊变压器:如电炉变压器、整流变压器等,用于特殊场合的电压转换。
4. 参数:变压器的主要参数包括:a. 额定容量:表示变压器能承载的最大功率。
b. 额定电压:表示变压器输入和输出的电压等级。
c. 电压比:高压绕组与低压绕组之间的匝数比例,决定了电压转换效果。
d. 效率:表示变压器将电能转换为磁能和磁能转换为电能的能力。
5. 应用:变压器广泛应用于电力系统、工业生产、家电产品等领域。
例如,在家用电器中,变压器用于调节电源电压,以适应不同设备的电压需求。
6. 变压器的维护与安全:为确保变压器正常运行,需要定期进行检修和维护。
同时,应注意防止变压器过载、短路等事故,确保使用安全。
总之,变压器是一种重要的电气设备,它通过电磁感应实现电压的转换。
了解变压器的工作原理、分类和应用,有助于我们更好地在实际工程中选择和使用合适的变压器。
简述变压器的工作原理及作用

简述变压器的工作原理及作用
一、工作原理
变压器是一种用来改变交流电压的电气设备,其工作原理基于电磁感应定律。
当交流电流通过变压器的初级线圈时,产生一个交变磁场,这个磁场会穿过次级线圈,导致次级线圈中感应出电动势,并使次级线圈中的电流产生变化。
根据法拉第电磁感应定律,磁场的变化会导致次级线圈中电压的变化,从而实现了电压的升高或降低。
二、作用
1.电压变换:变压器可以将输入的交流电压升高或降低到需要的电压
值,满足不同电器设备的工作要求。
2.功率匹配:通过变压器可以实现输入端和输出端功率的匹配,避免
电路中功率的浪费和损耗。
3.隔离保护:变压器能够提供电气设备之间的电气隔离,保护电气设
备和人员的安全。
4.电流调节:通过变压器可以控制电路中的电流大小,实现对电流的
调节和限制。
5.电能传输:变压器在电力传输和配电系统中起到重要作用,将发电
厂产生的高压电能转换为低压用于供电。
综上所述,变压器是电气工程中常用的设备之一,通过改变电压实现对电路的调节和保护,对于电力系统的稳定运行和电气设备的正常工作都至关重要。
变压器的主要结构和工作原理

变压器的主要结构和工作原理引言概述:变压器是电力系统中常见的电力设备之一,它在电能传输和分配中起着重要的作用。
本文将详细介绍变压器的主要结构和工作原理,以帮助读者更好地理解和应用变压器。
正文内容:一、变压器的主要结构1.1 主要结构组成- 主要由铁芯、一次绕组和二次绕组组成。
- 铁芯是变压器的主要磁路部分,通常由硅钢片叠压而成,以减小磁导率和磁阻。
- 一次绕组是输入侧的绕组,通常由导电材料绕制而成。
- 二次绕组是输出侧的绕组,也由导电材料绕制而成。
1.2 绝缘和冷却系统- 变压器的绝缘系统是保证安全运行的关键,通常使用绝缘材料将绕组和铁芯分隔开。
- 冷却系统对于变压器的正常运行至关重要,常见的冷却方式有自然冷却和强制冷却。
1.3 外壳和配电设备- 变压器通常有一个外壳,用于保护内部部件免受外界环境的影响。
- 配电设备包括开关、熔断器和保护装置等,用于控制和保护变压器的正常运行。
二、变压器的工作原理2.1 电磁感应原理- 变压器的工作基于电磁感应原理,当一次绕组通入交流电时,会在铁芯中产生交变磁场。
- 交变磁场会感应二次绕组中的电动势,从而使电能从一次绕组传递到二次绕组。
2.2 变压器的变压比- 变压器的变压比是指输入电压与输出电压之间的比值,可以通过绕组的匝数比来确定。
- 变压器可以实现电压的升高或降低,根据需要选择合适的变压比。
2.3 损耗和效率- 变压器在工作过程中会产生一定的损耗,包括铁损耗和铜损耗。
- 效率是衡量变压器性能的重要指标,可以通过输出功率与输入功率的比值来计算。
三、变压器的应用领域3.1 电力系统- 变压器在电力系统中用于电能传输和分配,将发电厂产生的高压电能转换为适用于用户的低压电能。
- 在输电过程中,变压器可以实现电压的升高,减少输电损耗。
3.2 工业领域- 变压器在工业领域中广泛应用于电力设备、机械设备和照明系统等。
- 它可以为各种设备提供合适的电压和电流,满足工业生产的需求。
变压器结构与原理相关知识讲解

二、变压器的工作原理
• 简单的说,变压器的工作原理就是电磁 感应原理,也就是“动电生磁,动磁生 电”的过程。
U1
n1 n2
U2
U1
U2
电路中的符号
跟电源连接的线圈叫原线圈,也叫初级线圈,跟 负载连接的线圈叫副线圈,也叫次级线圈,两线圈由 绝缘导线绕制,铁芯由涂有绝缘漆的硅钢片叠合而 成.
变压器的变压原理
冷却器
• 直接装配在变压器油箱壁上,对于强迫 油循环风冷变压器,电动泵从油箱顶部 抽出热油送入散热器管簇中,这些管簇 的外表受到来自风扇的冷空气吹拂,使 热量散失到空气中去,经过冷却后的油 从变压器油箱底部重新回到变压器油箱 内。无论电动泵装在冷却器上部还是下 部,其作用是一样的。
绝缘套管
• 变压器绕组的引出线从油箱内部引到箱 外时必须经过绝缘套管,使引线与油箱 绝缘。绝缘套管一般是陶瓷的,其结构 取决于电压等级。1kV以下采用实心磁套 管,10~35kV采用空心充气或充油式套 管,110kV及以上采用电容式套管。为了 增大外表面放电距离,套管外形做成多 级伞形裙边。电压等级越高,级数越多。
(1)电动势关系 由于电磁感应现象,原、副线圈中具有相同
的t.根据电磁感应定律有:
E1
n1
t
、E2
n2
t
所以, E1 n1 E2 n2
(2)电压关系
如果不计原、副线圈的电阻,则有 :
U1 E1、U2 E2 所以: U1 n1
U 2 n2
所以,只要匝数不同,就可得到不同输出电压, 这就变压器的变压原理。
铁心和绕组是变压器的主要部件,称为 器身,如图 ,器身放在油箱内部。
• 变压器是通过电磁感应实现两个电路之 间能量的,因此它必须具有电路和磁路 两个基本部分。
变压器知识介绍

注意三相变压器的端电压指线电压U线值。
(3)、额定电流安培数。指在额定容量和允 许温升条件下,初级线圈和次级线圈允许 长期通过的线电流I线值。
(4)、电压比。指初级线圈额定电压与次级 线圈额定电压之比。
(5)、接线方式。单相变压器仅有高低压各 一组线圈,只供给单相使用,三相变压器 则有Y/△式。 除以上技术数据外,还有变 压器的额定频率、相数、温升、变压器的
可用下式表示:初级线圈电流/次级线圈电
流=次级线圈匝数/初级线圈匝数。
9、什么是变压器的电压变化率?
调压器的电压变化率是变压器的主要性能 指标之一。当变压器向负载供电时,在变 压器的负载端的电压必然会下降,将下降 的电压值与额定电压值相比,取百分数即 电压变化率,
可用公式表示;电压变化率=[(次级额定 电压-负载端电压)/次级额定电压]×100%。 通常的电力变压器,接上额定负载时,电 压变化率为4~6%。
由于次级线圈绕在同一铁芯上,磁力线切 割次级线圈,次级线圈上必然产生感应电 动势,使线圈两端出现电压。因磁力线是 交变的,所以次级线圈的电压也是交变的。 而且频率与电源频率完全相同。
经理论证实,变压器初级线圈与次级线圈 电压比和初级线圈与次级线圈的匝数比值 有关,可用下式表示:初级线圈电压/次级 线圈电压=初级线圈匝数/次级线圈匝数 说 明Βιβλιοθήκη 数越多,电压就越高。因此可以看出,
在正常运行时,应使变压器承受的用电负 荷为变压器额定容量的75~90%左右。运 行中如实测出变压器实际承受负荷50小于 %时,应更换小容量变压器,如大于变压 器额定容量应立即更换大变压器。
阻抗百分比等。
14,怎样选择变压器?如何确定变压器的 合理容量?
首先要调查用电地方的电源电压,用户的 实际用电负荷和所在地方的条件,然后参 照变压器铭牌标示的技术数据逐一选择, 一般应从变压器容量、电压、电流及环境 条件综合考虑,其中容量选择应根据用户 用电设备的容量、性质和使用时间来确定 所需的负荷量,以此来选择变压器容量。
16个变压器基本常识

16个变压器基本常识变配电运行中,变压器必不可少,熟悉和掌握变压器的基本常识是非常有必要的,变压器的基本知识储备是每一个电力人必备的技能!1、什么叫变压器?在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。
例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必须通过降压变成适用的电压等级,供给动力设备及日常用电设备使用。
2、变压器是怎样变换电压的?变压器是根据电磁感应制成的。
它由一个用硅钢片(或矽钢片)叠成的铁芯和绕在铁芯上的两组线圈构成,铁芯与线圈间彼此相互绝缘,没有任何电的联系,如图所示。
我们将变压器和电源一侧连接的线圈叫初级线圈(或叫原边),把变压器和用电设备连接的线圈叫作次级线圈(或副边)。
当将变压器的初级线圈接到交流电源上时,铁芯中就会产生变化的磁力线。
由于次级线圈绕在同一铁芯上,磁力线切割次级线圈,次级线圈上必然产生感应电动势,使线圈两端出现电压。
因磁力线是交变的,所以次级线圈的电压也是交变的。
而且频率与电源频率完全相同。
经理论证实,变压器初级线圈与次级线圈电压比和初级线圈与次级线圈的匝数比值有关,可用下式表示:初级线圈电压/次级线圈电压=初级线圈匝数/次级线圈匝数说明匝数越多,电压就越高。
因此可以看出,次级线圈比初级线圈少,就是降压变压器。
相反则为升压变压器。
3、变压器设计有哪些类型?按相数分有单相和三相变压器。
按用途分有电力变压器,专用电源变压器,调压变压器,测量变压器(电压互感器、电流互感器),小型电源变压器(用于小功率设备),安全变压器,按结构分有芯式和壳式两种。
线圈有双绕组和多绕组,自耦变压器,按冷却方式分有油浸式和空气冷却式。
4、变压器部件是由哪些部分组成的?变压器部件主要是由铁芯、线圈组成,此外还有油箱、油枕、绝缘套管及分接开头等。
5、变压器油有什么用处?变压器油的作用是:(1)绝缘作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
變壓器原理和常識作者:power 来源:网络点击:556 日期:2007-09-04變壓器的功能主要有:電壓變換、阻抗變換、隔離、穩壓(磁飽和變壓器)等.基本工作原理當一個正弦交流電壓U1加在初級線圈兩端時,導線中就有電流I1並產生交變磁通ф1,它沿著鐵心穿過初級線圈和次級線圈形成閉合的磁路,在次級線圈中感應出互感電勢U2,同時ф1也會在初級線圈上感應出一個自感電勢E1,E1的方向與所加電壓U1方向相反而幅度相近,從而限制了I1的大小.為了保持磁通ф1的存在就需要有一定的電能消耗,並且變壓器本身也有一定的損耗,儘管此時次級沒接負載,初級線圈中仍有一定的電流,這個電流我們稱為“空載電流”.如果次級接上負載,次級線圈就產生電流I2,並因此而產生磁通ф2,ф2的方向與ф1相反,起了互相抵消的作用,使鐵心中總的磁通量有所減少,從而使初級自感電壓E1減少,其結果使I1增大,可見初級電流與次級負載有密切關係.當次級負載電流加大時I1增加,ф1也增加,並且ф1增加部分正好補充了被ф2所抵消的那部分磁通,以保持鐵心裏總磁通量不變.如果不考慮變壓器的損耗,可以認為一個理想的變壓器次級負載消耗的功率也就是初級從電源取得的電功率.變壓器能根據需要通過改變次級線圈的圈數而改變次級電壓,但是不能改變允許負載消耗的功率.變壓器的損耗當變壓器的初級繞組通電後,線圈所產生的磁通在鐵心流動,因為鐵心本身也是導體,在垂直於磁力線的帄面上就會感應電勢,這個電勢在鐵心的斷面上形成閉合回路並產生電流,好象一個旋渦所以稱為“渦流”.這個“渦流”使變壓器的損耗增加,並且使變壓器的鐵心發熱變壓器的溫升增加.由“渦流”所產生的損耗我們稱為“鐵損”.另外要繞制變壓器需要用大量的銅線,這些銅導線存在著電阻,電流流過時這電阻會消耗一定的功率,這部分損耗往往變成熱量而消耗,我們稱這種損耗為“銅損”.所以變壓器的溫升主要由鐵損和銅損產生的.由於變壓器存在著鐵損與銅損,所以它的輸出功率永遠小於輸入功率,為此我們引入了一個效率的參數來對此進行描述,η=輸出功率/輸入功率.變壓器的材料1、鐵心材料變壓器使用的鐵心材料主要有鐵片、低矽片,高矽片,的鋼片中加入矽能降低鋼片的導電性,增加電阻率,它可減少渦流,使其損耗減少.我們通常稱為加了矽的鋼片為矽鋼片,變壓器的品質所用的矽鋼片的品質有很大的關係,矽鋼片的品質通常用磁通密度B來表示,一般黑鐵片的B值為6000-8000、低矽片為9000-11000,高矽片為12000-16000, 鐵心形狀一般有E型和C型鐵心.2、繞線材料有漆包線,沙包線,絲包線等.對於導線的要求,是導電性能好,絕緣漆層有足夠耐熱性能,並且要有一定的耐腐蝕能力.一般情況下最好用Q2型號的高強度的聚脂漆包線.3、絕緣材料在繞制變壓器中,線圈框架層間的隔離、繞阻間的隔離,均要使用絕緣材料,一般的變壓器框架材料可用酚醛紙板製作,層間可用聚脂薄膜或電話紙作隔離,繞阻間可用黃臘布作隔離.4、浸漬材料:變壓器繞制好後,還要過最後一道工序,就是浸漬絕緣漆,它能增強變壓器的機械強度、提高絕緣性能、延長使用壽命,一般情況下,可採用甲酚清漆作為浸漬材料.磁性材料:概述:磁性是物質的基本屬性之一.磁性現象是與各種形式的電荷運動相關聯的,由於物質內部的電子運動和自旋會產生一定大小的磁場,因而產生磁性.一切物質都具有磁性.自然界的按磁性的不同可以分為順磁性物質,抗磁性物質,鐵磁性物質,反鐵磁性物質,以及亞鐵磁性物質,其中鐵磁性物質和亞鐵磁性物質屬於強磁性物質,通常將這兩類物質統稱為磁性材料.磁性材料的分類,性能特點和用途:1 鐵氧體磁性材料,一般是指氧化鐵和其他金屬氧化物的符合氧化物.他們大多具有亞鐵磁性. 特點:電阻率遠比金屬高,約為1-10(12次方)歐/釐米,因此渦損和趨膚效應小,適於高頻使用.飽和磁化強度低,不適合高磁密度場合使用.居裏溫度比較低.2 鐵磁性材料:指具有鐵磁性的材料.例如鐵鎳鈷及其合金, 某些稀土元素的合金.在居裏溫度以下,加外磁時材料具有較大的磁化強度.3 亞鐵磁性材料:指具有亞鐵磁性的材料,例如各種鐵氧體,在奈爾溫度以下,加外磁時材料具有較大的磁化強度.4 永磁材料:磁體被磁化厚去除外磁場仍具有較強的磁性,特點是矯頑力高和磁能積大.可分為三類,金屬永磁,例,鋁鎳鈷,稀土鈷,銣鐵硼等.鐵氧體永磁,例,鋇鐵氧體,鍶鐵氧體,其他永磁,如塑膠等.5 軟磁材料:容易磁化和退磁的材料.錳鋅鐵氧體軟磁材料,其工作頻率在1K-10M之間.鎳鋅鐵氧體軟磁材料,工作頻率一般在1-300MHZ金屬軟磁材料:同鐵氧體相比具有高飽和磁感應強度和低的矯頑力,例如工程純鐵, 鐵鋁合金, 鐵鈷合金,鐵鎳合金等,常用於變壓器等.術語:1 飽和磁感應強度:(飽和磁通密度)磁性體被磁化到飽和狀態時的磁感應強度.在實際應用中, 飽和磁感應強度往往是指某一指定磁場(基本上達到磁飽和時的磁場)下的磁感應強度.2 剩磁感應強度:從磁性體的飽和狀態,把磁場(包括自退磁場)單調的減小到0的磁感應強度.3 磁通密度矯頑力, 他是從磁性體的飽和磁化狀態,沿飽和磁滯回線單調改變磁場強度, 使磁感應強度B 減小到0時的磁感應強度.4 內稟矯頑力:從磁性體的飽和磁化狀態使磁化強度M減小到0的磁場強度.5 磁能積:在永磁體的退磁曲線上的任意點的磁感應強度和磁場強度的乘積.6 起始磁導率:磁性體在磁中性狀態下磁導率的極限值.7 損耗角正切:他是串聯複數磁導率的虛數部分與實數部分的比值,其物理意義為磁性材料在交變磁場的每週期中,損耗能量與儲存能量的2派之比.8 比損耗角正切:這是材料的損耗角正切與起始導磁率的比值.9 溫度係數:在兩個給定溫度之間,被測的變化量除以溫度變化量.10 磁導率的比溫度係數:磁導率的溫度係數與磁導率的比值.11 居裏溫度:在此溫度上, 自發磁化強度為零, 即鐵磁性材料(或亞磁性材料)由鐵磁狀態(或亞鐵磁狀態)轉變為順磁狀態的臨界溫度.磁性材料的命名方法:由4部分組成:1 材料類冸:以中文拼音的第一個字母表示,R—軟磁,Y—永磁, X ---旋磁,J---矩磁,A---壓磁.2 材料的性能,用數位表示.3 材料的特徵以中文拼音表示.4 序號.第三部分的特徵代號:(僅限於軟磁材料)Q—高Q B—高BS U—寬溫度範圍X—小溫度係數H—低磁滯損耗F—高使用頻率D—高密度T—高居裏溫度Z—正小溫度係數鐵氧體零件的命名方法:1 零件的用途和形狀,以拼音或英文表示.2 區冸第一部分相同而形狀不同的零件,以中文拼音字母表示.3 零件的規格,以零件的特徵尺寸或序號表示.4 材料牌號, 零件的等級或使用範圍.磁粉芯是由鐵磁性粉粒與絕緣介質混合壓制而成的一種軟磁材料.由於鐵磁性顆粒很小(高頻下使用的為0.5~5 微米),又被非磁性電絕緣膜物質隔開,因此,一方面可以隔絕渦流,材料適用於較高頻率;另一方面由於顆粒之間的間隙效應,導致材料具有低導磁率及恒導磁特性;又由於顆粒尺寸小,基本上不發生集膚現象,磁導率隨頻率的變化也就較為穩定.主要用於高頻電感.磁粉芯的磁電性能主要取決於粉粒材料的導磁率、粉粒的大小和形狀、它們的填充係數、絕緣介質的含量、成型壓力及熱處理工藝等.常用的磁粉芯有鐵粉芯、坡莫合金粉芯及鐵矽鋁粉芯三種.磁芯的有效磁導率μe及電感的計算公式為: μe = DL/4N2S ×109 其中:D 為磁芯帄均直徑(cm),L為電感量(享),N 為繞線匝數,S為磁芯有效截面積(cm2).常用鐵粉芯是由碳基鐵磁粉及樹脂碳基鐵磁粉構成.在粉芯中價格最低.飽和磁感應強度值在1.4T左右;磁導率範圍從22~100;初始磁導率μi隨頻率的變化穩定性好;直流電流疊加性能好;但高頻下損耗高.鐵粉芯是磁性材料四氧化三鐵的通俗說法,主要應用於電器回路中解決電磁相容性(EMC)問題.實際應用時,根據不同波段下對濾波要求不同會添加各種不同的其他物質(一般為企業機密).電磁相容是指電器回路中由於各種不同原因產生的雜波,這些雜波不僅對電器回路的正常運轉有妨害,而且其輻射對人體有一定害處.所以各國(尤其是歐盟)對此有各種規定,即電磁相容性(EMC).電線上面的雜波主要通過磁環來解決其電磁相容性問題.當一定波段的雜波通過磁環時,磁環的電磁特性導致這一波段的電流被轉化為磁力以及部分熱量從而被消耗掉.來達到降低雜波的目的.磁環的材料目前比較多的是鐵粉芯(價格低廉,應用廣泛),高級的還有稀土材料等.實驗表明,任何物質在外磁場中都能夠或多或少地被磁化,只是磁化的程度不同.根據物質在外磁場中表現出的特性,物質可粗略地分為三類:順磁性物質,抗磁性物質,鐵磁性物質.根據分子電流假說,物質在磁場中應該表現出大體相似的特性,但在此告訴我們物質在外磁場中的特性差冸很大.這反映了分子電流假說的局限性.實際上,各種物質的微觀結構是有差異的,這種物質結構的差異性是物質磁性差異的原因.我們把順磁性物質和抗磁性物質稱為弱磁性物質部鐵磁性物質稱為強磁性物質.通常所說的磁性材料是指強磁性物質.磁性材料按磁化後去磁的難易可分為軟磁性材料和硬磁性材料.磁化後容易去掉磁性的物質叫軟磁性材料,不容易去碰的物質叫硬磁性材料.一般來講軟磁性材料剩磁較小.硬磁性材料剩磁較大.磁性材料按化學成份分,常見的有兩大類:金屬磁性材料和鐵氧體.鐵氧體是以氧化鐵為主要成分的磁性氧化物.軟磁性材料的剩磁弱,而且容易去磁.適用於需要反復磁化的場合.可以用來製造半導體收音機的天線磁棒、答錄機的磁頭、電子電腦中的記憶元件,以及變壓器、交流發電機、電磁鐵和各種高頻元件的鐵芯等.常見的金屬軟磁性材料有軟鐵、矽鋼、鎳鐵合金等,常見的軟磁鐵氧體有錳鋅鐵氧體、鎳鋅\\\\鐵氧體等.硬磁性材料的剩磁強,而且不易退磁,適合製成永磁鐵,應用在磁電式儀錶、揚聲器、話筒、永磁電機等電器設備中.常見的金屬硬磁性材料有碳鋼、鎢鋼、鋁鎳鈷合金等,常見的硬磁鐵氧體為鋇鐵氧體和鋸鐵氧體.Saturation (CoEv) 飽和當磁化力(H)增加時,如果磁性材料中的磁通密度(B)沒有相應地隨之增加,這時稱作飽和.飽和與磁芯的磁性有關.每種材料都只能儲存一定數量的磁通密度.超出這個磁通密度,磁芯的導磁率將急遽下降,結果導致電感量下降.Saturation (Raychem) 飽和在磁性材料能夠存在的最大磁通量.Saturation Flux Density飽和磁通密度磁性材料飽和時的磁通磁度.Saturation Current (CoEv) 飽和電流在電感器中流過的直流偏置電流,和沒有直流偏置電流時的電感量相比較,它會引起電感量下降一個規定的數值.在用於儲能的情況下,對於鐵氧體磁芯規定這個數值是下降10%,對於鐵粉磁芯則規定這個數值是下降20%.Saturation Current (Raychem) 飽和電流在電感器中流過、引起電感量下降一個規定數量的直流偏置電流.電感量下降的數量是從直流電流為零時的電感量開始計算.通常電感量下降的數量規定為1%和20%.鐵氧體磁心的電感量下降規定為10%,用於儲存能量的粉末磁心的電感量下降規定為20%.直流偏置電流之所以會引起電感下降是與磁心的磁性有關.磁心和磁心周圍的空間只能存儲一定量的磁能.超出磁通密度最大點以後,磁心的導磁率降低.因此,電感隨之下降.空心電感並不存在磁心飽和的問題.電感值跟導磁率成正比,導磁率=B/HB 是磁通密度H 是磁場強度B跟H不懂沒關係,再簡單一點說,B場就是簡單的我們實實在在感覺到的磁場,只要B不等於零,我們就會實實在在的感受到磁場,H是由電流產生的磁場,有時候,看簡單一點,H跟外加電流成正比就是了.你就簡單當是你加的電流也可以啦.飽和磁通密度嘛就是我們的磁性材料不好嘛,這沒辦法呀,是磁性材料的特性呀.(如果不滿意,找飛利浦算帳,ferrite是他們發明的.)一定會飽和啦,我們對磁性材料慢慢外加電流,磁流密度會跟著增加,當加電流至某一程度時,我們會發現,磁通密求會增加得很慢,而且會趨近一漸近線.當趨近這一漸近線時,這時的磁通密度,我們就稱為飽和磁通密度,飽和磁通密度幹什麼的?有什麼重要?電感值跟導磁率成正比,導磁率=B/HB 是磁通密度,H是磁場強度(電流增加,H會增加.)H 會增加,但B不會增加,那會有什麼很果,那很簡單嘛,導磁率會趨近零啦!電感值跟導磁率成正比,導磁率趨近零,那電感值會是多少?當然是會沒感值啦!沒感值的電感還是電感嗎?沒感值的變壓器會感應磁場嗎?都不會啦!加電流到了飽和磁通密度,那已經是沒有感值的東西,不是電感或者是變壓器了!簡單吧!如果要瞭解磁性材料的磁滯曲線長成什麼樣子,我有空會貼給出來.導磁率跟磁滯曲線是一致的.產品應用時,磁滯曲線是怎麼跑的;而且導磁率是複數,不單是複數,而且是張量.(反正是很恐怖的數學就是了,真的很恐怖喔,不然我也不會忘記!)不過,做電感或變壓器,瞭解到複數就夠應用了.Bs高:相同的磁通需要較小磁心截面積,磁性元件體積小.低頻時Bs限制了最大工作磁通密度,高頻時,主要是損耗限制了磁通密度的選取,Bs顯得並不重要.事實上Bs基本上跟飽和電流關係不大,Bs-Br才決定了飽和的電流,因為這個會使得B-H曲線更加傾斜,單純的Bs不會有此決定意義.同一條磁化曲線,不同變壓器工作點不同.電流互感器工作於曲線直線部分.工頻電源變壓器工作於磁化曲線靠近飽和部分.直流變換器和開關電源變壓器磁化曲線的飽和點是一個重要參數,不可自由選擇.輸出變壓器和阻流圈又要求磁性材料的導磁率、小脈衝變壓器則要求脈衝導磁率.大脈衝變壓器則要求、Bs-Br,諸此等等.一軟磁材料的發展軟磁材料在工業中的應用始於19世紀末.隨著電力工及電訊技術的興起,開始使用低碳鋼製造電機和變壓器,在電話線路中的電感線圈的磁芯中使用了細小的鐵粉、氧化鐵、細鐵絲等.到20世紀初,研製出了矽鋼片代替低碳鋼,提高了變壓器的效率,降低了損耗.直至現在矽鋼片在電力工業用軟磁材料中仍居首位.到20年代,無線電技術的興起,促進了高導磁材料的發展,出現了坡莫合金及坡莫合金磁粉芯等.從40年代到60年代,是科學技術飛速發展的時期,雷達、電視廣播、積體電路的發明等,對軟磁材料的要求也更高,生產出了軟磁合金薄帶及軟磁鐵氧體材料.進入70年代,隨著電訊、自動控制、電腦等行業的發展,研製出了磁頭用軟磁合金,除了傳統的晶態軟磁合金外,又興起了另一類材料—非晶態軟磁合金.二常用軟磁磁芯的種類鐵、鈷、鎳三種鐵磁性元素是構成磁性材料的基本組元. 按(主要成分、磁性特點、結構特點)製品形態分類: (1) 粉芯類: 磁粉芯,包括:鐵粉芯、鐵矽鋁粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、鐵氧體磁芯(2) 帶繞鐵芯:矽鋼片、坡莫合金、非晶及納米晶合金三常用軟磁磁芯的特點及應用(一) 粉芯類1. 磁粉芯磁粉芯是由鐵磁性粉粒與絕緣介質混合壓制而成的一種軟磁材料.由於鐵磁性顆粒很小(高頻下使用的為0.5~5 微米),又被非磁性電絕緣膜物質隔開,因此,一方面可以隔絕渦流,材料適用於較高頻率;另一方面由於顆粒之間的間隙效應,導致材料具有低導磁率及恒導磁特性;又由於顆粒尺寸小,基本上不發生集膚現象,磁導率隨頻率的變化也就較為穩定.主要用於高頻電感.磁粉芯的磁電性能主要取決於粉粒材料的導磁率、粉粒的大小和形狀、它們的填充係數、絕緣介質的含量、成型壓力及熱處理工藝等. 常用的磁粉芯有鐵粉芯、坡莫合金粉芯及鐵矽鋁粉芯三種. 磁芯的有效磁導率μe及電感的計算公式為: μe = DL/4N2S ×109 其中:D 為磁芯帄均直徑(cm),L為電感量(享),N 為繞線匝數,S為磁芯有效截面積(cm2).(1) 鐵粉芯常用鐵粉芯是由碳基鐵磁粉及樹脂碳基鐵磁粉構成.在粉芯中價格最低.飽和磁感應強度值在1.4T左右;磁導率範圍從22~100;初始磁導率μi隨頻率的變化穩定性好;直流電流疊加性能好;但高頻下損耗高.(2)坡莫合金粉芯坡莫合金粉芯主要有鉬坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux). MPP 是由81%Ni、2%Mo及Fe粉構成.主要特點是:飽和磁感應強度值在7500Gs左右;磁導率範圍大,從14~550;在粉末磁芯中具有最低的損耗;溫度穩定性極佳,廣泛用於太空設備、露天設備等;磁致伸縮係數接近零,在不同的頻率下工作時無雜訊產生.主要應用於300kHz以下的高品質因素Q濾波器、感應負載線圈、諧振電路、在對溫度穩定性要求高的LC電路上常用、輸出電感、功率因素補償電路等, 在AC電路中常用, 粉芯中價格最貴. 高磁通粉芯HF是由50%Ni、50%Fe粉構成.主要特點是:飽和磁感應強度值在15000Gs 左右;磁導率範圍從14~160;在粉末磁芯中具有最高的磁感應強度,最高的直流偏壓能力;磁芯體積小.主要應用於線路濾波器、交流電感、輸出電感、功率因素校正電路等, 在DC 電路中常用,高DC 偏壓、高直流電和低交流電上用得多.價格低於MPP.(3) 鐵矽鋁粉芯(Kool MμCores) 鐵矽鋁粉芯由9%Al、5%Si, 85%Fe粉構成.主要是替代鐵粉芯,損耗比鐵粉芯低80%,可在8kHz以上頻率下使用;飽和磁感在1.05T 左右;導磁率從26~125;磁致伸縮係數接近0,在不同的頻率下工作時無雜訊產生;比MPP有更高的DC偏壓能力;具有最佳的性能價格比.主要應用於交流電感、輸出電感、線路濾波器、功率因素校正電路等.有時也替代有氣隙鐵氧體作變壓器鐵芯使用.2. 軟磁鐵氧體(Ferrites) 軟磁鐵氧體是以Fe2O3為主成分的亞鐵磁性氧化物,採用粉末冶金方法生產.有Mn-Zn、Cu-Zn、Ni-Zn等幾類,其中Mn-Zn鐵氧體的產量和用量最大,Mn-Zn鐵氧體的電阻率低,為1~10 歐姆/米,一般在100kHZ以下的頻率使用.Cu-Zn、Ni-Zn鐵氧體的電阻率為102~104歐姆/米,在100kHz~10 兆赫的無線電頻段的損耗小,多用在無線電用天線線圈、無線電中頻變壓器.磁芯形狀種類豐富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圓形等.在應用上很方便.由於軟磁鐵氧體不使用鎳等稀缺材料也能得到高磁導率,粉末冶金方法又適宜於大批量生產,因此成本低,又因為是燒結物硬度大、對應力不敏感,在應用上很方便.而且磁導率隨頻率的變化特性穩定,在150kHz以下基本保持不變.隨著軟磁鐵氧體的出現,磁粉芯的生產大大減少了,很多原來使用磁粉芯的地方均被軟磁鐵氧體所代替. 國內外鐵氧體的生產廠家很多,在此僅以美國的Magnetics公司生產的Mn-Zn鐵氧體為例介紹其應用狀況.分為三類基本材料:電信用基本材料、寬頻及EMI材料、功率型材料. 電信用鐵氧體的磁導率從750~2300, 具有低損耗因數、高品質因素Q、穩定的磁導率隨溫度/時間關係, 是磁導率在工作中下降最慢的一種,約每10年下降3%~4%.廣泛應用于高Q濾波器、調諧濾波器、負載線圈、阻抗匹配變壓器、接近感測器.寬頻鐵氧體也就是常說的高導磁率鐵氧體,磁導率分冸有5000、10000、15000.其特性為具有低損耗因數、高磁導率、高阻抗/頻率特性.廣泛應用於共模濾波器、飽和電感、電流互感器、漏電保護器、絕緣變壓器、信號及脈衝變壓器,在寬頻變壓器和EMI上多用.功率鐵氧體具有高的飽和磁感應強度,為4000~5000Gs.另外具有低損耗/頻率關係和低損耗/溫度關係.也就是說,隨頻率增大、損耗上升不大;隨溫度提高、損耗變化不大.廣泛應用於功率扼流圈、並列式濾波器、開關電源變壓器、開關電源電感、功率因素校正電路.(二) 帶繞鐵芯1. 矽鋼片鐵芯矽鋼片是一種合金,在純鐵中加入少量的矽(一般在4.5%以下)形成的鐵矽系合金稱為矽鋼.該類鐵芯具有最高的飽和磁感應強度值為20000Gs;由於它們具有較好的磁電性能,又易於大批生產,價格便宜,機械應力影響小等優點,在電力電子行業中獲得極為廣泛的應用,如電力變壓器、配電變壓器、電流互感器等鐵芯.是軟磁材料中產量和使用量最大的材料.也是電源變壓器用磁性材料中用量最大的材料.特冸是在低頻、大功率下最為適用.常用的有冷軋矽鋼薄板DG3、冷軋無取向電工鋼帶DW、冷軋取向電工鋼帶DQ,適用於各類電子系統、家用電器中的中、小功率低頻變壓器和扼流圈、電抗器、電感器鐵芯,這類合金韌性好,可以沖片、切割等加工,鐵芯有疊片式及捲繞式.但高頻下損耗急劇增加,一般使用頻率不超過400Hz.從應用角度看,對矽鋼的選擇要考慮兩方面的因素:磁性和成本.對小型電機、電抗器和繼電器,可選純鐵或低矽鋼片;對於大型電機,可選高矽熱軋矽鋼片、單取向或無取向冷軋矽鋼片;對變壓器常選用單取向冷軋矽鋼片.在工頻下使用時,常用帶材的厚度為0.2~0.35毫米;在400Hz下使用時,常選0.1毫米厚度為宜.厚度越薄,價格越高.2. 坡莫合金坡莫合金常指鐵鎳系合金,鎳含量在30~90%範圍內.是應用非常廣泛的軟磁合金.通過適當的工藝,可以有效地控制磁性能,比如超過105的初始磁導率、超過106的最大磁導率、低到2‰奧斯特的矯頑力、接近1或接近0的矩形係數,具有面心立方晶體結構的坡莫合金具有很好的塑性,可以加工成1μm的超薄帶及各種使用形態.常用的合金有1J50、1J79、1J85等.1J50 的飽和磁感應強度比矽鋼稍低一些,但磁導率比矽鋼高幾十倍,鐵損也比矽鋼低2~3倍.做成較高頻率(400~8000Hz)的變壓器,空載電流小,適合製作100W以下小型較高頻率變壓器.1J79 具有好的綜合性能,適用於高頻低電壓變壓器,漏電保護開關鐵芯、共模電感鐵芯及電流互感器鐵芯.1J85 的初始磁導率可達十萬以上,適合於作弱信號的低頻或高頻輸入輸出變壓器、共模電感及高精度電流互感器等.3. 非晶及納米晶軟磁合金(Amorphous and Nanocrystalline alloys) 矽鋼和坡莫合金軟磁材料都是晶態材料,原子在三維空間做規則排列,形成週期性的點陣結構,存在著晶粒、晶界、位錯、間隙原子、磁晶各向異性等缺陷,對軟磁性能不利.從磁性物理學上來說,原子不規則排列、不存在週期性和晶粒晶界的非晶態結構對獲得優異軟磁性能是十分理想的.非晶態金屬與合金是70年代問世的一個新型材料領域.它的製備技術完全不同于傳統的方法,而是採用了冷卻速度大約為每秒一百萬度的超急冷凝固技術,從鋼液到薄帶成品一次成型,比一般冷軋金屬薄帶製造工藝減少了許多中間工序,這種新工藝被人們稱之為對傳統冶金工藝的一項革命.由於超急冷凝固,合金凝固時原子來不及有序排列結晶,得到的固態合金是長程無序結構,沒有晶態合金的晶粒、晶界存在,稱之為非晶合金,被稱為是冶金材料學的一項革命.這種非晶合金具有許多獨特的性能,如優異的磁性、耐蝕性、耐磨性、高的強度、硬度和韌性,高的電阻率和機電耦合性能等.由於它的性能優異、工藝簡單,從80年代開始成為國內外材料科學界的研究開發重點.目前美、日、德國已具有完善的生產規模,並且大量的非晶合金產品逐漸取代矽鋼和坡莫合金及鐵氧體湧向市場.。