实验4--PWM波形产生实验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京信息科技大学
自动化学院
实验报告
课程名称 DSP控制技术
实验名称 PWM波形产生实验
实验仪器计算机,示波器,
ICETEK–F28335-A实验设备一套专业自动化
班级/学号自控1105/2011010865 学生姓名黄洁艳
实验日期
实验地点教七楼102 成绩
指导教师艾红
实验四 PWM波形产生实验
一.实验目的
1. 了解 TMS320F28335A DSP 片内事件管理器模块的脉宽调制电路 PWM 的特性参数;
2. 掌握 PWM 电路的控制方法;
3. 学会用程序控制产生不同占空比的 PWM波形。
二.实验设备
计算机,示波器,ICETEK–F28335-A 实验设备一套。
三.实验原理
1.脉宽调制电路 PWM的特性:
TMS320F28335A DSP片内有两个事件管理器模块,每个事件管理器模块可同时产生多达 8路的PWM波形输出。
由3个带可编程死区控制的比较单元产生独立的3对PWM(即6个输出),以及由通用定时器比较器产生 2 个独立的 PWM 输出。
PWM的特性如下:
-16位寄存器;
-有从 0 到 16m s的可编程死区发生器控制 PWM 输出对;
-最小的死区宽度为 1 个 CPU 时钟周期;
-对 PWM频率的变动可根据需要改变 PWM的载波频率;
-在每个 PWM 周期内和以后可根据需要改变 PWM脉冲的宽度;
-外部可屏蔽的功率驱动保护中断;
-脉冲形式发生器电路,用于可编程对称、非对称以及空间矢量 PWM 波形产生;
-自动重装载的比较寄存器和周期寄存器。
2.连接示波器:
连接示波器探头的地线与实验箱左侧的测试点的 GND相连,红表笔与测试点 PWM1~4相连。
四. 实验内容
在 PWM1~PWM4 引脚输出不同频率占空比可变的 PWM脉冲。
通过示波器可观察到
占空比变化的 PWM输出波形,其载波频率、占空比与程序中对控制寄存器的设置相关。
五. 实验程序如下:
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
typedef struct
{ volatile struct EPWM_REGS *EPwmRegHandle;
Uint16 EPwm_CMPA_Direction;
Uint16 EPwm_CMPB_Direction;
Uint16 EPwmTimerIntCount;
Uint16 EPwmMaxCMPA;
Uint16 EPwmMinCMPA;
Uint16 EPwmMaxCMPB;
Uint16 EPwmMinCMPB;
}EPWM_INFO;
// Prototype statements for functions found within this file. void InitEPwm1Example(void);
void InitEPwm2Example(void);
void InitEPwm3Example(void);
interrupt void epwm1_isr(void);
interrupt void epwm2_isr(void);
interrupt void epwm3_isr(void);
void update_compare(EPWM_INFO*);
// Global variables used in this example
EPWM_INFO epwm1_info;
EPWM_INFO epwm2_info;
EPWM_INFO epwm3_info;
// Configure the period for each timer
#define EPWM1_TIMER_TBPRD 2000 // Period register
#define EPWM1_MAX_CMPA 1950
#define EPWM1_MIN_CMPA 50
#define EPWM1_MAX_CMPB 1950
#define EPWM1_MIN_CMPB 50
#define EPWM2_TIMER_TBPRD 2000 // Period register
#define EPWM2_MAX_CMPA 1950
#define EPWM2_MIN_CMPA 50
#define EPWM2_MAX_CMPB 1950
#define EPWM2_MIN_CMPB 50
#define EPWM3_TIMER_TBPRD 2000 // Period register
#define EPWM3_MAX_CMPA 950
#define EPWM3_MIN_CMPA 50
#define EPWM3_MAX_CMPB 1950
#define EPWM3_MIN_CMPB 1050
// To keep track of which way the compare value is moving
#define EPWM_CMP_UP 1
#define EPWM_CMP_DOWN 0
void main(void)
{// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
// These functions are in the DSP2833x_EPwm.c file
InitEPwm1Gpio();
InitEPwm2Gpio();
InitEPwm3Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT = &epwm1_isr;
PieVectTable.EPWM2_INT = &epwm2_isr;
PieVectTable.EPWM3_INT = &epwm3_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
InitEPwm1Example();
InitEPwm2Example();
InitEPwm3Example();
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
// Step 5. User specific code, enable interrupts:
// Enable CPU INT3 which is connected to EPWM1-3 INT:
IER |= M_INT3;
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
PieCtrlRegs.PIEIER3.bit.INTx3 = 1;
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;)
{ asm(" NOP");
}
}
interrupt void epwm1_isr(void)
{ // Update the CMPA and CMPB values
update_compare(&epwm1_info);
// Clear INT flag for this timer
EPwm1Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
interrupt void epwm2_isr(void)
{ // Update the CMPA and CMPB values
u pdate_compare(&epwm2_info);
// Clear INT flag for this timer
EPwm2Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
interrupt void epwm3_isr(void)
{ // Update the CMPA and CMPB values
update_compare(&epwm3_info);
// Clear INT flag for this timer
EPwm3Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
void InitEPwm1Example()
{ // Setup TBCLK
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD; // Set timer period
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm1Regs.TBCTR = 0x0000; // Clear counter
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV2;
// Setup shadow register load on ZERO
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set Compare values
EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA; // Set compare A value
EPwm1Regs.CMPB = EPWM1_MIN_CMPB; // Set Compare B value
// Set actions
EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // Set PWM1A on Zero
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Clear PWM1A on event A, up count EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET; // Set PWM1B on Zero
// Interrupt where we will change the Compare Values
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
// Information this example uses to keep track
// of the direction the CMPA/CMPB values are
// moving, the min and max allowed values and
// a pointer to the correct ePWM registers
epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP;// Start by increasing CMPA & CMPB epwm1_info.EPwm_CMPB_Direction = EPWM_CMP_UP;
epwm1_info.EPwmTimerIntCount = 0; // Zero the interrupt counter epwm1_info.EPwmRegHandle = &EPwm1Regs; // Set the pointer to the ePWM module epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA; // Setup min/max CMPA/CMPB values epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA;
epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB;
epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB;
}
void InitEPwm2Example()
{ // Setup TBCLK
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm2Regs.TBPRD = EPWM2_TIMER_TBPRD; // Set timer period
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm2Regs.TBCTR = 0x0000; // Clear counter
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV2;
// Setup shadow register load on ZERO
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set Compare values
EPwm2Regs.CMPA.half.CMPA = EPWM2_MIN_CMPA; // Set compare A value EPwm2Regs.CMPB = EPWM2_MAX_CMPB; // Set Compare B value
// Set actions
EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR; // Clear PWM2A on Period
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on event A, up count EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR; // Clear PWM2B on Period
// Interrupt where we will change the Compare Values
EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm2Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event // Information this example uses to keep track
// of the direction the CMPA/CMPB values are
// moving, the min and max allowed values and
// a pointer to the correct ePWM registers
epwm2_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA epwm2_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN; // and decreasing CMPB
epwm2_info.EPwmTimerIntCount = 0; // Zero the interrupt counter epwm2_info.EPwmRegHandle = &EPwm2Regs; // Set the pointer to the ePWM module epwm2_info.EPwmMaxCMPA = EPWM2_MAX_CMPA; // Setup min/max CMPA/CMPB values epwm2_info.EPwmMinCMPA = EPWM2_MIN_CMPA;
epwm2_info.EPwmMaxCMPB = EPWM2_MAX_CMPB;
epwm2_info.EPwmMinCMPB = EPWM2_MIN_CMPB;
}
void InitEPwm3Example(void)
{ // Setup TBCLK
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm3Regs.TBPRD = EPWM3_TIMER_TBPRD; // Set timer period
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm3Regs.TBCTR = 0x0000; // Clear counter
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
// Setup shadow register load on ZERO
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Set Compare values
EPwm3Regs.CMPA.half.CMPA = EPWM3_MIN_CMPA; // Set compare A value
EPwm3Regs.CMPB = EPWM3_MAX_CMPB; // Set Compare B value
// Set Actions
EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM3A on event B, up count EPwm3Regs.AQCTLA.bit.CBU = AQ_CLEAR; // Clear PWM3A on event B, up count EPwm3Regs.AQCTLB.bit.ZRO = AQ_TOGGLE; // Toggle EPWM3B on Zero
// Interrupt where we will change the Compare Values
EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
// Start by increasing the compare A and decreasing compare B
epwm3_info.EPwm_CMPA_Direction = EPWM_CMP_UP;
epwm3_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN;
// Start the cout at 0
epwm3_info.EPwmTimerIntCount = 0;
epwm3_info.EPwmRegHandle = &EPwm3Regs;
epwm3_info.EPwmMaxCMPA = EPWM3_MAX_CMPA;
epwm3_info.EPwmMinCMPA = EPWM3_MIN_CMPA;
epwm3_info.EPwmMaxCMPB = EPWM3_MAX_CMPB;
epwm3_info.EPwmMinCMPB = EPWM3_MIN_CMPB;
}
void update_compare(EPWM_INFO *epwm_info)
{ // Every 10'th interrupt, change the CMPA/CMPB values
if(epwm_info->EPwmTimerIntCount == 10)
{ epwm_info->EPwmTimerIntCount = 0;
// If we were increasing CMPA, check to see if
// we reached the max value. If not, increase CMPA
// else, change directions and decrease CMPA
if(epwm_info->EPwm_CMPA_Direction == EPWM_CMP_UP)
{ if(epwm_info->EPwmRegHandle->CMPA.half.CMPA < epwm_info->EPwmMaxCMPA) { epwm_info->EPwmRegHandle->CMPA.half.CMPA++;
}
else
{ epwm_info->EPwm_CMPA_Direction = EPWM_CMP_DOWN;
epwm_info->EPwmRegHandle->CMPA.half.CMPA--;
}
}
// If we were decreasing CMPA, check to see if
// we reached the min value. If not, decrease CMPA
// else, change directions and increase CMPA
else
{if ( epwm_info->EPwmRegHandle->CMPA.half.CMPA== epwm_info->EPwmMinCMPA) { epwm_info->EPwm_CMPA_Direction = EPWM_CMP_UP;
epwm_info->EPwmRegHandle->CMPA.half.CMPA++;
}
else
{ epwm_info->EPwmRegHandle->CMPA.half.CMPA--;
}
}
// If we were increasing CMPB, check to see if
// we reached the max value. If not, increase CMPB
// else, change directions and decrease CMPB
if(epwm_info->EPwm_CMPB_Direction == EPWM_CMP_UP)
{ if(epwm_info->EPwmRegHandle->CMPB < epwm_info->EPwmMaxCMPB)
{ epwm_info->EPwmRegHandle->CMPB++;
}
else
{ epwm_info->EPwm_CMPB_Direction = EPWM_CMP_DOWN;
epwm_info->EPwmRegHandle->CMPB--;
}
}
// If we were decreasing CMPB, check to see if
// we reached the min value. If not, decrease CMPB
// else, change directions and increase CMPB
else
{ if(epwm_info->EPwmRegHandle->CMPB == epwm_info->EPwmMinCMPB) { epwm_info->EPwm_CMPB_Direction = EPWM_CMP_UP;
epwm_info->EPwmRegHandle->CMPB++;
}
else
{ epwm_info->EPwmRegHandle->CMPB--;
}
}
}
else
{ epwm_info->EPwmTimerIntCount++;
}
return;
}
六.实验结果:
1.PWM1波形图:
2. PWM2波形图:
3.PWM3波形图:
七. 问题与思考
如何改变占空比和周期。