生物质谱分析技术胡水旺ppt文档
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子源:用来使样品分子电离生成离子 质量分析器:利用电磁场的作用将来自离子源
的离子束中不同质荷比的离子按空间位置,时 间先后或运动轨道稳定与否等形式进行分离 检测器:用来接受、检测和记录被分离后的离 子信号
进样系统
气体进样 液体进样 固体进样
离子源
电子轰击电离(EI) 化学电离(CI) 快原子轰击(FAB) 电喷雾电离(ESI) 基质辅助激光解吸电离(MALDI) 表面增强激光解吸电离(SELDI)技术
机遇:基因组计划的快速进行,大量基 因序列和EST的确定为蛋白质的快速鉴 定提供了良好的基础。
挑战:从单一蛋白质的研究转变到细胞 和组织的整体蛋白质研究,在理论和技 术上提出了挑战。
蛋白质研究技术的革命:蛋白质组学
蛋白质组学常用的两大技术平台
第三部分
生物质谱技术的原理及应用
质谱技术特点
质谱仪是一个用来测量单个分子质量的仪器,实际上
第二部分
蛋白质组学的兴起
解析疾病机制手段的改进:DNA Protein
蛋白质研究的复杂性
转录水平调控
蛋白质表达调控 翻译水平调控
翻译后水平调控 蛋白质存在复杂的翻译后修饰,作为生命功能 的行使者,它比基因更能直接地反映生理过程及其 变化。 蛋白质相互作用及空间构向等问题是生命现象 复杂性的真实体现。
质谱分析原理
质谱分析法是通过对被测样品离子的质荷 比的测定来进行分析的一种分析方法。被分析 的样品首先要离子化,然后利用不同离子在电 场或磁场的运动行为的不同,把离子按质荷比 (m/z)分开而得到质量图谱,通过样品的质 量图谱和相关信息,可以得到样品的定性定量 结果。
质谱发展史
1911年: 世界第一台质谱装置 (J.J. Thomson)
1).电子轰击(Electron impact, EI)电离
M + e-
M+. + 2e-
Fi+ , i=1, 2, 3, ………. 电子束
气体分子
离子束
2). 化学电离(chemical ionization, CI)
正离子模式:GH+ + M 负离子模式:[G-H]- + M
[M + H]+ [M - H]-
蛋白质组学(Proteomics) :是通过大规 模研究蛋白质的表达水平的变化、翻译后修饰、 蛋白质与蛋白质之间的相互作用,以获取蛋白 质水平上疾病变化、细胞进程及蛋白质网络相 互作用的整体综合信息的科学研究。
疾病蛋白质组学:蛋白质组学用于研究疾 病发病机制便发展为疾病蛋白质组学。
蛋白质组学的研究的机遇和挑战:
+G +G
G: 离子化的试剂气体分子, CH4, NH3 等 M: 被分析物
离子束
ห้องสมุดไป่ตู้
电子束 试剂分子 气体分子
3). 快原子轰击(Fast atom bombardment, FAB)离子 化技术-可分析分子量达数千的多肽, 极性分子.
4). 电喷雾离子化(Electrospray ionization, ESI)技术
生物质谱分析技术胡水旺
对生命的认识
1.生命是神造的、上帝造的等; 2.生命是活力; 3.生命是机器; 4.生命是信息。
系统生物学
系统生物学是研究一个生物系统中所有 组成成分(基因、mRNA、蛋白质等)的 构成,以及在特定条件下这些组分间的 相互关系的学科 。
系统生物学不同于以往的实验生物学—— 仅关心个别的基因和蛋白质,它要研究 所有的基因、所有的蛋白质、组分间的 所有相互关系。
Reductionism vs Synthesis
传统生物学与还原论 (reductionism) 的 观点
还原论假设一个复杂的系统可以分割为许多 不会互相干扰的子系统,因此只要将子系统 研究清楚,就能了解复杂系统的行为。
系统生物学与整合(synthesis)的观点
面对子系统不独立的可能性,而希望寻找新 的方法来解决子系统间交互作用的问题。
控制整个质谱仪
数据处理系统
离子检测器 离子转换成电信号
棒状峰
高斯状峰
蛋白质
质谱工作流程
进样系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光 5.快原子轰击
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
质谱的构造
进样系统:按电离方式的需要,将样品送入 离子源的适当部位,分为加热进样和直接进样。
质谱仪提供的是分子的质量与电荷比(m/z or m/e).
质谱法是一强有力的分析技术。它可用于未知化合物 的鉴定、定量分析、分子结构及化学特性的确定等方 面;
所需化合物的量非常低:10-12g, 或10-15 mole; 应用范围广: (1) 有机质谱法:生物、医药、聚合物、
法医和环境等方面;(2) 无机质谱法: 地球化学,地 质矿产和无机元素分析鉴定等方面。
蛋白质研究的复杂性
细胞周期信号转导图
传统的蛋白质研究方法中存在的问题
1.生命现象的发生往往是多因素的,必然涉及到 多个蛋白质。
2.多个蛋白质的参与是交织成网络的,或平行发 生,或呈级联因果。
3.在执行生理功能时蛋白质的表现是多样的、动 态的,并不像基因组那样基本固定不变。
随着人类基因组计划重点由结构基因组 到功能基因组的转移,生命科学开始进入后 基因组时代。
研究基因终产物及生命活动直接功能执 行者蛋白质的科学-蛋白质组学(Proteomics) 应运而生。
蛋白质组最早是由澳大利亚Macquarie 大 学的Wilkins和 Williams在1994年的意大利举办 的双向电泳会议上首次提出来的。
Proteome一词由“蛋白质(PROTEin)” 与“基因组(genOME)”杂合而成,对于 “基因组学(Genomics)”,“蛋白质组学”定 义为一个基因组所表达的全套蛋白质。由 Proteome进一步派生出Proteomics。
40年代: 用于同位素测定和无机元素分 析
50年代: 开始有机物分析(分析石油) 60年代: 研究GC-MS联用技术 70年代: 计算机引入
生物质谱的发展
80年代:快原子轰击电离,基质辅助激 光解吸电离,电喷雾电离,大气压化学 电离
质谱仪的示意图
离子源
质量分析器
产生气相离子
按离子的质量与 电荷比分离离子
的离子束中不同质荷比的离子按空间位置,时 间先后或运动轨道稳定与否等形式进行分离 检测器:用来接受、检测和记录被分离后的离 子信号
进样系统
气体进样 液体进样 固体进样
离子源
电子轰击电离(EI) 化学电离(CI) 快原子轰击(FAB) 电喷雾电离(ESI) 基质辅助激光解吸电离(MALDI) 表面增强激光解吸电离(SELDI)技术
机遇:基因组计划的快速进行,大量基 因序列和EST的确定为蛋白质的快速鉴 定提供了良好的基础。
挑战:从单一蛋白质的研究转变到细胞 和组织的整体蛋白质研究,在理论和技 术上提出了挑战。
蛋白质研究技术的革命:蛋白质组学
蛋白质组学常用的两大技术平台
第三部分
生物质谱技术的原理及应用
质谱技术特点
质谱仪是一个用来测量单个分子质量的仪器,实际上
第二部分
蛋白质组学的兴起
解析疾病机制手段的改进:DNA Protein
蛋白质研究的复杂性
转录水平调控
蛋白质表达调控 翻译水平调控
翻译后水平调控 蛋白质存在复杂的翻译后修饰,作为生命功能 的行使者,它比基因更能直接地反映生理过程及其 变化。 蛋白质相互作用及空间构向等问题是生命现象 复杂性的真实体现。
质谱分析原理
质谱分析法是通过对被测样品离子的质荷 比的测定来进行分析的一种分析方法。被分析 的样品首先要离子化,然后利用不同离子在电 场或磁场的运动行为的不同,把离子按质荷比 (m/z)分开而得到质量图谱,通过样品的质 量图谱和相关信息,可以得到样品的定性定量 结果。
质谱发展史
1911年: 世界第一台质谱装置 (J.J. Thomson)
1).电子轰击(Electron impact, EI)电离
M + e-
M+. + 2e-
Fi+ , i=1, 2, 3, ………. 电子束
气体分子
离子束
2). 化学电离(chemical ionization, CI)
正离子模式:GH+ + M 负离子模式:[G-H]- + M
[M + H]+ [M - H]-
蛋白质组学(Proteomics) :是通过大规 模研究蛋白质的表达水平的变化、翻译后修饰、 蛋白质与蛋白质之间的相互作用,以获取蛋白 质水平上疾病变化、细胞进程及蛋白质网络相 互作用的整体综合信息的科学研究。
疾病蛋白质组学:蛋白质组学用于研究疾 病发病机制便发展为疾病蛋白质组学。
蛋白质组学的研究的机遇和挑战:
+G +G
G: 离子化的试剂气体分子, CH4, NH3 等 M: 被分析物
离子束
ห้องสมุดไป่ตู้
电子束 试剂分子 气体分子
3). 快原子轰击(Fast atom bombardment, FAB)离子 化技术-可分析分子量达数千的多肽, 极性分子.
4). 电喷雾离子化(Electrospray ionization, ESI)技术
生物质谱分析技术胡水旺
对生命的认识
1.生命是神造的、上帝造的等; 2.生命是活力; 3.生命是机器; 4.生命是信息。
系统生物学
系统生物学是研究一个生物系统中所有 组成成分(基因、mRNA、蛋白质等)的 构成,以及在特定条件下这些组分间的 相互关系的学科 。
系统生物学不同于以往的实验生物学—— 仅关心个别的基因和蛋白质,它要研究 所有的基因、所有的蛋白质、组分间的 所有相互关系。
Reductionism vs Synthesis
传统生物学与还原论 (reductionism) 的 观点
还原论假设一个复杂的系统可以分割为许多 不会互相干扰的子系统,因此只要将子系统 研究清楚,就能了解复杂系统的行为。
系统生物学与整合(synthesis)的观点
面对子系统不独立的可能性,而希望寻找新 的方法来解决子系统间交互作用的问题。
控制整个质谱仪
数据处理系统
离子检测器 离子转换成电信号
棒状峰
高斯状峰
蛋白质
质谱工作流程
进样系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光 5.快原子轰击
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
质谱的构造
进样系统:按电离方式的需要,将样品送入 离子源的适当部位,分为加热进样和直接进样。
质谱仪提供的是分子的质量与电荷比(m/z or m/e).
质谱法是一强有力的分析技术。它可用于未知化合物 的鉴定、定量分析、分子结构及化学特性的确定等方 面;
所需化合物的量非常低:10-12g, 或10-15 mole; 应用范围广: (1) 有机质谱法:生物、医药、聚合物、
法医和环境等方面;(2) 无机质谱法: 地球化学,地 质矿产和无机元素分析鉴定等方面。
蛋白质研究的复杂性
细胞周期信号转导图
传统的蛋白质研究方法中存在的问题
1.生命现象的发生往往是多因素的,必然涉及到 多个蛋白质。
2.多个蛋白质的参与是交织成网络的,或平行发 生,或呈级联因果。
3.在执行生理功能时蛋白质的表现是多样的、动 态的,并不像基因组那样基本固定不变。
随着人类基因组计划重点由结构基因组 到功能基因组的转移,生命科学开始进入后 基因组时代。
研究基因终产物及生命活动直接功能执 行者蛋白质的科学-蛋白质组学(Proteomics) 应运而生。
蛋白质组最早是由澳大利亚Macquarie 大 学的Wilkins和 Williams在1994年的意大利举办 的双向电泳会议上首次提出来的。
Proteome一词由“蛋白质(PROTEin)” 与“基因组(genOME)”杂合而成,对于 “基因组学(Genomics)”,“蛋白质组学”定 义为一个基因组所表达的全套蛋白质。由 Proteome进一步派生出Proteomics。
40年代: 用于同位素测定和无机元素分 析
50年代: 开始有机物分析(分析石油) 60年代: 研究GC-MS联用技术 70年代: 计算机引入
生物质谱的发展
80年代:快原子轰击电离,基质辅助激 光解吸电离,电喷雾电离,大气压化学 电离
质谱仪的示意图
离子源
质量分析器
产生气相离子
按离子的质量与 电荷比分离离子