衡水中学二轮---“立体几何”题

合集下载

【高三数学之衡水中学】立体几何(附答案)

【高三数学之衡水中学】立体几何(附答案)
(1)证明: 平面 ;
(2)求平面 与平面 所成的锐二面角的余弦值.
专题02 函数概念与基本初等函数
一ቤተ መጻሕፍቲ ባይዱ单选题
1.【2020届河北省衡水中学高三下学期第一次模拟数学(理)】函数 的图象可能是( )
A. B.
C. D.
【答案】A
【解析】因为 为偶函数,定义域为 ,故排除C,D;当 时, ,排除B,故选:A.
C.f(c)>f(b)>f(a)D.f(c)>f(a)>f(b)
【答案】D
【解析】因为函数f(x)=x2在(0,+∞)上单调递增,而0< =log53<log54<1< ,所以f(b)<f(a)<f(c).
故选:D.
10.【河北省衡水中学2021届全国高三第二次联合考试(新高考)】命题 关于 的不等式 的解集为 的一个充分不必要条件是( )
(1)求证: ;
(2)若二面角 的平面角为 ,求平面 与平面 夹角的余弦值.
4. 【河北省衡水中学2021届高三上学期四调】如图,在四棱锥 中,平面 底面 ,其中底面 为等腰梯形, , , , , 为 的中点.
(1)证明: 平面 ;
(2)求二面角 的余弦值.
5. 【河北省衡水中学2021届高三数学第一次联合考试】如图,在四棱锥 中,底面 为菱形,平面 底面 , .
故选:A.
6.【河北省衡水中学2021届高三上学期期中】已知在 上的函数 满足如下条件:①函数 的图象关于 轴对称;②对于任意 , ;③当 时, ;④函数 , ,若过点 的直线 与函数 的图象在 上恰有8个交点,在直线 斜率 的取值范围是( )
A. B. C. D.
【答案】A
【解析】因为函数 是偶函数,由 得 ,

衡水中学2020届高三二轮数学专题09 立体几何(文科专用)(测)(解析版)

衡水中学2020届高三二轮数学专题09 立体几何(文科专用)(测)(解析版)

衡水中学2020届高三二轮数学立体几何单元—测【满分:100分 时间:90分钟】一、选择题(12*5=60分)1.若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“l ∥α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】由“m α⊥且l m ⊥”推出“l α⊂或l α∥”,但由“m α⊥且l α∥”可推出“l m ⊥”,所以“l m ⊥”是“l α∥”的必要而不充分条件,故选B .2. 下列命题中错误的是A .如果平面αβ⊥平面,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面αγ⊥平面,平面βγ⊥平面,=l αβ ,那么l γ⊥平面D .如果平面αβ⊥平面,那么平面α内所有直线都垂直于平面β 【答案】D【解析】对于D ,若平面平面,则平面内的某些直线可能不垂直于平面,即与平面的关系还α⊥βαββ可以是斜交、平行或在平面内,其余选项易知均是正确的.β3. 如图所示,ABCD ­A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论正确的是( )A .A ,M ,O 三点共线B .A ,M ,O ,A 1不共面C .A ,M ,C ,O 不共面D .B ,B 1,O ,M 共面【答案】A【解析】连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C , ∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.答案:A4. 在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为 (A)23π (B) 43π (C) 53π (D) 2π 【答案】C 【解析】2215121133V πππ=⋅⋅-⋅⋅=。

立体几何5作业-已转档

立体几何5作业-已转档
令 z=1,则 y=-1.所以 n=(0,-1,1). 设直线 BC 与平面 ABF 所成角为 α,则
sin α=|cos〈n,B→C〉|=|nn|·|BB→→CC|=12.
π 因此直线 BC 与平面 ABF 所成角的大小为 6 .
5.[2014·新课标全国卷Ⅱ] 如图 1-3,四棱锥 P-ABCD 中,底面 ABCD 为矩形,PA⊥平面 ABCD, E 为 PD 的中点.
∠DAB=60°,AB=2CD=2,M 是线段 AB 的中点.
图 1-3 5.解:(1)证明:连接 BD 交 AC 于点 O,连接 EO. 因为 ABCD 为矩形,所以 O 为 BD 的中点. 又 E 为 PD 的中点,所以 EO∥PB. 因为 EO⊂平面 AEC,PB⊄平面 AEC, 所以 PB∥平面 AEC. (2)因为 PA⊥平面 ABCD,ABCD 为矩形, 所以 AB,AD,AP 两两垂直. 如图,以 A 为坐标原点,A→B,AD,AP 的方向为 x 轴、y 轴、z 轴的正方向,|A→P|为单位长,
2),F(0,1,1),B→C=(1,1,0).
即(0,-1,1)·(2λ,λ,2-2λ)=0,
解得 λ=23,所以点 H 的坐标为43,23,23.
所以 PH= 4
432+232+-432=2.
.
设平面 ABF 的法向量为 n=(x,y,z),则
nn··AA→→BF==00,,即xy= +0z=,0.
由△BCD∽△MND,
得DDFE=DDAA1=2-2 a,
所以 S 梯形 BCNM=1-2-2 a2×S△BCD=4a-4 a2×8
=2a(4-a).
8,a≥2, 所以 f(a)=2a(4-a),0<a<2,
于是当 a≥2 时,该函数的最大值为 8.

衡水金卷高考数学文二轮复习立体几何作业专练及答案

衡水金卷高考数学文二轮复习立体几何作业专练及答案

衡水万卷作业卷十五文数 立体几何作业专练姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2015浙江高考真题)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m2.(2015广东高考真题)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交3.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形; ②到原点的“折线距离”等于1的点的集合是一个圆;③到(1,0),(1,0)M N -两点的“折线距离”相等的点的轨迹方程是0=x ;④到(1,0),(1,0)M N -两点的“折线距离”差的绝对值为1的点的集合是两条平行线. 其中正确的命题有( )A .1个B .2 个C .3 个D .4个4.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A .若a b ,与α所成的角相等,则a b ∥B .若a α∥,b β∥,αβ∥,则a b ∥C .若a α⊂,b β⊂,a b ∥,则αβ∥D .若a α⊥,b β⊥,αβ⊥,则a b ⊥5.已知某几何体的三视图如图所示,则该几何体的表面积等于( )A.3160B. 160C. 23264+D.2888+(第5题图) (第6题图)6.某一棱锥的三视图如上图,则其侧面积为( )A .8+.20 C . D .8+7.如图所示,四面体ABCD 的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD 的正视图,左视图,俯视图依次是(用①②③④⑤⑥代表图形)( )A .①②⑥B .①②③C .④⑤⑥D .③④⑤8.在正四棱锥P-ABCD 中,PA=2,直线PA 与平面ABCD 所成角为60°,E 为PC 的中点,则异面直线PA 与BE 所成角为A .90 B .60C . 45D .309.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q 作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )10.下列说法错误的是( )A .两两相交且不过同一点的三条直线必在同一平面内;B .过直线外一点有且只有一个平面与已知直线垂直;C .如果共点的三条直线两两垂直,那么它们中每两条 直线确定的平面也两两垂直;D .如果两条直线和一个平面所成的角相等,则这两条 直线一定平行;11.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M ,N .设BP x =,MN y =,则函数()y f x =的图象大致是( )ABCD MN P A 1B 1C 1D 112.某几何体的三视图如右图所示,则该几何体的体积为A.10B.20C.40D.60二、填空题(本大题共4小题,每小题4分,共16分)13.若右图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为 ,三棱 锥D -BCE 的体积为 .14.(2015•上海模拟)若正三棱锥的底面边长为,侧棱长为1,则此三棱锥的体积为 .15.如右图,正方体1111ABCD A B C D -的棱长为1,P 值范围是 .为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是_____(写出所有正确命题的编号). ①当102CQ <<时,S 为四边形; ②当12CQ =时,S 不为等腰梯形; ③当34CQ =时,S 与11C D 的交点R 满足113C R =;④当314CQ <<时,S 为六边形;⑤当1CQ =时,S的面积为216.一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P ,如果:将容器倒置,水面也恰好过点P 有下列四个命题: ①正四棱锥的高等于正四棱柱的高的一半;②若往容器内再注a 升水,则容器恰好能装满; ③将容器侧面水平放置时,水面恰好经过点P ;④任意摆放该容器,当水面静止时,水面都恰好经过点P .其中正确命题的序号为 (写出所有正确命题的序号)三、解答题(本大题共2小题,共24分)17.如图,在三棱锥ABC P -中,平面⊥P A C 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,2:1:=EC PE PC E 上一点,为,(1)求证:;平面PAB DE // (2);平面求证:平面ABC PDB ⊥ (3)若32==AB PD ,, 60=∠ABC ,求三棱锥ABC P -的体积.18.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,三角形ACD 是正三角形,且AD=DE=2AB ,F 是CD 的中点.(1)求证:平面CBE ⊥平面CDE ; (2)求直线EF 与平面CBE 所成角的正弦值.345正视侧视俯视3PABECD衡水万卷作业卷十五文数答案解析一、选择题 1.A【解析】试题分析:采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A. 考点:直线、平面的位置关系. 2.A解析试题分析:若直线12l l 和是异面直线,12l l αβ在平面内,在平面内l αβ是平面与平面的交线,则l 至少与12,l l 中的一条相交,故选A考点:空间点、线、面的位置关系. 3.C 4.D 5.C 6.C7.【答案】B 解析:由已知中四面体ABCD 的四个顶点是长方体的四个顶点,可得:四面体ABCD 的正视图为①, 四面体ABCD 的左视图为③, 四面体ABCD 的俯视图为②,故四面体ABCD 的三视图是①②③, 故选:B【思路点拨】由已知中的四面体ABCD 的直观图,分析出四面体ABCD 的三视图的形状,可得答案. 8.C 9.A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图 10.D 11.B 12.B二、填空题13.4, 8314.【考点】: 棱柱、棱锥、棱台的体积.【专题】: 计算题.【分析】: 过S 作SO⊥平面ABC ,根据正三棱锥的性质求的高SO ,代入体积公式计算.【解析】: 解:正三棱锥的底面边长为,侧棱长为1如图:过S 作SO⊥平面ABC ,∴OC 为底面正三角形的高,且OC=××=,∴棱锥的高SO==, ∴三棱锥的体积V=×××××=.故答案是.【点评】: 本题考查了正三棱锥的性质及体积计算,解题的关键是利用正三棱锥的性质求高.15.①②③⑤【解析】试题分析:取AB 的中点M,在DD 1上取点N,使得DN=CQ,则MN∥PQ;作AT∥MN,交直线DD 1于点T,则A 、P 、Q 、T 四点共面;①当0<CQ<12时,则0<DN<12⇒DT=2DN<1⇒S 为四边形APQT; ②当CQ=12时,则DN=12⇒DT=2DN=1⇒点T 与D 1重合⇒S 为等腰梯形APQD 1; ③当CQ=34时,则DN=34⇒DT=2DN=32⇒D 1T=12;由D 1R:TD 1=BC:DT ⇒D 1R=32⇒C 1R=13;④当34<CQ<1时,34<DN<1⇒DT=2DN∈(32,2),T 在DD 1的延长线上,设TQ 与C 1D 1交于点E,AT 与A 1D 1交于点F,则S 为五边形APQEF;当CQ=1时,点Q 与C 1重合,且DT=2⇒AT 与A 1D 1交于A 1D 1的中点F ⇒S 为菱形APC 1F ÞS 的面积=12AC 1⋅PF=12⋅2. 综上,命题正确的是:①②③⑤.. 考点:立体几何综合应用. 16.【答案】②③解析:设图(1)水的高度h 2几何体的高为h 1,底面边长为b ,图(1)中水的体积为2223b h ,图(2)中水的体积为b 2h 1-b 2h 2=b 2(h 1-h 2), 所以23b 2h 2=b 2(h 1-h 2),所以h 1=53h 2,故①错误;又水占容器内空间的一半,所以②正确;当容器侧面水平放置时,P 点在长方体中截面上,所以③正确;C假设④正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为2536b2h 2>23b 2h 2,矛盾,故④不正确.故答案为:②③.【思路点拨】可结合已知条件先判断出水的体积占整个容积的一半,再通过计算判断①④是否正确即可. 三、解答题17.(1)参考解析;(2)参考解析;(3【解析】试题分析:(1)由22==AD DC ,:1:2PE EC =,即可得到线段成比例,即得到直线平行,再根据直线与平面平行的判断定理即可得到结论.(2)由平面⊥PAC 平面ABC ,AC PD ⊥于点D ,并且AC 是平面PAC 与平面ABC 的交线,根据平面垂直的性质定理即可得PD 垂直平面ABC ,再根据平面与平面垂直的判断定理即可得到结论. (3)由22==AD DC 即可得AC=3.又由32==AB PD ,, 60=∠ABC , 在三角形ABC 中根据余弦定理即可求得BC 的值.所以三角形ABC 的面积可以求出来,由于PD 垂直于平面ABC 所以PD 为三棱锥的高,即可求得结论. (1)2,//PE ADDE PA EC DC==∴, 2分 ,PAB DE 平面⊄ ,PAB PA 平面⊂;平面PAB DE //∴ 3分(2)因为平面⊥PAC 平面ABC ,且平面PAC 平面ABC AC =,PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC , 6分 又⊂PD 平面PAC ,所以平面⊥PAC 平面ABC . 7分 (3)由(2)可知PD ⊥平面ABC .法一:ABC ∆中,,3=AB ,60=∠ABC 3=AC ,由正弦定理ABCAC ACB AB ∠=∠sin sin ,得1sin 2ACB ∠=, 因为AC AB >,所以ACB ABC ∠<∠,则6ACB π∠=,因此2CAB π∠=, 8分△ABC 的面积233332121=⋅⋅=⋅=∆AB AC S ABC . 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. 法二:ABC ∆中,3=AB , 60=∠ABC 3=AC ,由余弦定理得:60cos 2222⋅⋅-+=BC AB BC AB AC ,所以260AC-=,所以AC AC ==舍去).△ABC 的面积233233232160sin 21=⋅⋅⋅=⋅⋅=∆ BC AB S ABC . 所以三棱锥ABC P -的体积13P ABC ABC V S PD -∆=⨯⨯3=. 考点:1.线面平行.2.面面垂直.3.三角形的余弦定理.4.三棱锥的体积. 18.(1)证明:因为DE ⊥平面ACD ,DE ⊂平面CDE ,所以平面CDE ⊥平面ACD .在底面ACD 中,AF ⊥CD ,由面面垂直的性质定理知,AF ⊥平面CDE .取CE 的中点M , 连接BM 、FM ,由已知可得FM=AB 且FM ∥AB ,则四边形FMBA 为平行四边形, 从而BM ∥AF . 所以BM ⊥平面CDE .又BM ⊂平面BCE ,则平面CBE ⊥平面CDE .(2)法一:过F 作FN⊥CE 交CE 于N ,则FN ⊥平面CBE ,连接EF ,则∠NEF 就是直线EF 与平面CBE 所成的角设AB =1,则2=FN ,5=EF ,在Rt △EFN中,sin FN NFE EF ∴∠===. 故直线EF 与平面CBE 所成角的正弦值为10. 法二:以F 为坐标原点,FD 、FA 、FM 所在直线为x ,y ,z 轴,建立空间直角坐标系,如图 所示.F (0,0,0) ,E (1,0,2) ,()1,3,0B , C (-1,0,0),平面CBE 为(1,0,1),||2n n =-=)2,0,1(--=则cos ,5||EF nEF nEF n ⋅<>===⨯故直线EF 与平面CBE。

衡水中学2020届高三二轮数学专题10 解析几何(讲)(原卷版)

衡水中学2020届高三二轮数学专题10 解析几何(讲)(原卷版)

衡水中学2020届高三二轮数学专题10 解析几何1.【2019年高考北京卷理数】已知椭圆22221x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .83.【2019年高考天津卷理数】已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为AB C .2D 4、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.5、【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .6.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.一、考向分析:考查内容解题技巧直线的倾斜角1.求倾斜角的取值范围的一般步骤:①求出斜率k=tan α的取值范围;②利用正切函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围。

2.求倾斜角时要注意斜率是否存在。

3.斜率公式k=(x1≠x2)的计算与两点坐标的顺序无关,当x1=x2,y1≠y2时,直线的y2-y1x2-x1倾斜角为90°。

衡水中学2020届高三二轮数学专题09 立体几何(讲)(原卷板)

衡水中学2020届高三二轮数学专题09 立体几何(讲)(原卷板)

考查空间角: 【例 1】如图,在正三棱柱 ABC-A1B1C1 中,AB=AA1=2,点 P,Q 分别为 A1B1,BC 的中点.
(1)求异面直线 BP 与 AC1 所成角的余弦值; (2)求直线 CC1 与平面 AQC1 所成角的正弦值.
【例 2】如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 CD 所在平面垂直, M 是 CD 上异于 C , D 的 点. (1)证明:平面 AMD ⊥平面 BMC ; (2)当三棱锥 M ABC 体积最大时, 求面 MAB 与面 MCD 所成二面角的正弦值.
(4)解方程组,取其中的一组解,即得法向量.
1、对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或
方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等。
2、对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数。 探索性问题
3、立体几何开放性问题求解方法有以下两种:
【例 2】某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A , 圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长 度为( )
A. 2 17 B. 2 5
C. 3 D.2
Hale Waihona Puke 考查平行、垂直问题:【例 1】如图,在四棱锥 P ABCD 中,底面 ABCD 为矩形,平面 PAD 平面 ABCD , PA PD ,
|v1·v2| (2)求出两直线的方向向量 v1,v2,代入公式|cos〈v1,v2〉|=|v1||v2|求解。
( ]π
提醒:两异面直线所成角 θ 的范围是 0, ,两向量的夹角 α 的范围是[0,π],当两异 2

衡水中学2020届高三二轮数学专题10 解析几何(练)(原卷版)

衡水中学2020届高三二轮数学专题10 解析几何(练)(原卷版)

1 k 2 3k
所以有
2
2 k 1,即切线方程为 x y 3 0 ,当过点 M 3, 0 的切线不存在斜率
k2 1
时,即 x 3 ,显然圆心到它的距离为 2 2 2 ,所以 x 3 不是圆的切线.,因此切线方程为 x y 3 0 ,故本题选 C.
【名师点睛】本题考查了求圆的切线.本题实际上是过圆上一点求切线,所以只有一条.解答本题时,设直
D. y 2x
【答案】A
x2
【解析】依题意椭圆
a2
y2 b2
1(a b 0) 与双曲线
x2 a2
y2 b2
1(a 0,b 0)
的焦点相同,可得:
22
b
a2 b2 1 a2 1 b2 ,即 a2 = 3b2 ,∴ b
22
a
3 ,可得 3
2 a
3
,∴双曲线的渐近线方程为:
3
2
b
y
2 x a
3 x ,故选 A. 3
2
【名师点睛】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,
属于基础题.解答本题时,由题意可得 a2 b2 1 a2 1 b2 ,即 a2 = 3b2 ,代入双曲线的渐近线方程可得 22
答案.
4.【江西省新八校 2019 届高三第二次联考数学试题】如图,过抛物线 y2 2 px( p 0) 的焦点 F 的直线 l 交
届高三第十次月考数学试题】已知椭圆
C
:x2 a2
y2 b2
1 (a
b 0) 的左
顶点为 M (2,0) ,离心率为 2 . 2
(1)求椭圆 C 的方程;
(2)过点 N (1,0) 的直线 l 交椭圆 C 于 A,B 两点,当 MA MB 取得最大值时,求△MAB 的面积.

河北省衡水中学二轮复习高三理科数学二轮复习周测卷(4)立体几何及参考答案

河北省衡水中学二轮复习高三理科数学二轮复习周测卷(4)立体几何及参考答案

河北省衡水中学二轮复习高三数学周测(四)理科数学立体几何考试时间:120分钟姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2015浙江高考真题)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤ 2.如图正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E .F,且EF=则下列结论中错误的是( ).A.AC BE ⊥B.EF ∥平面ABCDC.三棱锥A BEF -的体积为定值D.异面直线,AE BF 所成的角为一定值3.长方体的过一个顶点的三条棱长的比是1:2:3,对角线长为142,则这个长方体的体积为( )A.6B.12C.24D.484.已知球的直径4SC =,A,B 是该球面上的两点,2AB =,45ASC BSC ∠=∠=︒,则棱锥S ABC -的体积为( )5.已知三棱锥S-ABC 的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是三角形SBC 的垂心,二面角H-AB-C 为30°,且SA=2,则此三棱锥的体积为( )(A) 12346.向高为H 水瓶中注水,注满为止.如果注水体积V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )7.如图,正方体1111D C B A ABCD -的棱长为3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于( )A .65π B . 32π C . π D . 67π 8.在右图四面体ABCD 中,1,3,2,,2AB AD BC CD ABC DCB π====∠=∠=则二面角A BC D --的大小为( )A.6πB.3πC.23π D.56π9.已知菱形ABCD 的边长是1,60DAB∠=,将这个菱形沿AC 折成120的二面角,则BD 两点间的距离是( )A.12 B . C.32 D.3410.则以该正方体各个面的中心为顶点的凸多面体的体积为( )D.2311.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时, 2HP最小值是( )(A)21 (B)22 (C)23 (D)2512.如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.1V 为小球相交部分(图中阴影部分)的体积,2V 为大球内.小球外的图中黑色部分的体积,则下列关系中正确的是( )A.12V V =B.22VV =C.12VV > D.12VV <二、填空题(本大题共4小题,每小题5分,共20分)13.表面积为60π的球面上有四点S 、A 、B 、C,且ABC ∆是等边三角形,球心O 到平面ABC ,若平面⊥SAB 平面ABC ,则棱锥ABC S -体积的最大值为 .15.已知菱形ABCD 的边长为2,60BAD ∠=︒.将三角形ABD 沿对角线BD 折到A BD ',使得二面角A BD C '--的大小为60︒,则A D '与平面BCD 所成角的正弦值是 _______________ ;四面体A BDC '的体积为 ______________ .16.正四面体ABCD 的外接球的体积为34π,则正四面体ABCD 的体积是_____. 三、解答题(本大题共6小题,第1题10分,后5题12分,共70分) 17.四棱锥P ABCD -中,PA ABCD ⊥底面,//AB CD ,1AD CD ==,12090.BAD PA ACB ∠=︒=∠=︒,(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)求二面角D PC A --的平面角的余弦值;18.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点, PO ⊥平面ABCD ,2PO =,M 为PD 的中点 (1)证明 :PB ∥平面ACM ; (2)证明:AD ⊥平面PAC ;(3)求直线AM 与平面ABCD 所成角的正切值.19.(2015新课标1高考真题)如图,,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE ⊥EC 。

衡水中学2020届高三二轮数学专题09 立体几何(文科专用)(练)(解析版)

衡水中学2020届高三二轮数学专题09 立体几何(文科专用)(练)(解析版)

衡水中学2020届高三二轮数学专题09 立体几何1.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC ,那么P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连接CO ,由题意可知,CD PD CD PO ⊥⊥,=PD PO P ,CD \^平面PDO ,又OD ⊂平面PDO ,CD OD ∴⊥,PD PE == ,2PC =,sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,又易知PO CO ⊥,CO 为ACB ∠的平分线,451,,OCD OD CD OC ︒∴∠=∴===,又2PC =,PO ∴==.【名师点睛】本题主要考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,利用勾股定理解决.注意画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题则很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.2.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.3.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261-【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)1BG G E CH G H x x ∴==∴=+==,1x ∴==-1-. 【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形. 4.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.5.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=B C A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥, 所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故CH =.从而点C 到平面1C DE .【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.1、已知四面体P ­ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且BC =1,PB =AB =2,则球O 的表面积为( )A .7πB .8πC .9πD .10π【答案】C【解析】依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π. 2.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A. 16π3B. 8π3C .4π 3D .2π3【答案】A【解析】由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(-R )2+12=R 2,R =,其表面积S =4πR 2=4π2=. 3233(233)16π33.四面体ABCD 的四个顶点都在球O 的球面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB =2,则球O 的表面积为( ) A.π B .12πC .16πD .32π323【答案】C【解析】设球心为O ,球心在平面BCD 的投影为O 1,则OO 1==1,因为△BCD 为等边三角形,AB2故DO 1=×=,因为△OO 1D 为直角三角形,所以球的半径R =OD ==2,233233OO 21+O 1D 2球O 的表面积S =4πR 2=16π,故选C.4. 已知直三棱柱ABC ­A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________. 【答案】4π【解析】如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=2+2=(BC2)(EF 2)≥×2BC ×EF =1,当且仅当BC =EF =时取等号.所以直三棱柱ABC -A 1B 1C 1外接BC 2+EF 24142球表面积的最小值为4π×12=4π.5. 已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π【答案】C【解析】三棱锥V O ­ABC =V C ­OAB =S △OAB ×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB13是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O ­ABC =V C ­OAB =××R 3=36,1312其中R 为球O 的半径,所以R =6,所以球O 的表面积为S =4π×36=144π.6.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为A .B .C .D .【答案】B【解析】设等边三角形ABC 的边长为x ,则21sin 602x = ,得6x =.设ABC ∆的外接圆半径为r ,则62sin 60r =,解得r =,所以球心到ABC ∆所在平面的距离2d ==,则点D 到平面ABC 的最大距离146d d =+=,所以三棱锥D ABC -体积的最大值max 116633ABC V S ∆=⨯=⨯=B .1、【云南省昆明市2019届高三高考5月模拟数学试题】已知直线l ⊥平面α,直线m ∥平面β,若αβ⊥,则下列结论正确的是A .l β∥或l β⊄B .//l mC .m α⊥D .l m ⊥【答案】A【解析】对于A ,直线l ⊥平面α,αβ⊥,则l β∥或l β⊂,A 正确;对于B ,直线l ⊥平面α,直线m ∥平面β,且αβ⊥,则//l m 或l 与m 相交或l 与m 异面,∴B 错误;对于C ,直线m ∥平面β,且αβ⊥,则m α⊥或m 与α相交或m α⊂或m α∥,∴C 错误;对于D ,直线l ⊥平面α,直线m ∥平面β,且αβ⊥,则//l m 或l 与m 相交或l 与m 异面,∴D 错误.故选A .【名师点睛】本题考查了空间平面与平面关系的判定及直线与直线关系的确定问题,也考查了几何符号语言的应用问题,是基础题.2.【陕西省2019届高三年级第三次联考数学试题】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为AB .34CD .54【答案】B【解析】如图,设BC 的中点为D ,连接1A D 、AD 、1A B ,易知1A AB ∠即为异面直线AB 与1CC 所成的角(或其补角).设三棱柱111ABC A B C -的侧棱与底面边长均为1,则AD =112A D =,1A B =由余弦定理,得2221111cos 2A A AB A B A AB A A AB+-∠=⋅111322114+-==⨯⨯.故应选B. 【名师点睛】本题主要考查了异面直线所成角的求解,通过平移找到所成角是解这类问题的关键,若平移不好作,可采用建系,利用空间向量的运算求解,属于基础题.解答本题时,易知1A AB ∠即为异面直线AB 与1CC 所成的角(或其补角),进而通过计算1ABA △的各边长,利用余弦定理求解即可.3.【四川省宜宾市2019届高三第三次诊断性考试数学试题】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为()A .13 B .23C .34D .1【答案】B【解析】如图,由题意可知PA PE PF ,,两两垂直,∴PA ⊥平面PEF ,∴11111123323PEF A PEF V S PA -=⋅=⨯⨯⨯⨯=△,设P 到平面AEF 的距离为h , 又2111321212112222AEF S =-⨯⨯-⨯⨯-⨯⨯=△,∴13322P AEF h V h -=⨯⨯=,∴123h =,故23h =,故选B . 【名师点睛】本题考查了平面几何的折叠问题,空间几何体的体积计算,属于中档题.折叠后,利用A PEF P AEF V V --=即可求得P 到平面AEF 的距离.4、在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A B .C .D 【答案】C【解析】在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .5、已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.【答案】13【解析】如图所示,连结11A C ,交11B D 于点O ,很明显11A C ⊥平面11BDD B ,则1A O 是四棱锥的高,且11112A O A C ===,1111BDD B S BD DD =⨯=四边形,结合四棱锥体积公式可得其体积为111333V Sh ===.6、某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.7.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.8、如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG 由于O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 9、【河南省洛阳市2019年高三第三次统考(5月)数学试题】在四棱柱1111ABCD A B C D -中,四边形ABCD是平行四边形,1A A ⊥平面ABCD , 60BAD ∠=︒,12,1,AB BC AA ===,E 为11A B 中点.(1)求证:平面1A BD ⊥平面1A AD ;(2)求多面体1A E ABCD -的体积.【答案】(1)见解析;(2【解析】(1)在ABD △中,60,2,1BAD AB AD BC ∠=︒===,由余弦定理得BD =,∴222BD AD AB +=.∴BD AD ⊥.∵1A A ⊥平面,ABCD BD ⊂平面ABCD ,∴1A A BD ⊥.又1A A AD A = ,∴BD ⊥平面1A AD .又BD ⊂平面1A BD ,∴平面1A BD ⊥平面1A AD .(2)设,AB CD 的中点分别为,F G ,连接,,,EF FG GE BD FG H = ,∵,,E F G 分别为11,,A B AB CD 的中点,∴多面体1EFG A AD -为三棱柱.∵BD ⊥平面1A AD ,∴DH 为三棱柱的高.又111122A AD S AD A A DH BD =⋅===△,∴三棱柱1EFG A AD -的体积为1A AD S HD ⋅==△.在四棱锥E BCGF -中,1EF A A ∥.∴EF ⊥底面1,BCGF EF A A ==∵1121sin6022BCGF ABCD S S ==⨯⨯⨯︒=四边形四边形,∴四棱锥E BCGF -的体积为1133BCGF S EF ⋅==四边形,∴多面体1A E ABCD -=. 【名师点睛】(1)根据余弦定理求BD ,底面ABD △满足勾股定理,所以BD AD ⊥,又可证明1AA BD ⊥,所以BD ⊥平面1A AD ,即证明面面垂直;(2)取,AB CD 的中点,F G ,分别连接,,EF EG FG ,这样多面体可分割为三棱柱1EFG A AD -和三棱锥E BCGF -,再分别求体积即可.10、如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点, 且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析(2)1【解析】(1)证明:∵ABCM 为平行四边形且90ACM ∠= ,∴AB AC ⊥,又∵AB DA ⊥,∴AB ⊥平面ACD ,∵AB ⊂平面ABC ,∴平面ABC ⊥平面ACD .(2)过点Q 作QH AC ⊥,交AC 于点H ,∵AB ⊥平面ACD , ∴AB CD ⊥,又∵CD AC ⊥,∴CD ⊥平面ABC ,∴13HQ AQ CD AD ==,∴1HQ =,∵BC BC AM AD ====,∴BP =又∵ABC ∆为等腰直角三角形,∴1332ABP S ∆=⋅⋅=,∴1131133Q ABD ABD V S HQ -∆=⋅⋅=⨯⨯=.。

衡水中学二轮---“立体几何”题

衡水中学二轮---“立体几何”题

(9) “立体几何”题1.(2007年湖北卷第4题)平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m '⊥n '⇒m ⊥n; ②m ⊥n ⇒ m '⊥n '③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合. 其中不正..确.的命题个数是 A.1 B.2 C.3 D.4【解析】D 以教室空间为长方体模型,m ',n '作地面墙根线,m,n 在墙壁上选择,易知 m '⊥n '是m ⊥n 的不必要不充分条件.故①②为假命题.m ',n '相交或平行,m,n 可以异面;故③④也是假命题.【说明】 抽象的线线(面)关系具体化.就是寻找空间模型,长方体教室是“不需成本”的立几模型.必要时,考生还可用手中的直尺和三角板作“图形组合”.2.(2007年北京卷第3题)平面α∥平面β的一个充分条件是A. 存在一条直线a,a ∥α,a ∥βB. 存在一条直线a,a ,α⊂a ∥βC. 存在两条平行直线a,b,a ,α⊂β⊂b ,a ∥β,b ∥αD. 存在两条异面直线a,b,a ,α⊂β⊂b ,a ∥β,b ∥α【解析】D 以考场的天花板和一个墙面作为α,β,可以找出不同的直线a,b 满足A 、B 、C 项,从而排除前三项.【说明】教室本身是一个好的长方体模型,而我们判断线线、线面关系时用它,简捷明了.3.(2007年湖南卷第8题)棱长为1的正方体1111ABCD A BC D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A.2B .1C.12+D【解析】D 平面11AA D D 截球所得圆面的半径,111EF 2AD R EF AA D D ==⊂∴ 面, 被球O截得的线段为圆面的直径,2d d r =故选D.【说明】 相关知识点:球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体: 棱长为a,.4.(2007年全国Ⅰ第7题) 如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35 D .45【解析】D 连接CD 1,则∠AD 1C 即是异面直线A 1B 与AD 1所成的角,设AB =1,54552255cos 1=∙-+=∠C AD . 【说明】 找出异面直线所成的角,是问题的关键.5.(2007年浙江卷第6题)若P 是两条异面直线l m ,外的任意一点,则( ) A.过点P 有且仅有一条直线与l m ,都平行 B.过点P 有且仅有一条直线与l m ,都垂直 C.过点P 有且仅有一条直线与l m ,都相交 D.过点P 有且仅有一条直线与l m ,都异面【解析】B 对于选项A ,若过点P 有直线n 与l ,m 都平行,则l ∥m ,这与l ,m 异面矛盾;对于B ,过点P 与l 、m 都垂直的直线即过P 且与l 、m 的公垂线段平行的那一条直线;对于选项C ,过点P 与l 、m 都相交的直线可能没有;对于D ,过点P 与l 、m 都异面的直线可能有无数条.【说明】 空间线线关系,找空间模型. 6.(2007年山东卷第3题)下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④【解析】D 正方体三个视图都相同;圆锥的两个视图相同;三棱台三个都不同;正四棱锥的两个视图相同.【说明】 空间想象力的发挥.7.(2007年江苏卷第4题) 已知两条直线m n ,,两个平面αβ,.给出下面四个命题:AB1B1A1D1C CD ①正方体 ②圆锥 ③三棱台 ④正四棱锥①m n ∥,m n αα⇒⊥⊥;②αβ∥,m α⊂,n m n β⊂⇒∥; ③m n ∥,m n αα⇒∥∥;④αβ∥,m n ∥,m n αβ⇒⊥⊥.其中正确命题的序号是( ) A.①、③ B.②、④ C.①、④ D.②、③【解析】C 对于②,在两平行平面内的直线有两种位置关系:平行或异面;对于③,平行线中有一条与平面平行,则另一条可能与平面平行,也可能在平面内.8.(2007年全国卷Ⅱ第7题)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于(A)4(B)4(C)2(D)2【解析】A 欲求直线AB 1与侧面ACC 1A 1所成角,关键是要找到直线AB 1在平面ACC 1A 1内的射影,即要找到B 1在这个平面内的射影,根据正棱柱的性质和平面与平面垂直的性质定理易知,B 1在这个平面内的射影是11AC 的中点D .所以1B AD ∠就是所求.由题设,可计算出所成角的正弦值为4故选A.【说明】 若在直角三角形内的角边关系混淆,易选错为B ;若对 直线和平面所成角的概念不清,易选错为C 或D 。

河北河北衡水中学立体几何多选题试题含答案

河北河北衡水中学立体几何多选题试题含答案

河北河北衡水中学立体几何多选题试题含答案一、立体几何多选题1.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=8,把△ADE 沿着DE翻折至A'DE位置,使得二面角A'-DE-B为60°,则下列选项中正确的是()A.点A'到平面BCED的距离为3B.直线A'D与直线CE所成的角的余弦值为5 8C.A'D⊥BDD.四棱锥A'-BCED237【答案】ABD【分析】作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.利用线面垂直的判定定理判定CD⊥平面A'MN,利用面面垂直的判定定理与性质定理得到'A到平面面BCED的高A'H,并根据二面角的平面角,在直角三角形中计算求得A'H的值,从而判定A;根据异面直线所成角的定义找到∠A'DN就是直线A'D与CE所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N,在利用外接球的球心的性质进行得到四棱锥A'-BCED的外接球的球心为O,则ON⊥平面BCED,且OA'=OC,经过计算求解可得半径从而判定D.【详解】如图所示,作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.则A'M⊥DE,MN⊥DE, ,∵'A M∩MN=M,∴CD⊥平面A'MN,又∵CD⊂平面ABDC,∴平面A'MN⊥平面ABDC,在平面A'MN中作A'H⊥MN,则A'H⊥平面BCED,∵二面角A'-DE-B为60°,∴∠A'EF=60°,∵正三角形ABC中,AB=8,∴AN=43∴A'M3,∴A'H=A'M sin60°=3,故A正确;连接DN,易得DN‖EC,DN=EC=4,∠A'DN就是直线A'D与CE所成的角,DN=DA'=4,A'N=A'M3,cos∠A'DN=22441252448+-=⨯⨯,故B正确;A'D =DB =4,A'B=22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.2.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,()22221182262PA AA PA =+=+=同理可得62PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,EM ∴==过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin d EM θθ==≤ 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为R '==,所以,截面圆的半径2r =≥=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.3.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A ,则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为322⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点 【答案】AC 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可判断A 选项的正误;证明出1AC ⊥平面1A BD ,分别取棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点E 、F 、Q 、N 、G 、H ,比较1A BD 和六边形EFQNGH 的周长和面积的大小,可判断B 选项的正误;利用空间向量法找出平面α与棱11A D 、11A B 的交点E 、F ,判断四边形BDEF 的形状可判断C 选项的正误;将矩形11ACC A 与矩形11CC D D 延展为一个平面,利用A 、M 、N 三点共线得知AM MN +最短,利用平行线分线段成比例定理求得MC ,可判断D 选项的正误. 【详解】对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()2,0,0A 、()2,2,0B 、设点()()0,2,02M a a ≤≤,AM ⊥平面α,则AM 为平面α的一个法向量,且()2,2,AM a =-,()0,2,0AB =, 2232cos ,,32288AB AM AB AM AB AMa a ⋅<>===⎢⋅⨯++⎣⎦, 所以,直线AB 与平面α所成角的正弦值范围为32⎣⎦,A 选项正确; 对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,1BD CC ∴⊥,四边形ABCD 是正方形,则BD AC ⊥,1CC AC C =,BD ∴⊥平面1ACC ,1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A D BD D ⋂=,1AC ∴⊥平面1A BD ,易知1A BD 是边长为22(12322234A BD S =⨯=△为22362=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH 是边长为2的正六边形,且平面//EFQNGH 平面1A BD , 正六边形EFQNGH 的周长为62,面积为()236233⨯⨯=,则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(),0,2E b ,点()0,2,1M ,()2,2,1AM =-,AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,()1,0,2E ∴,所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则()2,1,2F ,()1,1,0EF =,而()2,2,0DB =,12EF DB ∴=,//EF DB ∴且EF DB ≠, 由空间中两点间的距离公式可得2222015DE =++=()()()2222212205BF =-+-+-=,DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,2222222MC AC DN AD ∴===-+, 11222MC CC =-≠,所以,点M 不是棱1CC 的中点,D 选项错误.故选:AC. 【点睛】本题考查线面角正弦值的取值范围,同时也考查了平面截正方体的截面问题以及折线段长的最小值问题,考查空间想象能力与计算能力,属于难题.6.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥,同理,SM PC ⊥, 又SMSN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin33S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin 234PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin 234PQRSPQ PR PQ PR π=⋅=⋅,()12S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅,∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.7.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.8.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D D B .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2 D .过点1A 与异面直线AD 与1CB 成60角的直线有2条 【答案】ABD 【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D . 【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥, 由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确;对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA m DA m DA my z ⋅<>===⋅++, 1122111cos ,221CB m zCB m CB my z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =± 因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确. 故选:ABD. 【点睛】方法点睛:证明线面垂直的方法: 一是线面垂直的判定定理; 二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.。

衡水市必修二第一章《立体几何初步》检测题(答案解析)

衡水市必修二第一章《立体几何初步》检测题(答案解析)

一、选择题1.已知平面,αβ,直线l ,记l 与,αβ所成的角分别为1θ,2θ,若αβ⊥,则( ) A .12sin sin 1θθ+≤ B .12sin sin 1θθ+≥ C .122πθθ+≤ D .122πθθ+≥2.在底面为正方形的四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PA AD ⊥,PA AD =,则异面直线PB 与AC 所成的角为( )A .30B .45︒C .60︒D .90︒3.如图,在长方体1111ABCD A BC D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长为( )A 3B 6C .23D .264.大摆锤是一种大型游乐设备(如图),游客坐在圆形的座舱中,面向外,通常大摆锤以压肩作为安全束缚,配以安全带作为二次保险,座舱旋转的同时,悬挂座舱的主轴在电机的驱动下做单摆运动.假设小明坐在点A 处,“大摆锤”启动后,主轴OB 在平面α内绕点O 左右摆动,平面α与水平地面垂直,OB 摆动的过程中,点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,B β∈.设4OB AB =,在“大摆锤”启动后,下列结论错误的是( )A .点A 在某个定球面上运动;B .β与水平地面所成锐角记为θ,直线OB 与水平地面所成角记为δ,则θδ+为定值;C .可能在某个时刻,AB //α;D .直线OA 与平面α所成角的正弦值的最大值为1717. 5.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π 6.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE7.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N ,下列结论正确的是( )A .//MN 平面ABEB .//MN 平面ADEC .//MN 平面BDHD .//MN 平面CDE8.蹴鞠,又名蹴球,筑球等,蹴有用脚踢、踏的含义,鞠最早系外包皮革、内实含米糠的球.因而蹴鞠就是指古人以脚踢、踏皮球的活动,类似现在的足球运动.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录.3D 打印属于快速成形技术的一种,它是一种以数字模型为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠积累的方式来构造物体的技术.过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如人体的髋关节、牙齿或飞机零部件等).已知某蹴鞠的表面上有四个点A .B .C .D ,满足任意两点间的直线距离为6cm ,现在利用3D 打印技术制作模型,该模型是由蹴鞠的内部挖去由ABCD 组成的几何体后剩下的部分,打印所用原材料的密度为31g/cm ,不考虑打印损耗,制作该模型所需原材料的质量约为( )(参考数据)π 3.14≈2 1.41≈3 1.73≈6 2.45≈.A .101gB .182gC .519gD .731g 9.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+B .8,1425V L ==+C .8,16253V L ==+D .8,1625V L ==+10.在正方体1111ABCD A BC D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( )A .43πB .6πC .323πD .86π 11.设m 、n 是两条不同的直线,α是平面,m 、n 不在α内,下列结论中错误的是( )A .m α⊥,//n α,则m n ⊥B .m α⊥,n α⊥,则//m nC .m α⊥,m n ⊥,则//n αD .m n ⊥,//n α,则m α⊥ 12.在正方体1111ABCD A BC D -中,M 和N 分别为11AB ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B 10C .35D 3二、填空题13.在边长为3的菱形ABCD 中,对角线3AC =,将三角形ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.14.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.15.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.16.点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===,若四面体ABCD 体积的最大值为3,则这个球的表面积为______. 17.已知三棱锥A BCD -中,2AB CD ==,3AC BC AD BD ====,则三棱锥A BCD -的体积是____________.18.世界四大历史博物馆之首卢浮宫博物馆始建于1204年,原是法国的王宫,是法国文艺复兴时期最珍贵的建筑物之一,以收藏丰富的古典绘画和雕刻而闻名于世,卢浮宫玻璃金字塔为正四棱锥,且该正四棱锥的高为21米,底面边长为30米,是华人建筑大师贝聿铭设计的.若玻璃金字塔五个顶点恰好在一个球面上,则该球的半径为______米.19.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.若M 为线段1AC 的中点,则在ADE 翻折过程中,下面四个选项中正确的是______(填写所有的正确选项)(1)BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE AC ⊥(4)存在某个位置,使//MB 平面1A DE20.如图,在直角梯形ABCD 中,//,,2,3,60AB CD AB AD CD AB ABC ⊥==∠=°,将此梯形以AD 所在直线为轴旋转一周,所得几何体的表面积是_________________.三、解答题21.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =.若该几何体左视图(侧视图)的面积为34.(1)画出该几何体的主视图(正视图)并求其面积S ;(2)求出多面体PMABC 的体积V .22.如图,三棱柱111ABC A B C -中,12AB BC AC BB ===,1B 在底面ABC 上的射影恰好是点A ,E 是11AC 的中点.(1)证明:1//A B 平面1BCE ; (2)求1A B 与平面11BCC B 所成角的正弦值.23.正四棱台两底面边长分别为3和9,若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积.24.如图,在五面体ABCDEF 中,四边形ABCD 是平行四边形.(1)求证://AB EF ;(2)若CF AE ⊥,AB AE ⊥,求证:平面ABFE ⊥平面CDEF .25.在四棱台1111ABCD A BC D -中,1AA ⊥平面ABCD ,//AB CD ,90ACD ∠=︒,26BC ==,1CD =,1AM CC ⊥,垂足为M .(1)证明:平面ABM ⊥平面11CDD C ;(2)若二面角B AM D --正弦值为217,求直线AC 与平面11CDD C 所成角的余弦. 26.在三棱锥P ABC -中,G 是底面ABC 的重心,D 是线段PC 上的点,且2PD DC =.(1)求证:DG//平面PAB ;(2)若PAB △是以PB 为斜边的等腰直角三角形,求异面直线DG 与PB 所成角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】如图,作出1θ和2θ,再由线面角推得12sin sin 2πθθ⎛⎫≤-⎪⎝⎭,利用三角函数的单调性判断选项.【详解】设直线l 为直线AB ,m αβ=,AD m ⊥,BC m ⊥,连结BD ,AC ,1ABD θ=∠,2BAC θ=∠,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭,12,2πθθ-都是锐角, 122πθθ∴≤-,即122πθθ+≤故选:C【点睛】关键点点睛:本题的关键是作图,并利用线段AD AC ≤,传递不等式,12sin sin 2AD AC AB AB πθθ⎛⎫=≤=- ⎪⎝⎭. 2.C解析:C【分析】由已知可得PA ⊥平面ABCD ,底面ABCD 为正方形,分别过P ,D 点作AD ,AP 的平行线 交于M ,连接CM ,AM ,因为PB ∥CM ,所以ACM 就是异面直线PB 与AC 所成的角,再求解即可.【详解】由题意:底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,PA AD ⊥,面PAD 面ABCD AD =,PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M ,连接CM ,AM ,∵PM ∥AD ,AD ∥BC ,PM =AD ,AD =BC .∴ PBCM 是平行四边形,∴ PB ∥CM ,所以∠ACM 就是异面直线PB 与AC 所成的角.设PA =AB =a ,在三角形ACM 中,2,2,2AM a AC a CM a ===,∴三角形ACM 是等边三角形.所以∠ACM 等于60°,即异面直线PB 与AC 所成的角为60°.故选:C.【点睛】思路点睛:先利用面面垂直得到PA ⊥平面ABCD ,分别过P ,D 点作AD ,AP 的平行线交于M ,连接CM ,AM ,得到∠ACM 就是异面直线PB 与AC 所成的角.3.A解析:A【分析】本题首先可通过将侧面11CDD C 绕1DD 逆时针转90展开得出当1A 、M 、2C 共线时1A M MC +取得最小值,此时M 为1DD 的中点,然后根据11B A ⊥平面11A D DA 得出111B A A M ⊥,最后根据221111M A B B A M =+即可得出结果.【详解】如图,将侧面11CDD C 绕1DD 逆时针转90展开,与侧面11ADD A 共面,连接12AC ,易知当1A、M 、2C 共线时,1A M MC +取得最小值, 因为1AB AD ==,12AA =,所以M 为1DD 的中点,12A M =因为11B A ⊥平面11A D DA ,1A M ⊂平面11A D DA ,所以111B A A M ⊥,则222211111(2)3M B A A M B =+=+=,故选:A. 【点睛】关键点点睛:本题考查根据线面垂直判断线线垂直,能否根据题意得出当M 为1DD 的中点时1A M MC +取得最小值是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.4.C解析:C 【分析】利用已知条件确定OA 是定值,即得A 选项正确;作模型的简图,即得B 正确;依题意点B 在平面α内,不可能AB //α,得C 错误;设AB a ,结合题意知ABα⊥时,直线OA与平面α所成角最大,计算此时正弦值,即得D 正确.【详解】因为点A 在平面β内绕点B 作圆周运动,并且始终保持OB β⊥,所22OA OB AB =+,又因为OB ,AB 为定值,所以OA 也是定值,所以点A 在某个定球面上运动,故A 正确;作出简图如下,OB l ⊥,所以2πδθ+=,故B 正确;因为B α∈,所以不可能有AB //α,故C 不正确; 设ABa ,则4OB a =,2217OA AB OB a +=,当AB α⊥时,直线OA 与平面α所成角最大,此时直线OA 与平面α171717a=,故D 正确. 故选:C. 【点睛】本题解题关键在于认真读题、通过直观想象,以实际问题为背景构建立体几何关系,再运用立体几何知识突破难点.5.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍,所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(2222322RR =+,解得3R =, 所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.6.C解析:C【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则DE EC ==,//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求cos4CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确.故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.7.C解析:C 【分析】根据题意,得到正方体的直观图及其各点的标记字母,取FH 的中点O ,连接ON ,BO ,可以证明MN ‖BO ,利用BO 与平面ABE 的关系可以判定MN 与平面ABE 的关系,进而对选择支A 作出判定;根据MN 与平面BCF 的关系,利用面面平行的性质可以判定MN 与平面ADE 的关系,进而对选择支B 作出判定;利用线面平行的判定定理可以证明MN 与平面BDE 的平行关系,进而判定C ;利用M ,N 在平面CDEF 的两侧,可以判定MN 与平面CDE 的关系,进而对D 作出判定. 【详解】根据题意,得到正方体的直观图及其各点的标记字母如图所示,取FH 的中点O ,连接ON ,BO ,易知ON 与BM 平行且相等,∴四边形ONMB 为平行四边形,∴MN ‖BO , ∵BO 与平面ABE (即平面ABFE )相交,故MN 与平面ABE 相交,故A 错误; ∵平面ADE ‖平面BCF ,MN ∩平面BCF =M ,∴MN 与平面ADE 相交,故B 错误; ∵BO ⊂平面BDHF ,即BO ‖平面BDH ,MN ‖BO ,MN ⊄平面BDHF ,∴MN ‖平面BDH ,故C 正确; 显然M ,N 在平面CDEF 的两侧,所以MN 与平面CDEF 相交,故D 错误. 故选:C.【点睛】本题考查从面面平行的判定与性质,涉及正方体的性质,面面平行,线面平行的性质,属于小综合题,关键是正确将正方体的表面展开图还原,得到正方体的直观图及其各顶点的标记字母,并利用平行四边形的判定与性质找到MN 的平行线BO .8.B解析:B 【分析】由题意可知所需要材料的体积即为正四面体外接球体积与正四面体体积之差,求出正四面体体积、外接球体积,然后作差可得所需要材料的体积,再乘以原料密度可得结果. 【详解】由题意可知,几何体ABCD 是棱长为6cm 的正四面体, 所需要材料的体积即为正四面体外接球体积与正四面体体积之差,设正四面体的棱长为a 22236323aa a ⎛⎫-⨯= ⎪ ⎪⎝⎭, 设正四面体外接球半径为R ,则222623()()3a R R =+,解得R =6a 所以3D 打印的体积为:32334611366233212V a a ππ⎫=-⋅=-⎪⎪⎝⎭, 又336216a ==,所以276182207.71125.38182.331182V π=-≈-=≈, 故选:B 【点睛】关键点点睛:本题考查正四面体与正四面体的外接球,考查几何体的体积公式,解决本题的关键点是求出正四面体外接球体积与正四面体体积,考查学生空间想象能力和计算能力,属于中档题.9.A解析:A 【分析】由三视图还原几何体,由棱锥的体积公式可得选项. 【详解】在如图所示的正方体1111ABCD A BC D -中,P ,E 分别为11,BC BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD . 由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10.B解析:B 【分析】根据三棱锥的表面积进一步求出正方体的棱长,最后求出正方体的外接球的半径,进一步求出结果. 【详解】解:设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======, 由于三棱锥11A B CD -的表面积为43 所以)1213344224AB CS S a==⨯=所以2a =()()()2222226++=, 所以正方体的外接球的体积为34663ππ⎛⎫= ⎪ ⎪⎝⎭故选:B . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.11.D解析:D 【分析】利用线面平行的性质定理和线面垂直的定义可判断A 选项的正误;由线面垂直的性质定理可判断B 选项的正误;根据已知条件判断直线n 与平面α的位置关系,可判断C 选项的正误;根据已知条件判断直线m 与平面α的位置关系,可判断D 选项的正误. 【详解】 对于A ,//n α,由线面平行的性质定理可知,过直线n 的平面β与平面α的交线l 平行于n ,m α⊥,l α⊂,m l ∴⊥,m n ∴⊥,故A 正确;对于B ,若m α⊥,n α⊥,由直线与平面垂直的性质,可得//m n ,故B 正确; 对于C ,若m α⊥,m n ⊥,则//n α或n ⊂α,又n α⊄,//n α∴,故C 正确; 对于D ,若m n ⊥,//n α,则//m α或m 与α相交或m α⊂, 而m α⊄,则//m α或m 与α相交,故D 错误. 故选:D . 【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.12.A解析:A 【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值. 【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角, 设异面直线AM 和CN 所成的角为θ,设正方体的边长为2,2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、填空题13.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因解析:55π; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积. 【详解】根据题意,画出图形,3ABCD 中,对角线3AC = 所以ABC 和DBC △都是正三角形, 又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径225R GD OG =+=, 所以其体积为3344555(33V R ππ==⋅=, 55π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下: (1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径; (4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.14.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,3x ∴=, 所以,球O 的半径为232x =O 的表面积为2231643S ππ=⨯=⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.15.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为 2【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和2,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.【分析】先由题意得到的面积以及外接圆的半径记的外接圆圆心为为使四面体体积最大只需与面垂直由此求出设球心为半径为根据为直角三角形由勾股定理列出等式求出球的半径即可得出结果【详解】根据题意知是一个等边三 解析:254π【分析】先由题意,得到ABC 的面积,以及ABC 外接圆的半径,记ABC 的外接圆圆心为Q ,为使四面体ABCD 体积最大,只需DQ 与面ABC 垂直,由此求出2DQ =,设球心为O ,半径为R ,根据AQO 为直角三角形,由勾股定理列出等式,求出球的半径,即可得出结果.【详解】根据题意知,ABC 是一个等边三角形,其面积为()221333 3322S ⎛⎫=-= ⎪ ⎪⎝⎭,ABC 外接圆的半径为131260r ==,记ABC 的外接圆圆心为Q ,则1AQ r ==; 由于底面积ABC S 不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⋅=,2DQ ∴=, 设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即2221(2)R R =+-,54R ∴=, 则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭. 故答案为:254π. 【点睛】思路点睛:求解几何体与球外接问题时,一般需要先确定底面外接圆的圆心位置,求出底面外接圆的半径,根据球的性质,结合题中条件确定球心位置,求出球的半径,进而即可求解. 17.【分析】取中点连接由条件可证明平面由此将三棱锥的体积表示为计算可得结果【详解】取中点连接如下图所示:因为所以平面平面所以平面又因为所以所以又因为故答案为:【点睛】关键点点睛:解答本题的关键是通过找的 2取AB 中点O ,连接,CO DO ,由条件可证明AB ⊥平面CDO ,由此将三棱锥A BCD -的体积表示为13CDO AB S⨯⨯,计算可得结果.【详解】取AB 中点O ,连接,CO DO ,如下图所示:因为AC BC AD BD ===,所以,AB CO AB DO ⊥⊥,CO DO O =,CO ⊂平面CDO ,DO ⊂平面CDO ,所以AB ⊥平面CDO ,又因为3AC BC AD BD ====,2AB CD ==()22210322CO DO ⎛⎫==-= ⎪ ⎪⎝⎭, 所以22110221222CDO S ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又因为11221333A BCD CDO V AB S -=⨯⨯==, 故答案为:23. 【点睛】 关键点点睛:解答本题的关键是通过找AB 的中点,证明出线面垂直,从而将三棱锥的体积表示为13CDO AB S ⨯⨯,区别于常规的13⨯底面积⨯高的计算方法,本例实际可看成是两个三棱锥的体积之和.18.【分析】作出图形设球体的半径为根据几何关系可得出关于的等式进而可解得的值【详解】如下图所示:在正四棱锥中设为底面正方形的对角线的交点则底面由题意可得则设该球的半径为设球心为则由勾股定理可得即解得故答 解析:29714作出图形,设球体的半径为R ,根据几何关系可得出关于R 的等式,进而可解得R 的值.【详解】如下图所示:在正四棱锥P ABCD -中,设M 为底面正方形ABCD 的对角线的交点,则PM ⊥底面ABCD ,由题意可得21PM =,30AB =,2302BD AB ==152BM = 设该球的半径为R ,设球心为O ,则O PM ∈,由勾股定理可得222OB OM BM =+,即()(22221152R R =-+,解得29714R =. 故答案为:29714. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 19.(1)(2)(4)【分析】首先取中点连结先判断(4)是否正确再根据平行关系以及等角定理和余弦定理判断(1)再判断(2)假设成立根据直线与平面垂直的性质及判定可得矛盾来判断(3)【详解】取中点连结则平解析:(1)(2)(4)【分析】首先取CD 中点Q ,连结MQ ,BQ ,先判断(4)是否正确,再根据平行关系,以及等角定理和余弦定理判断(1),再判断(2),假设1DE AC ⊥成立,根据直线与平面垂直的性质及判定,可得11DA A E ⊥矛盾来判断(3).【详解】取CD 中点Q ,连结MQ ,BQ ,则1//MQ DA ,//BQ DE ,∴平面//MBQ 平面1A DE ,又MB ⊂平面MBQ ,//MB ∴平面1A DE ,故(4)正确;由1A DE MQB ∠=∠,112MQ A D ==定值,QB DE ==定值, 由余弦定理可得2222cos MB MQ QB MQ QB MQB =+-⋅⋅∠所以MB 是定值,故(1)正确; B 是定点,M ∴是在以B 为球心,MB 为半径的球面上,故(2)正确;145A DE ADE ∠=∠=,45CDE ∠=,且设1AD =,2AB =, 则2DE CE ==若存在某个位置,使1DE AC ⊥,则因为222DE CE CD +=,即CE DE ⊥,因为1AC CE C =,则DE ⊥平面1ACE ,所以1DE A E ⊥,与11DA A E ⊥矛盾, 故(3)不正确.故答案为:(1)(2)(4)【点睛】关键点点睛:本题考查线线,线面位置关系时,首先判断(4)是否正确,其他选项就迎刃而解,而判断线面平行时,可根据面面平行证明线面平行.20.【分析】此梯形以AD 所在直线为轴旋转一周得到的是圆台然后根据圆台的侧面积和表面积公式进行计算【详解】将此梯形以AD 所在直线为轴旋转一周得到的是圆台其中圆台的上底半径为r =CD =2下底半径为R =AB = 解析:23π【分析】此梯形以AD 所在直线为轴旋转一周,得到的是圆台,然后根据圆台的侧面积和表面积公式进行计算.【详解】将此梯形以AD 所在直线为轴旋转一周,得到的是圆台,其中圆台的上底半径为r =CD =2,下底半径为R =AB =3,母线BC =2,∴圆台的上底面积为πr 2=4π,下底面积为πR 2=9π,圆台的侧面积为(πr +πR )•BC =π(2+3)×2=10π,∴圆台的表面积为4π+9π+10π=23π,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D.4
【解析】D 以教室空间为长方体模型,m',n'作地面墙根线,m,n在墙
壁上选择,易知
m'⊥n'是m⊥n的不必要不充分条件.故①②为假命题.m',n'相交或 平行,m,n可以异面;故③④也是假命题. 【说明】 抽象的线线(面)关系具体化.就是寻找空间模型,长方体教 室是“不需成本”的立几模型.必要时,考生还可用手中的直尺和三角板 作“图形组合”.
考场精彩(9)
(9) “立体几何”题
1.(2007年湖北卷第4题)平面α外有两条直线m和n,如果m和n在平面α
内的射影分别是m'和n',给出下列四个命题:
①m'⊥n'm⊥n;
②m⊥n m'⊥n'
③m'与n'相交m与n相交或重合; ④m'与n'平行m与n平行或重
合.
其中不正确的命题个数是
A.1
B.2
C.3
(2)球与正方体的组合体: 正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方
体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:
棱长为的正四面体的内切球的半径为,外接球的半径为.
4.(2007年全国Ⅰ第7题)
如图,正四棱柱中,,则异面直线与所成角的余弦值为( ) A. B. C. D.
AG、GH、HQ,可证AGHQ为矩形,故BC=2AG=2HQ=.
这个解法的关键是“猜”图,心算即可. 当然,图2中令AQ =
x,CP = 2x,利用勾股定理得求解也简单.
H B C A P Q
B C A
图1
图2
只是从图形上看,似乎图1与图2没有本质的区别.这是因为作者没 有注明哪个平面是α,所以看起来B、C都在平面α的同一边.若果然如 此,分类就没有必要了.
9.(2007年天津卷第6题) 设为两条直线,为两个平面,下列四个命题中, 正确的命题是( ) A.若与所成的角相等,则 B.若,,则 C.若,则 D.若,,则 【解析】D A中,a、b可能平行、相交、异面; B中,a、b可能平行、相交、异面; C中a、b可以同时与α、β的交线平行;
D中a、b可以看作是α、β的法向量. 【说明】 还可以教室的一角为模型,再选择不同的墙线作为直线举反 例.
①,; ②,,; ③,; ④,,. 其中正确命题的序号是( ) A.①、③ B.②、④ C.①、④ D.②、③ 【解析】C 对于②,在两平行平面内的直线有两种位置关系:平行或异面;对于③,平行线中 有一条与平面平行,则另一条可能与平面平行,也可能在平面内.
8.(2007年全国卷Ⅱ第7题)已知正三棱柱ABC-A1B1C1的侧棱长与底面边长
A.若m,,则 B.若∩=m,∩=n,m∥n,则∥ C.若m,m∥,则 D.若,,则 【解析】C A中,直线m与平面α的位置关系各种可能都有;B中,平 面α与β也可能相交;C中,∵m∥,过m作平面γ交平面α于m′,则m∥m ′. 又∵m,∴m′. 由面面垂直的判定定理可知,;D中,平面β与γ也可能 相交成或平行. 【说明】 本题考查直线与直线、直线与平面、平面与平面的位置关 系. 12. (2007年福建卷第8题) 已知为两条不同的直线,为两个不同的平面,则下列命题中正
2.(2007年北京卷第3题)平面α∥平面β的一个充分条件是 A. 存在一条直线a,a∥α,a∥β B. 存在一条直线a,aa∥β C. 存在两条平行直线a,b,a,a∥β,b∥α D. 存在两条异面直线a,b,a,a∥β,b∥α
【解析】D 以考场的天花板和一个墙面作为α,β,可以找出不同的直 线a,b满足A、B、C项,从而排除前三项. 【说明】教室本身是一个好的长方体模型,而我们判断线线、线面关系
相等,则AB1与侧面ACC1A1所成角的正弦等于
(A)
(B)
(C)
(D)
【解析】
A 欲求直线AB1与侧面ACC1A1所成角,关键是要找到直线AB1在平 面ACC1A1内的射影,即要找到B1在这个平面内的射影,根据正棱柱的 性质和平面与平面垂直的性质定理易知,B1在这个平面内的射影是的中 点D. 所以就是所求.由题设,可计算出所成角的正弦值为, 故选A. 【说明】 若在直角三角形内的角边关系混淆,易选错为B;若对 直线和平面所成角的概念不清,易选错为C或D。
【解析】D 连接CD1,则∠AD1C即是异面直线A1B与AD1所成的角, 设AB=1,. 【说明】 找出异面直线所成的角,是问题的关键.
5.(2007年浙江卷第6题)若是两条异面直线外的任意一点,则( ) A.过点有且仅有一条直线与都平行 B.过点有且仅有一条直线与都垂直 C.过点有且仅有一条直线与都相交 D.过点有且仅有一条直线与都异面 【解析】B 对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾;对于B,过 点P与l、m都垂直的直线即过P且与l、m的公垂线段平行的那一条直线;对于选项C,过点P 与l、m都相交的直线可能没有;对于D,过点P与l、m都异面的直线可能有无数条. 【说明】 空间线线关系,找空间模型.
顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长
为2,则该三角形的斜边长为

略解:记题中等腰直角三角形为ABC,A为直角顶点,过
A平行于底面的截面为α. 若B、C在α同侧(图1),易证∠ABC为锐角,不合题
意;
若B、C在α异侧(图2),过点B作平行于底面的截面
BPQ,依“等腰”易证CP=2AQ. 取BC中点G,BP中点H,连
在下关于这题的解法是:
【解析】延长MN、CB交于P,连AP. 第1,可证M为PN的中点.:作MD∥BC,交CC1于D.显然: △AMB≌△MND.故DN=BM=CD,即BM=CN是△PNC的中位线,∴M 为PN的中点. 第2,由AM是PN的垂直平分线可以推出△APN是等腰直角三角形. 以下由△ABP中BA=BP=2,ABP=120°,得,从而边.
时用它,简捷明了.
3.(2007年湖南卷第8题)棱长为1的正方体的8个顶点都在球的表面 上,分别是棱,的中点,则直线被球截得的线段长为( ) A. B. C. D. 【解析】D 平面截球所得圆面的半径, 被球O截得的线段为圆面的直径故选D. 【说明】 相关知识点:球的组合体
(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.
确的是( )
A. B. C. D. 【解析】D 对于A,当m、n为两条平行直线时,可知A错误. 对于B,m、n两条直线可能为异面 直线,对于C,直线n可能在平面α内. 【说明】 本题主要考查空间中线面位置关系.
13. (2007年福建卷第10题) 顶点在同一球面上的正四棱柱中,,则两点间的球面距离为
10. (2007年重庆卷第3题)若三个平面两两相交,且三条交线互相平行,则这三个平面把
空间分成( ) A.部分 B.部分 C.部分 D.部分
【解析】C 以点代线,以线代面,可画示意图如下:
【说明】 图直观,无须说理. 11. (2007年辽宁卷第7题) 若m、n是两条不同的直线,α、β、γ是三个不 同的平面,则下命题中的真命题是( )
6.(2007年山东卷第3题)下列几何体各自的三视图中,有且仅有两个视图相同的是(

①正方体 ②圆锥 ③三棱台 ④正四棱锥
A.①② B.①③ C.①④ D.②④ 【解析】D 正方体三个视图都相同;圆锥的两个视图相同;三棱台三个都不同;正四棱锥的两 个视图相同. 【说明】 空间想象力的发挥.
7.(2007年江苏卷第4题) 已知两条直线,两个平面.给出下面四个命题:
()
A.
Байду номын сангаас
B.
C. D.
【解析】B 如下图所示,
设球的半径为R,则有,连结AC,连结AC′、A′C交于点O,则O为外接球的心, 在△AOC中,AO=OC=1,AC=,所以∠AOC=. 所以A、C两点间的球面距离为. 【说明】 本题考查组合体的知识.
13(2007年全国卷Ⅰ第16题)一个等腰直角三角形的三个
相关文档
最新文档