高中物理微元法解决物理试题试题类型及其解题技巧含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理微元法解决物理试题试题类型及其解题技巧含解析
一、微元法解决物理试题
1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为 A .0.25N B .0.5N
C .1.5N
D .2.5N
【答案】A 【解析】 【分析】 【详解】
由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F =
mv
t
V V ;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSv
h
t
V V .压强为:33
22151011010/0.25/1060
F h P v N m N m S t ρ-⨯===⨯⨯⨯=⨯V V ,故A 正确,BCD 错误.
2.水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,得到广泛应用.某水刀切割机床如图所示,若横截面直径为d 的水流以速度v 垂直射到要切割的钢板上,碰到钢板后水的速度减为零,已知水的密度为ρ,则钢板受到水的冲力大小为
A .2d v πρ
B .22d v πρ
C .2
1
4
d v πρ
D .22
14
d v πρ
【答案】D 【解析】 【分析】 【详解】
设t 时间内有V 体积的水打在钢板上,则这些水的质量为:
21
4
m V Svt d vt ρρπρ===
以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:
Ft =0-mv
解得:
221
4
mv F d v t πρ=-
=- A. 2d v πρ与分析不符,故A 错误. B. 22d v πρ与分析不符,故B 错误. C. 21
4
d v πρ与分析不符,故C 错误. D.
221
4
d v πρ与分析相符,故D 正确.
3.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )
A 2gl
B gl
C 2
gl D 1
2
gl 【答案】C 【解析】 【分析】 【详解】
铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为
244l l l H =
-= 链条下落过程,由机械能守恒定律,得:
2142
l mg mv ⋅
= 解得:
2
gl v =
2gl A 项与题意不相符; gl B 项与题意不相符; 2
gl
与分析相符,故C 项与题意相符;
D.
D 项与题意不相符.
4.水柱以速度v 垂直射到墙面上,之后水速减为零,若水柱截面为S ,水的密度为ρ,则水对墙壁的冲力为( ) A .
12
ρSv B .ρSv C .
1
2
ρS v 2 D .ρSv 2
【答案】D 【解析】 【分析】 【详解】
设t 时间内有V 体积的水打在钢板上,则这些水的质量为:
S m V vt ρρ==
以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:
0Ft mv =-
即:
2mv
F Sv t
ρ=-
=- 负号表示水受到的作用力的方向与水运动的方向相反;由牛顿第三定律可以知道,水对钢
板的冲击力大小也为2
S v ρ ,D 正确,ABC 错误。

故选D 。

5.根据量子理论,光子的能量为E=hv ,其中h 是普朗克常量.
(1)根据爱因斯坦提出的质能方程E=mc 2,光子的质量可表示为m=E/c 2,由动量的定义和相关知识,推导出波长为λ的光子动量的表达式p=h/λ;
(2)光子能量和动量的关系是E=pc .既然光子有动量,那么光照到物体表面,光子被物体吸收或反射时,都会对物体产生压强,这就是“光压”.
a. 一台二氧化碳气体激光器发出的激光功率为P 0=103W ,发出的一细束激光束的横截面积为S=1mm 2.若该激光束垂直照射到物体表面,且光子全部被该物体吸收,求激光束对该物体产生的光压P 0的大小;
b. 既然光照射物体会对物体产生光压,科学家设想在遥远的宇宙探测中,可以用光压为动力使航天器加速,这种探溅器被称做“太阳帆”.设计中的某个太阳帆,在其运行轨道的某一阶段,正在朝远离太阳的方向运动,太阳帆始终保持正对太阳.已知太阳的质量为2×1030kg ,引力常量G=7×10-11Nm 2/kg 2,太阳向外辐射能量的总功率为P=4×1026W ,太阳光照到太阳帆后有80%的太阳光被反射.探测器的总质量为m=50kg .考虑到太阳对探测器的万有引力的影响,为了使由太阳光光压产生的推动力大于太阳对它的万有引力,太阳帆的面积S 至少要多大?(计算结果保留1位有效数字)
【答案】(1)证明见解析;(2)a.0 3.3Pa P = ;b. 42310s m =⨯ 【解析】 【分析】 【详解】
(1)光子的能量 E=mc 2
E =h ν=h c
λ
光子的动量 p=mc 可得
E h p c λ
==
(2)一小段时间△t 内激光器发射的光子数
0 P t
n c h
λ
V =
光照射物体表面,由动量定理
F △t=np 产生的光压 I = F S
解得
I =
P cS
带入数据解得:
I =3.3pa
(3)由(2)同理可知,当光80%被反射,20%被吸收时,产生的光压
9 5P
I cS

距太阳为r 处光帆受到的光压
2
954P
I c r =
π⋅
太阳光对光帆的压力需超过太阳对探测器的引力
IS ′>G 2 Mm r
解得
S ′>
20 9cGMm
P
π 带入数据解得
42310S m ⨯'≥
【点睛】
考查光子的能量与动量区别与联系,掌握动量定理的应用,注意建立正确的模型是解题的关键;注意反射的光动量变化为2mv,吸收的光动量变化为mv.
6.如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上.以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上.在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.
(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;
(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;
(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,
a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;
b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.
【答案】(1)L2B0/t0(2)+ mgL/2-mv2(3)金属棒在x=0处,感应电流最大
【解析】
试题分析:(1)由图看出,左段区域中磁感应强度随时间线性变化,其变化率一定,由法拉第电磁感应定律得知,回路中磁通量的变化率相同,由法拉第电磁感应定律求出回路中感应电动势.
(2)根据欧姆定律和焦耳定律结合求解金属棒在弧形轨道上滑行过程中产生的焦耳热.再根据能量守恒求出金属棒在水平轨道上滑行的过程中产生的焦耳热,即可得到总焦耳热.(3)在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,在很短的时间△t内,根据法拉第电磁感应定律和感应电流的表达式,求出感应电荷量q.再进行讨论.
解:(1)由图2可:=
根据法拉第电磁感应定律得感应电动势为:E==L2=L2
(2)金属棒在弧形轨道上滑行过程中,产生的焦耳热为:Q1==
金属棒在弧形轨道上滑行过程中,根据机械能守恒定律得:mg=
金属棒在水平轨道上滑行的过程中,产生的焦耳热为Q2,根据能量守恒定律得:
Q2=﹣=mg﹣
所以,金属棒在全部运动过程中产生的焦耳热为:Q=Q1+Q2=+mg﹣
(3)a.根据图3,x=x1(x1<x)处磁场的磁感应强度为:B1=.
设金属棒在水平轨道上滑行时间为△t.由于磁场B(x)沿x方向均匀变化,根据法拉第电磁感应定律△t时间内的平均感应电动势为:===
所以,通过金属棒电荷量为:q=△t=△t=
b.金属棒在弧形轨道上滑行过程中,感应电流为:I1==
金属棒在水平轨道上滑行过程中,由于滑行速度和磁场的磁感应强度都在减小,所以,此过程中,金属棒刚进入磁场时,感应电流最大.刚进入水平轨道时,金属棒的速度为:
v=
所以,水平轨道上滑行过程中的最大电流为:I2==
若金属棒自由下落高度,经历时间t=,显然t>t
所以,I1=<==I2.
综上所述,金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.
答:(1)金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E是L2.
(2)金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q为+mg﹣.(3)a.金属棒在水平轨道上滑动过程中通过导体棒的电荷量q为.b.金属棒在全部运动过程中金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最
大.
【点评】本题中(1)(2)问,磁通量均匀变化,回路中产生的感应电动势和感应电流均恒定,由法拉第电磁感应定律研究感应电动势是关键.对于感应电荷量,要能熟练地应用法拉第定律和欧姆定律进行推导.
7.两根足够长的平行金属导轨固定于同一水平面内,两导轨间的距离为L ,导轨上垂直放置两根导体棒a 和b ,俯视图如图甲所示。

两根导体棒的质量均为m ,电阻均为R ,回路中其余部分的电阻不计,在整个导轨平面内,有磁感应强度大小为B 的竖直向上的匀强磁场。

两导体棒与导轨接触良好且均可沿导轨无摩擦地滑行,开始时,两棒均静止,间距为x 0,现给导体棒a 一向右的初速度v 0,并开始计时,可得到如图乙所示的v t ∆-图像(v ∆表示两棒的相对速度,即a b v v v ∆=-)。

求: (1)0~t 2时间内回路产生的焦耳热; (2)t 1时刻棒a 的加速度大小; (3)t 2时刻两棒之间的距离。

【答案】(1)2014Q mv = ;(2)220
8B L v a mR

;(3)0022v m x L R x B += 【解析】 【分析】 【详解】
(1)t 2时刻,两棒速度相等。

由动量守恒定律
mv 0=mv +mv
由能量守恒定律,整个过程中产生的焦耳热
()2201221
2
Q v v m m -=

2014
Q mv =
(2)t 1时刻
01
4
a b v v v v -V ==
回路中的电动势
01
4
E BL v BLv =∆=
此时棒a 所受的安培力
22001
428BL v B L v
F BIL BL
R R
=== 由牛顿第二定律可得,棒a 的加速度
220
8B L R
a m v F m ==
(3)t 2时刻,两棒速度相同,由(1)知
012
v v = 0-t 2时间内,对棒b ,由动量定理,有
∑BiL △t =mv −0

BqL=mv

02m q L
v B =

0222()22BL x x E B s t q I t t t R R R R R
Φ-Φ==
V V V V V V V ====

0022v m x L
R
x B +

8.光电效应和康普顿效应深入地揭示了光的粒子性的一面.前者表明光子具有能量,后者表明光子除了具有能量之外还具有动量.由狭义相对论可知,一定的质量m 与一定的能量E 相对应:E =m 2 c ,其中c 为真空中光速.
(1)已知某单色光的频率为v ,波长为λ,该单色光光子的能量E =hv ,其中h 为普朗克常量.试借用质子、电子等粒子动量的定义:动量=质量×速度,推导该单色光光子的动量
p = h
λ
.
(2)光照射到物体表面时,如同大量气体分子与器壁的频繁碰撞一样,将产生持续均匀的压力,这种压力会对物体表面产生压强,这就是“光压”,用I 表示.
一台发光功率为O P 的激光器发出一束某频率的激光,光束的横截面积为S .如图所示,真空中,有一被固定的“∞”字形装置,其中左边是圆形黑色的大纸片,右边是与左边大
小、质量均相同的圆形白色大纸片.
①当该激光束垂直照射到黑色纸片中心上,假设光全部被黑纸片吸收,试写出该激光在黑色纸片的表面产生的光压1I 的表达式.
②当该激光束垂直坪射到白色纸片中心上,假设其中被白纸反射的光占入射光的比例为η,其余的入射光被白纸片吸收,试写出该激光在白色纸片的光压2I 的表达式. 【答案】(1)见解析;(2)1I =02P I cS ;= ()01P CS
η+ 【解析】 【分析】
(1)根据能量与质量的关系,结合光子能量与频率的关系以及动量的表达式推导单色光光子的动量h
p λ


(2)根据一小段时间△t 内激光器发射的光子数,结合动量定理求出其在物体表面引起的光压的表达式. 【详解】
(1)光子的能量为 E=mc 2 根据光子说有 E=hν=c
h
λ
光子的动量 p=mc 可得 E h p c λ
=
=. (2)①一小段时间△t 内激光器发射的光子数 0P t n hc V λ
=
光照射物体表面,由动量定理得-F △t=0-np 产生的光压 I 1=F S
解得 0
1P I cS
=
②假设其中被白纸反射的光占入射光的比例为η,这些光对物体产生的压力为F 1,(1-η)被黑纸片吸收,对物体产生的压力为F 2. 根据动量定理得 -F 1△t=0-(1-η)np -F 2△t=-ηnp -ηnp 产生的光压 12
2F F I S
+= 联立解得 ()021P I cS
η+=
【点睛】
本题要抓住光子的能量与动量区别与联系,掌握动量定理的应用,注意建立正确的模型是
解题的关键.
9.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.在正方体密闭容器中有大量某种气体的分子,每个分子质量为m ,单位体积内分子数量n 为恒量.为简化问题,我们假定:分子大小可以忽略;分子速率均为v ,且与器壁各面碰撞的机会均等;分子与器壁碰撞前后瞬间,速度方向都与器壁垂直,且速率不变.
(1)求一个气体分子与器壁碰撞一次给器壁的冲量I 的大小;
(2)每个分子与器壁各面碰撞的机会均等,则正方体的每个面有六分之一的几率.请计算在Δt 时间内,与面积为S 的器壁发生碰撞的分子个数N ;
(3)大量气体分子对容器壁持续频繁地撞击就形成了气体的压强.对在Δt 时间内,与面积为S 的器壁发生碰撞的分子进行分析,结合第(1)(2)两问的结论,推导出气体分子对器壁的压强p 与m 、n 和v 的关系式. 【答案】(1)2I mv =(2) 1.6N n Sv t =∆ (3)21
3
nmv 【解析】
(1)以气体分子为研究对象,以分子碰撞器壁时的速度方向为正方向 根据动量定理 2I mv mv mv -=--=-'
由牛顿第三定律可知,分子受到的冲量与分子给器壁的冲量大小相等方向相反 所以,一个分子与器壁碰撞一次给器壁的冲量为 2I mv =;
(2)如图所示,以器壁的面积S 为底,以vΔt 为高构成柱体,由题设条件可知,柱体内的分子在Δt 时间内有1/6与器壁S 发生碰撞,碰撞分子总数为
1
6
N n Sv t =⋅∆
(3)在Δt 时间内,设N 个分子对面积为S 的器壁产生的作用力为F N 个分子对器壁产生的冲量 F t NI ∆= 根据压强的定义 F p S
=
解得气体分子对器壁的压强 2
13
p nmv =
点睛:根据动量定理和牛顿第三定律求解一个分子与器壁碰撞一次给器壁的冲量;以Δt
时间内分子前进的距离为高构成柱体,柱体内1/6的分子撞击柱体的一个面,求出碰撞分子总数;根据动量定理求出对面积为S 的器壁产生的撞击力,根据压强的定义求出压强;
10.同一个物理问题,常常可以宏观和微观两个不同角度流行研究,找出其内在联系,从而更加深刻地汇理解其物理本质.
(1)如图所示,正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为V ,且与器壁各面碰撞的机会均等,与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识.
a.求一个粒子与器壁碰撞一次受到的冲量大小I ;
b.导出器壁单位面积所受的大量粒子的撞击压力f 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
(2)热爱思考的小新同学阅读教科书《选修3-3》第八章,看到了“温度是分子平均动能的标志,即a T aE =,(注:其中,a 为物理常量,a E 为分子热运动的平均平动动能)”的内容,他进行了一番探究,查阅资料得知:
第一,理想气体的分子可视为质点,分子间除了相互碰撞外,无相互作用力; 第二,一定质量的理想气体,其压碰P 与热力学温度T 的关系为0P n kT =,式中0n 为单位体积内气体的分子数,k 为常数.
请根据上述信息并结合第(1)问的信息帮助小新证明,a T aE =,并求出a ;
(3)物理学中有些运动可以在三维空间进行,容器边长为L ;而在某些情况下,有些运动被限制在平面(二维空间)进行,有些运动被限制在直线(一维空间)进行.大量的粒子在二维空间和一维空间的运动,与大量的粒子在三维空间中的运动在力学性质上有很多相似性,但也有不同.物理学有时将高维度问题采用相应规划或方法转化为低纬度问题处理.有时也将低纬度问题的处理方法和结论推广到高维度.我们在曲线运动、力、动量等的学习中常见的利用注意分解解决平面力学问题的思维,本质上就是将二维问题变为一维问题处理的解题思路.
若大量的粒子被限制在一个正方形容器内,容器边长为L ,每个粒子的质量为m ,单位面积内的粒子的数量0n 为恒量,为简化问题,我们简化粒子大小可以忽略,粒子之间出碰撞外没有作用力,气速率均为v ,且与器壁各边碰撞的机会均等,与容器边缘碰撞前后瞬间,粒子速度方向都与容器边垂直,且速率不变.
a.请写出这种情况下粒子对正方形容器边单位长度上的力0f (不必推导);
B .这种情况下证还会有a T E ∝的关系吗?给出关系需要说明理由.
【答案】(1)a.2mv b. 22f nmv =(2)证明过程见解析;4a k =(3)2001
2f n mv = ;关系不再成立.
【解析】
【分析】 【详解】
(1)a.一个粒子与器壁碰撞一次由动量定理:()2I mv mv mv =--=;
b.在∆t 时间内打到器壁单位面积的粒子数:N nv t =∆
由动量定理:f t NI ∆=
解得22f nmv =
(2)因单位面积上受到的分子的作用力即为气体的压强,则由(1)可知202p n mv =
根据P 与热力学温度T 的关系为P =n 0 kT ,
则2002=n v n m kT ,
即224=a a T mv E aE k k
== 其中4a k = (3)考虑单位长度,∆t 时间内能达到容器壁的粒子数 1×v ∆tn 0,
其中粒子有均等的概率与容器各面相碰,即可能达到目标区域的粒子数为014
v tn ∆ 由动量定理可得:()02
0012142
n v t mv p f n mv t t ∆∆∆∆=== 此时因f 0是单位长度的受力,则f 0的大小不再是压强,则不会有a T E ∝关系.
11.如图所示,在光滑水平桌面上,用手拉住长为L 质量为M 的铁链,使其1/3垂在桌边.松手后,铁链从桌边滑下,取桌面为零势能面.
(1)求整条铁链开始时的重力势能为多少?
(2)求铁链末端经过桌边时运动速度是多少?
【答案】(1) 118mgL -
223
gL 【解析】
试题分析:松手后,铁链在运动过程中,受重力和桌面的支持力,支持力的方向与运动方向垂直,对铁链不做功,只是垂在桌外部分的重力做功,因此,从松手到铁链离开桌边,铁链的机械能守恒.
(1) 取桌面为零势能面 桌外部分的质量为13m ,其重心在桌面下16L 处 此时铁链的重力势能为:1113618mg L mgL -⨯=-; (2)铁链末端经桌面时,整条铁链都在空中,其重心在桌面下
2L 处 此时铁链的重力势能为:12
mgL - 设此时铁链的速度为v ,由机械能守恒定律有:
21111822
mgL mv mgL -=- 解得:22gL v =
点晴:绳子、铁链运动的问题,对于每一部分来讲都是变力,运用动能定理难以解决过程中变力做功,但运用机械能守恒定律只要知道绳子的两个运动状态,不必考虑运动过程,因此解题就简单了,注意选好参考平面,尽量使解题简捷.
12.根据量子理论,光子具有动量.光子的动量等于光子的能量除以光速,即P=E/c .光照射到物体表面并被反射时,会对物体产生压强,这就是“光压”.光压是光的粒子性的典型表现.光压的产生机理如同气体压强:由大量气体分子与器壁的频繁碰撞产生了持续均匀的压力,器壁在单位面积上受到的压力就是气体的压强.
(1)激光器发出的一束激光的功率为P ,光束的横截面积为S .当该激光束垂直照射在物体表面时,试计算单位时间内到达物体表面的光子的总动量.
(2)若该激光束被物体表面完全反射,试求出其在物体表面引起的光压表达式.
(3)设想利用太阳的光压将物体送到太阳系以外的空间去,当然这只须当太阳对物体的光压超过了太阳对物体的引力才行.现如果用一种密度为1.0×103kg/m 3的物体做成的平板,它的刚性足够大,则当这种平板厚度较小时,它将能被太阳的光压送出太阳系.试估算这种平板的厚度应小于多少(计算结果保留二位有效数字)?设平板处于地球绕太阳运动的公转轨道上,且平板表面所受的光压处于最大值,不考虑太阳系内各行星对平板的影响.已知地球公转轨道上的太阳常量为1.4×103J/m2•s (即在单位时间内垂直辐射在单位面积上的太阳光能量),地球绕太阳公转的加速度为5.9×10-3m/s 2)
【答案】(1)P/C (2)p 压强=F/S=2P/Cs (3)1.6×10-6m
【解析】
试题分析:(1)设单位时间内激光器发出的光子数为n ,每个光子能量为E ,动量为p ,则激光器的功率为P=nE
所以单位时间内到达物体表面的光子的总动量为
(2)激光束被物体表面反射时,其单位时间内的动量改变量为△p="2" p 总=2P/c .
根据动量定理可知,物体表面对激光束的作用力 F=△p =2P/c .
由牛顿第三定律可知,激光束对物体表面的作用力为F=2P/c ,
在物体表面引起的光压表达式为:p 压强=F/S=2P/cS .
(3)设平板的质量为m ,密度为ρ,厚度为d ,面积为S 1,太阳常量为J ,地球绕太阳公转的加速度为a ,利用太阳的光压将平板送到太阳系以外的空间去必须满足条件:太阳光对平板的压力大于太阳对其的万有引力.
由(2)得出的结论可得,太阳光对平板的压力
F=2JS 1/c .
太阳对平板的万有引力可表示为f=ma ,
所以,2JS 1/c .> ma ,
平板质量m=ρdS 1,
所以 ,2JS 1/c .> ρdS 1a ,
解得:d<2J c a
ρ=1.6×10-6m . 即:平板的厚度应小于1.6×10-6m .
考点:动量定理、万有引力定律
【名师点睛】
13.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.
(1)光电效应和康普顿效应深入地揭示了光的粒子性的一面.前者表明光子具有能量,后者表明光子除了具有能量之外还具有动量.我们知道光子的能量E hv =,动量h
p λ=,
其中v 为光的频率,h 为普朗克常量,λ为光的波长.由于光子具有动量,当光照射到物体表面时,会对物体表面产生持续均匀的压力,这种压力会对物体表面产生压强,这就是“光压”,用I 表示.一台发光功率为P 0的激光器发出一束频率为0v 的激光,光束的横截面积为S .当该激光束垂直照射到某物体表面时,假设光全部被吸收(即光子的末动量变为0).求:
a .该激光器在单位时间内发出的光子数N ;
b .该激光作用在物体表面时产生的光压I .
(2)从微观角度看,气体对容器的压强是大量气体分子对容器壁的频繁撞击引起的.正方体密闭容器中有大量运动的粒子,每个粒子质量为m ,单位体积内粒子数量为n .为简化问题,我们假定:粒子大小可以忽略;速率均为v ,且与容器壁各面碰撞的机会均等;与容器壁碰撞前后瞬间,粒子速度方向都与容器壁垂直,且速率不变.
a .利用所学力学知识,推导容器壁受到的压强P 与m 、n 和v 的关系;
b .我们知道,理想气体的热力学温度T 与分子的平均动能1E 成正比,即1T E α=,式中α为比例常数.请从微观角度解释说明:一定质量的理想气体,体积一定时,其压强与温度成正比.
【答案】(1)a. 00P N hv =
b. 00P I v S λ= (2)a. 213
P nmv = b.见解析 【解析】
【分析】
【详解】 (1)a .单位时间的能量为:e P NE =,光子能量:0 E h v =,得单位时间内发出的光子数00
P N hv =. b .该激光作用在物体表面产生的压力用F 0表示,根据牛顿第三定律物体表面对光子的力大小也为F 0,时间为t ∆,由动量定理可知:00,,F h F t tNP P I S λ∆=∆==,解得0
0P I v S λ=
(2)a .在容器壁附近,取面积为S ,高度为v t ∆的体积内的粒子为研究对象.该体积中粒子个数2N Sv tn =∆,可以撞击该容器壁的粒子数216
N ,一个撞击容器壁的气体分子对其产生的压力用F 来表示,根据牛顿第三定律容器壁对气体分子的力大小也为F ,由
2F t mv ∆=,得2mv F t =∆,容器壁受到的压强221163
N F P nmv S == b .由22k k 11,,32P nmv T aE E mv =
==,解得23n P T a
=,一定质量的理想气体,体积一定时,其压强与温度成正比.
14.物理问题的研究首先要确定研究对象。

当我们研究水流,气流等流体问题时,经常会选取流体中的一小段来进行研究,通过分析能够得出一些有关流体的重要结论。

(1)水刀应用高压水流切割技术,相比于激光切割有切割材料范围广,效率高,安全环保等优势。

某型号水刀工作过程中,将水从面积S =0.1mm 2的细喷嘴高速喷出,直接打在被切割材料表面,从而产生极大压强,实现切割。

已知该水刀每分钟用水600g ,水的密度为ρ=1.0×103kg/m 3
a .求从喷嘴喷出水的流度v 的大小
b .高速水流垂直打在材料表面上后,水速几乎减为0,求水对材料表面的压强p 约为多大。

(2)某同学应用压力传感器完成以下实验,如图所示,他将一根均匀的细铁链上端用细线悬挂在铁架台上,调整高度使铁链的下端刚好与压力传感器的探测面接触。

剪断细线,铁链逐渐落在探测面上。

传感器得到了探测面所受压力随时间的变化图象。

通过对图线分析发现铁链最上端落到探测面前后瞬间的压力大小之比大约是N 1:N 2=3:1,后来他换用不同长度和粗细的铁链重复该实验,都得到相同结果。

请你通过理论推理来说明实验测得的结果是。

相关文档
最新文档