德州下册圆周运动达标检测卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)
1.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。

装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)
A .两细线张力均增大
B .细线AB 中张力先变小,后为零,再增大
C .细线AC 中张力先不变,后增大
D .当AB 中张力为零时,角速度可能为54g L
【答案】BCD 【解析】 【分析】 【详解】
AB .当静止时,受力分析如图所示
由平衡条件得
T AB =mg tan37°=0.75mg T AC =
cos37
mg
=1.25mg
若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图
mg tan θ1=m (l sinθ1)ωmin 2

ωmin 54g l
当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°
mg tan θ2=mωmax 2l sin θ2

ωmax =
53g l
所以ω取值范围为
54g l ≤ω≤53g l
绳子AB 的拉力都是0。

由以上的分析可知,开始时AB 是拉力不为0,当转速在
54g l ≤ω≤53g
l
时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;
C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于
54g
l
后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于
53g
l
后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l
时,绳子AB 的拉力都是0,故D 正确。

故选BCD 。

2.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )
A .滑块对轨道的压力为2
v mg m R
+
B .受到的摩擦力为2
v m R
μ
C .受到的摩擦力为μmg
D .受到的合力方向斜向左上方
【答案】AD
【解析】 【分析】 【详解】
A .根据牛顿第二定律
2
N v F mg m R
-=
根据牛顿第三定律可知对轨道的压力大小
2
N
N v F F mg m R
'==+ A 正确;
BC .物块受到的摩擦力
2
N ()v f F mg m R
μμ==+
BC 错误;
D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。

故选AD 。

3.一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )
A .小球过最高点时,杆所受到的弹力可以等于零
B gR
C .小球过最高点时,杆对球的作用力一定随速度增大而增大
D .小球过最高点时,杆对球的作用力可能随速度增大而增大 【答案】AD 【解析】 【分析】 【详解】
A .当小球到达最高点弹力为零时,重力提供向心力,有
2
v mg m R
=
解得
v gR =即当速度v gR =
A 正确;
B .小球通过最高点的最小速度为零,选项B 错误; CD .小球在最高点,若v gR <
,则有
2
v mg F m R
-=
杆的作用力随着速度的增大而减小; 若v gR >
,则有
2
v mg F m R
+=
杆的作用力随着速度增大而增大。

选项C 错误,D 正确。

故选AD 。

4.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。

它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。

A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。

g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C .细线上开始有弹力时,圆盘的角速度为
230
3
rad/s D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
rad/ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
rad/s ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。

故选AC 。

5.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。

若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )
A .2rad/s
B .3rad/s
C .4rad/s
D .5rad/s
【答案】BCD 【解析】 【分析】 【详解】
根据题意可知斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为0时,木块不能够静止在斜面上。

当转动的角速度较小时,木块所受的摩擦力沿斜面向上,则木块恰好向下滑动时
cos sin N f mg θθ+=
2sin cos N f mr θθω-=
滑动摩擦力满足
f N μ=
解得
5
22rad/s 11
ω=
当转动角速度变大,木块恰好向上滑动时
cos sin N f mg θθ=+
2sin cos N f mr θθω+='
滑动摩擦力满足
f N μ=
解得
52rad/s ω'=
所以圆盘转动的角速度满足
05
22rad/s 2rad/s 52rad/s 7rad/s 11
ω≈≤≤≈ A 错误,BCD 正确。

故选BCD 。

6.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R , 小球半径为r ,则下列说法中正确的是( )
A .小球通过最高点时的最小速度min v Rg =
B .小球通过最高点时的最小速度min 0v =
C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力
D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】
AB.因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A 错误,B 正确;
C.小球在水平线ab 以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C 正确;
D.小球在水平线ab 以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没
有作用力,选项D 错误.
7.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘间的动摩擦因数均为0.1μ=,最大静摩擦力近似等于滑动摩擦力。

三个物体与中心轴O 处共线且0.2 m OA OB BC r ====。

现将三个物体用轻质细线相连,保持细线伸直且恰无张力。

若圆盘从静止开始转动,角速度ω极其缓慢地增大,重力加速度g 取210 m/s ,则对于这个过程,下列说法正确的是( )
A .A 、
B 两个物体同时达到最大静摩擦力 B .B 、
C 两个物体所受的静摩擦力先增大后不变 C .当 5 rad/s ω>时整体会发生滑动
D 2 rad/s 5 rad/s ω<<时,在ω增大的过程中B 、C 间细线的拉力不断增大 【答案】BC 【解析】 【分析】 【详解】
ABC .当圆盘转速增大时,由静摩擦力提供向心力。

三个物体的角速度相等,由
2F m r ω=
知,由于C 的半径最大,质量最大,故C 所需要的向心力增加得最快,最先达到最大静摩擦力,此时
21222C mg m r μω⋅=⋅

1 2.5 rad/s 2g
r
μω=
=
当C 所受的摩擦力达到最大静摩擦力之后,BC 间细线开始提供拉力,B 的摩擦力增大,达到最大静摩擦力后,AB 间细线开始有力的作用,随着角速度增大,A 所受的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大值,且B 、C 间细线的拉力大于AB 整体的摩擦力时整体将会出现相对滑动,此时A 与B 还受到细线的拉力,对C 有
2
2222T mg m r μω+⋅=⋅
对AB 整体有
2T mg μ=
得2g
r
μω,当
5 rad/s g
r
μω>
=
时,整体会发生滑动。

故A 错误,BC 正确。

D .当 2.5 rad/s 5 rad/s ω<<时,在ω增大的过程中,BC 间细线的拉力逐渐增大。

故D 错误。

故选BC 。

8.如图所示,在水平转台上放置有轻绳相连的质量相同的滑块1和滑块2,转台绕转轴OO ′以角速度ω匀运转动过程中,轻绳始终处于水平状态,两滑块始终相对转台静止,且与转台之间的动摩擦因数相同,滑块1到转轴的距离小于滑块2到转轴的距离.关于滑块1和滑块2受到的摩擦力f 1和f 2与ω2的关系图线,可能正确的是
A .
B .
C .
D .
【答案】AC 【解析】 【详解】
两滑块的角速度相等,根据向心力公式F=mrω2,考虑到两滑块质量相同,滑块2的运动半径较大,摩擦力较大,所以角速度增大时,滑块2先达到最大静摩擦力.继续增大角速度,滑块2所受的摩擦力不变,绳子拉力增大,滑块1的摩擦力减小,当滑块1的摩擦力减小到零后,又反向增大,当滑块1摩擦力达到最大值时,再增大角速度,将发生相对滑动.故滑块2的摩擦力先增大达到最大值不变.滑块1的摩擦力先增大后减小,在反向增大.故A 、C 正确,B 、D 错误.故选AC .
9.如图所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R . 现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,则下列说法中错误的是
A .若0v gR
B .若0v gR >
,则小球对管内上壁有压力 C .若00v gR <<,则小球对管内下壁有压力
D .不论v 0多大,小球对管内下壁都有压力
【答案】D 【解析】 【分析】 【详解】
A .到达管道的最高点,假设恰好与管壁无作用力.则有:小球仅受重力,由重力提供向心力,即:
20
v mg m R
=

0v gR =
所以A 选项是正确的,不符合题意. B .当0v gR >
,则小球到达最高点时,有离心的趋势,与内上壁接触,从而受到内上壁向下
的压力,所以小球对管内上壁有压力,故B 选项是正确的,不符合题意. C .当00v gR <<
,则小球到达最高点时, 有向心的趋势,与内下壁接触,从而受到内下壁
的压力.所以C 选项是正确的,不符合题意.
D .小球对管内壁的作用力,要从速度大小角度去分析.,若0v gR >,则小球对管内上壁
有压力;若00v gR <<
,则小球对管内下壁有压力.故D 不正确,符合题意.
10.如图所示,长为r 的细杆一端固定一个质量为 m 的小球,使之绕另一光滑端点 O 在竖直面内做圆周运动,小球运动到最高点时的速度 v =4
gr , 则下列说法不正确的 是( )
A .小球在最高点时对细杆的压力是
3mg
4
B .小球在最高点时对细杆的拉力是
mg
2
C gr ,小球对细杆的弹力是零
D .若小球运动到最高点速度为 2gr ,小球对细杆的拉力是 3mg 【答案】B 【解析】 【分析】 【详解】
AB .在最高点,根据牛顿第二定律得
2
v mg F m r
-=
解得
34
F mg =
根据牛顿第三定律知,小球在最高点对细杆的压力为3
4
F mg =,选项A 正确,B 错误; C .在最高点,若细杆弹力为零,根据牛顿第二定律得
2
v mg m r
=
解得
v gr =
选项C 正确;
D .若在最高点速度为2gr ,根据牛顿第二定律得
2
v F mg m r
+=
解得
3F mg =
选项D 正确。

本题选不正确的,故选B 。

11.如图所示,用一根质量不计不可伸长的细线,一端系一可视为质点的小球,另一端固定在O 点。

当小球在水平面内做匀速圆周运动的角速度为ω时,悬点O 到轨迹圆心高度h ,细绳拉力大小为F ,小球的向心加速度大小为a ,线速度大小为v ,下列描述各物理量与角速度ω的关系图像正确的是( )
A .
B .
C .
D .
【答案】A 【解析】 【分析】 【详解】
A .设细绳长度为l ,小球质量为m ,小球做匀速圆周运动时细绳与竖直方向的夹角为θ,细绳拉力为F ,有
2sin sin F m l θωθ=

2F m l ω=
A 正确;
B .由
2tan sin mg m l θωθ=
cos h l θ=

2
g
h ω=
B 错误;
C .由
2tan sin mg m l θωθ=
可得
2cos g
l
θω=
小球的向心加速度
2422sin a l l g ωθω==-C 错误; D .由
2cos g
l
θω=
得小球的线速度
2
22
2
sin g v l l ωθωω
==-
D 错误。

故选A 。

12.上海磁悬浮线路需要转弯的地方有三处,其中设计的最大转弯处半径达到8000米,用肉眼看几乎是一条直线,而转弯处最小半径也达到1300米。

一个质量50kg 的乘客坐在以360km/h 不变速率驶过半径2500米弯道的车厢内,下列说法不正确的是( ) A .弯道半径设计特别长可以使乘客在转弯时更舒适 B .弯道半径设计特别长可以减小转弯时列车的倾斜程度 C .乘客受到来自车厢的力大小约为539N D .乘客受到来自车厢的力大小约为200N 【答案】D 【解析】 【分析】 【详解】 A .根据
2v a R
=
在速度一定的情况下,转弯半径越大,需要的向心加速度越小,乘客在转弯时感觉越平稳、舒适,A 正确;
B .为了使列车行驶安全,在转弯时一般内轨比外轨低,让支持力的水平分力提供列车做圆周运动的向心力,转弯半径越大,需要的向心力越小,列车的倾斜程度越小,B 正确; CD .根据
2
v F m R
=
代入数据可得,转弯时的向心力大约为200N ,而车箱给人的合力
22=()539N F mg F +=合
C 正确,
D 错误。

故不正确的应选D 。

13.如图,在一半经为R 的球面顶端放一质量为m 的物块,现给物块一初速度v 0,,则( )
A .若0v gR = ,则物块落地点离A 点2R
B .若球面是粗糙的,当0v gR < 时,物块一定会沿球面下滑一段,再斜抛离球面
C .若0v gR <,则物块落地点离A 点为R
D .若0v gR ≥,则物块落地点离A 点至少为2R
【答案】D 【解析】 【分析】 【详解】
试题分析:在最高点,根据牛顿第二定律得,2
0v mg N m R
-=,0v gR =,解得N=0,
知物体在顶部仅受重力,有水平初速度,做平抛运动,则222R R
t g g
⨯=
=,则水平运动的位移02
2R
x v t gR R g
==
⨯=,故A 错误;当0v gR <时,在最高点,根据牛顿第二定律得,2
0v mg N m R
-=,解得0N >,如果物块受到的摩擦力足够大,物块可能滑
行一段距离后停止;2、如果物块受到的摩擦力处于临界状态,可能刚好滑到边沿竖直下抛;3、如果摩擦力再减少的话就可能在某一位置斜下抛,故B 错误;当0v gR <时,物
块也可能做圆周运动,故C 错误;若0v gR ≥,有A 的分析可知,水平位移x≥2R ,故D
正确.
考点:考查了圆周运动,平抛运动 【名师点睛】
在最高点,物体沿半径方向的合力提供向心力,根据牛顿第二定律判断是否有支持力,从而判断物体的运动情况即可解题.
14.长为L 的细线一端系一质量为m 的小球(可视为质点),另一端固定在一光滑锥顶上,光滑锥顶角为2θ,轴线在竖直方向,如图甲所示。

使小球在水平面内做角速度为ω的匀速圆周运动,线的张力为T ,经分析可得2-T ω关系图像如图乙所示,已知重力加速度为g 。

则( )
A .sin a mg θ=
B .g b L
=
C .图线1的斜率1sin k mL θ=
D .图线2的斜率2k mL =
【答案】D 【解析】 【分析】 【详解】
A .当角速度为零时,受力分析则有
cos T mg a θ==
故A 错误。

B .当小球贴着光滑圆锥做匀速圆周运动时,由题图可知,当角速度的平方达到b 时,支持力为零,有
2tan sin mg mL θθω=
解得
2cos g
b L ωθ
==
故B 错误。

C .小球未脱离圆锥时,有
2sin cos sin T N mL θθθω-= cos sin T N mg θθ+=
联立两式解得
22cos sin T mg mL θθω=+
可知图线1的斜率
21sin k mL θ=
故C 错误。

D .当小球脱离圆锥后,有
2sin sin T a mL a ω=

2T mL ω=
则图线2的斜率
2k mL =
故D 正确。

故选D 。

15.如图是德国物理学家史特恩设计的最早测定气体分子速率的示意图.M 、N 是两个共轴圆筒的横截面,外筒N 的半径为R ,内筒的半径比R 小得多,可忽略不计.筒的两端封闭,两筒之间抽成真空,两筒以相同角速度ω绕其中心轴线匀速转动.M 筒开有与转轴
平行的狭缝S,且不断沿半径方向向外射出速率分别为v1和v2的分子,分子到达N筒后被吸附,如果R、v1、v2保持不变,ω取某合适值,则以下结论中正确的是()
A.当
12
2
R R
n
V V
π
ω
-≠时(n为正整数),分子落在不同的狭条上
B.当
12
2
R R
n
V V
π
ω
+=时(n为正整数),分子落在同一个狭条上
C.只要时间足够长,N筒上到处都落有分子
D.分子不可能落在N筒上某两处且与S平行的狭条上
【答案】A
【解析】
微粒从M到N运动时间
R
t
v
=,对应N筒转过角度
R
t
v
ω
θω
==,即如果以v1射出时,转过
角度:1
1
R
t
v
ω
θω
==,如果以v
2射出时,转过角度:2
2
R
t
v
ω
θω
==,只要θ
1、θ2不是相差2π的整数倍,即当
12
2
R R
n
v v
π
ω
-≠
时(n为正整数),分子落在不同的两处与S平行的狭条上,故A正确,D错误;若相差2π的整数倍,则落在一处,即当
12
2
R R
n
v v
π
ω
-=
时(n为正整数),分子落在同一个狭条上.故B错误;若微粒运动时间为N筒转动周期的整数倍,微粒只能到达N筒上固定的位置,因此,故C错误.故选A
点睛:
解答此题一定明确微粒运动的时间与N筒转动的时间相等,在此基础上分别以v1、v2射出时来讨论微粒落到N筒上的可能位置.。

相关文档
最新文档