三路频分复用系统设计

合集下载

通信课程设计选题 选题参考

通信课程设计选题 选题参考

(1)N路信号频分复用系统的设计与建模;(2人)参数:1)每路信号占用带宽尽可能窄;信道总带宽20kHz;2)SSB-FDM-FM方式;3)3路信号,频率300Hz~3400Hz;4)保护带宽1Hz;要求:1)设定噪声类型和参数,且参数方便可调;2)设3个观测点,分别观察SSB、FDM、FM信号;3)设定载频;4)完成发送端和接收端仿真,观察接收到的信号,分析结果(2)N路信号时分复用系统的设计与建模;(2人)要求:1)设计信号源模块,产生三种连续信号;频率300Hz~3400Hz2)FM+TDM方式;(也可以是其它调制方式+TDM);3)对时隙、带宽等各项指标记录数值;4)设计三路信号合路器模块,完成发送端仿真;5)设计三路信号分路器模块,完成接收端仿真;6)设置观测点,观测TDM信号;观察接收端恢复的信号,分析仿真结果一、射频遥控门铃(1人)按发射部分按键(只按一下),接收部分门铃(蜂鸣器)响,延时30秒自动停止。

(3)MFSK数字信号频带传输系统的设计与建模;(2人)要求:1)设计M进制基带信号生成模块,产生M进制基带信号;2)设计MFSK调制模块;3)设计信道模块,加性白噪声信道,噪声功率可调;4)设计MFSK解调模块;5)构成传输系统,设定测试点,观察各点波形,记录相关数据并分析;(4)QPSK数字信号频带传输系统的设计与建模;(1人)要求:1)用两种方法产生QPSK信号(相位选择法、直接调相法);2)设计信道模块,信道噪声可调;测试不同噪声下解调系统性能,记录相关数据并分析仿真结果二、两路遥控开关(1人)发射部分有两个按键,当按下某一键时(只按一下),接收部分相应的继电器接通,同时指示灯亮,需要关断时,在发射部分可再按下相应键(启动键,只按一下),就可关断,在接收部分也有对应的关断键。

(5)第I类部分响应系统设计与建模;(1人)要求:1)设计信号产生模块,产生二进制基带信号(码元)2)设计预编码-相关编码模块(程序);记录编码结果3)设计新到模块,噪声可调;4)设计抽样判决模块,恢复原是基带信号(码元)5)绘制眼图(6)DQPSK数字信号频带传输系统的设计与建模(1人)要求:1)设计绝对码相对码转换电路;2)设计信道模块,信道噪声可调;3)测试不同噪声下解调系统性能,记录相关数据并分析仿真结果三、遥控彩灯控制电路(1人)由发射部分控制接收部分彩灯(灯数自定)旋转。

无线移动通信中的OFDM系统参数设计方法

无线移动通信中的OFDM系统参数设计方法

无线移动通信中的OFDM系统参数设计方法OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)是一种广泛应用于无线移动通信系统的调制技术。

在OFDM系统中,将高速数据流划分成多个较低速的子载波进行调制,通过频分复用将它们同时发送到接收设备,从而提高了系统的容量和抗干扰性。

OFDM系统的性能很大程度上取决于参数的设计,下面将介绍几种常用的OFDM系统参数设计方法。

1.子载波数量的选择:OFDM系统中的数据流被分配到多个子载波上进行传输,因此子载波数量的选择对系统性能起着重要作用。

较多的子载波数量可以提高带宽利用率和频谱效率,但同时也会增加系统的复杂度。

较少的子载波数量则能减少系统的复杂度,但频谱效率会下降。

因此,在选择子载波数量时需要在系统性能和复杂度之间进行权衡。

2.子载波间隔的选择:子载波的间隔决定了系统的频带利用效率和抗多径干扰能力。

较小的子载波间隔可以提高频带利用效率和系统的容量,但同时也会增加接收端对多径信道的抗干扰能力要求。

较大的子载波间隔则可以提高抗多径干扰能力,但频带利用效率会下降。

因此,在选择子载波间隔时需要在频带利用效率和抗多径干扰能力之间进行平衡。

3.周期前缀长度的选择:周期前缀是OFDM系统中用来消除多径干扰的一种技术。

在发送端将OFDM符号进行调制后,需要在每个OFDM符号之前插入一段长度为CP的循环冗余前缀,从而避免符号间干扰。

周期前缀长度的选择与多径信道的时延扩展性有关。

较长的周期前缀可以提高系统对多径信道的抗干扰能力,但同时也会降低系统的信道容量。

较短的周期前缀则能提高系统的容量,但也会对多径信道的抗干扰能力要求更高。

因此,在选择周期前缀长度时需要在系统容量和对多径信道的抗干扰能力之间进行权衡。

4.编码方法的选择:对于无线移动通信系统,误码性能是一个关键的指标。

在OFDM系统中,可以采用不同的编码方法来提高系统的误码性能。

多路复用技术

多路复用技术

信号复合
¶ Â à · ´ Ó · Ã Æ ÷ ß Ë · Ù Í ¨Ð Å Ï ß Â ·
信号分离
¶ Â à · ´ Ó · Ã Æ ÷
多路复用技术的分类:
◇ 频分多路复用FDMA ◇ 时分多路复用TDMA ◇ 波分多路复用WDMA
◇ 码分多路复用CDMA
1 频分多路复用(FDMA)
定义:是将具有一定带宽的信道分割成若干个有较小频带的子信 道,每个子信道传输一路信号,即供一个用户使用,这就是频分 多路复用。 特点: (1)在一条通信线路上设计有多路通信信道;
¦ ¸ Ê Â
¸Ï â Ë1 IJ µ ¨Æ × âÏ ¸ Ë1 ¨³ ² ¤ ¸Ï â Ë2 IJ µ ¨Æ × âÏ ¸ Ë2 ¨³ ² ¤
²í ¸ ϸ âÏ Ë Ä² µ ¨Æ × ¦ ¸ Ê Â ¨³ ² ¤ âÏ ¸ Ë3 ¦ ¸ Ê Â
¸Ï â Ë3 IJ µ ¨Æ ×
¨³ ² ¤ ¸Ï â Ë4 IJ µ ¨Æ ×
填空题
1、数据交换方式基本上分为三种 电路交换 、报文交 换和分组交换 。 2、分组交换有两种方式:数据报方式和虚电路方式。 3、用电路交换技术完成的数据传输要经历电路建立 阶段 、 数据传输阶段和拆除电路连接阶段 。 4、在计算机的通信子网中,其操作方式有两种,它 们是面向连接的电路交换方式和虚电路方式和无连接 的报文交换方式和数据报交换方式。 5、在数据报服务方式中,网络节点要为每个数据报/ 分组选择路由,在虚电路服务方式中,网络节点只在 连接建立时选择路由。
异步时分复用技术又被称为统计时分复用或智能时分复 用(ITDM)技术,它能动态地按需分配时隙,时间片位 置与信号源没有固定的对应关系
时分多路复用常用于传输数字信号。 但是也不局限于传输数字信号,模拟信号也 可 以同时交叉传输。另外,对于模拟信号, 时分多路复用和频分多路复用结合起来使用 也是可能的。一个传输系统可以频分许多条 通道,每条通道再用时分多路复用来细分。

光纤通信系统波分复用系统WDM-共64页课件

光纤通信系统波分复用系统WDM-共64页课件

中心频率 193.6 193.5 193.4 193.3 193.2 193.1 193.0 192.9 192.8 192.7 192.6 192.5 192.4 192.3 192.2 192.1
4 波系统 * * * *
8 波系统 * * * * * * * *
16 波系统 * * * * * * * * * * * * * * * *
(a)现实的需要性,以2.5Gb/s系统为例, 16波分单向就可达到40Gb/s的传输速率, 这足以满足未来几年的业务需求;
(b)技术的可行性。当前波分复用器件和激 光器元件的技术都满足16个波长以上的复用。
从当前应用上看,WDM系统只用于 2.5Gb/s以上的高速率系统。因而在制定规 范的过程中,我们主要考虑了基于2.5Gb/s SDH的干线网WDM系统的应用,承载信号为 SDH STM-16系统,即2.5Gb/s×N的WDM 系统。对于承载信号为其他格式(例如IP)的系 统和其它速率(例如10Gb/s×N)暂不作要 求。
开放式波分复用系统:就是波分复用器前端 加入波长转移单元OTU,将当前SDH的 G.957接口波长转换为G.692的标准波长光 接口。可以接纳过去的老SDH系统,并实 现不同厂家互联,但OTU的引入可能对系 统性能带来一定的负面影响。
双向WDM系统在设计和应用时必须要考虑几个关 键的系统因素:
如为了抑制多通道干扰(MPI),必须注意到光反射的影响、 双向通路之间的隔离、串扰的类型和数值、两个方向传输的功 率电平值和相互间的依赖性、光监控信道(OSC)传输和自动功 率关断等问题,同时要使用双向光纤放大器。
l
1 1,
l
1 2,
l
1 3
,l
1 4

频分复用与时分复用

频分复用与时分复用

三.码速与带宽,时分复用的码间串扰
(a)时钟 (CP)
T
0
1
1 码速: f 码速: = T
0
1 1
(b)矩形
归零码
0
1
0
1 带宽: 带宽:
τ
τ
(c)矩形
不归零码
T
码速≈ 码速≈ 带宽
1 带宽: 带宽: T
选用带宽外高频 选用带宽外高频 分量相对较小的 码型。 码型。
(d )升余弦码
T
2T
t0
t1
1 带宽: 带宽: T
1 = fa (t )[1 + cos(2ωat )] 2 1 1 = fa (t ) + fa (t ) cos(2ωat ) 2 2
1 1 Ga (ω) = Fa (ω) + [Fa (ω + 2ωa )] + Fa (ω 2ωa ) 2 4
再使用低通滤波器,完成解调。 再使用低通滤波器,完成解调。
码分复用(码分多址) (CDMA) 码分复用(码分多址) ) 频分复用: 频分复用:就是以频段分割的方法在一个信道内
复用 复用发信端
调制, 调制,将各信号搬移到不 同的频率范围。 同的频率范围。
fa (t ) fb (t ) fc (t )
cosω at cosωbt cosωct yb (t ) ya (t ) g(t )
yc (t )
Fc (ω)
Fa (ω)
Fb (ω)
O
ω
O
ω
G(ω)
O
ω
ωc
ωb
ωa
O
ωa
ωb
ωc
ω
复用 复用收信端
收信端:带通滤波器,分开各路信号,解调。 收信端:带通滤波器,分开各路信号,解调。

毕业设计113频分复用、霍夫曼编码、网络流量、Web Server、DSK语音、同步与定时和串行通信系统设计

毕业设计113频分复用、霍夫曼编码、网络流量、Web Server、DSK语音、同步与定时和串行通信系统设计

摘要摘要综合课题毕业设计包括8个设计课题:频分复用、霍夫曼编码、网络流量、Web Server、DSK语音、同步与定时和串行通信。

传输专题要求理解通信各个环节的电路以及功率和带宽的计算,然后利用Protel绘制出各个单元电路,例如振荡电路、调制电路、分频电路等等。

霍夫曼编码是在充分理解了霍夫曼编码的原理之后编写一个软件来实现霍夫曼编码的功能,并分析压缩率。

网络流量课题的设计目的是通过从不同的角度对数据进行分析,得到结论,然后利用网络知识解释分析流量变化原因。

Web Server专题要求了解嵌入式系统开发环境,通过服务器端程序的编写了解基本的动态网站的设计方法。

DSK语音设计要求理解DSK语音在工程实现上的方法。

根据设计要求,给出一种语音编解码的实现方案,基于TI公司提供的TMS320VC5416 DSK给出实现结果;通过本实验体会并初步学会DSP技术的实现方法及开发流程。

同步与定时专题要求设计AD9959的外围电路,然后设计一个软件来控制AD9959使之输出我们需要的频率。

串行通信专题要求进一步了解串行通信的基本原理;掌握串行接口芯片的工作原理和编程方法。

关键词:频分复用,霍夫曼编码,网络流量,Web Server,DSK语音,同步与定时,串行通信ⅠABSTRACTAbstractThis diploma design contains eight projects: FDM, Huffman code, Network flux, Web server, DSK voice process, DDS and Serial communicate.FDM project requires deep understanding of the process of communication, then design some important parts of the circuit.In Huffman code project, I design a software which help us to make Huffman code come true.Network flux project let us analyze the flux between two nets.Web server project’s aim is make us know the basic method of how to design a website based on C/S.DSK voice process offers a solution to transmit voice through DSP’ process.In DDS design we design circuit for AD9959, and then we use VB to write a program to control the AD9959 to generate the frequency we desire.Keywords: FDM, Huffman code, Network flux, Web server, DSK voice process, DDS and Serial communicateⅡ目录第一章传输专题(频分复用) (1)1.1设计原理 (1)1.2系统的带宽和功率计算 (2)1.2.1功率计算 (2)1.2.2带宽计算 (2)1.3单元电路设计 (3)1.3.1振荡电路 (3)1.3.2同向输入放大器 (4)1.3.3加法器 (4)1.3.4 调制电路 (5)1.3.5 滤波器 (5)1.3.7 四—二转换器电路 (6)1.3.8 频率合成器 (7)1.4系统总电路图 (8)1.5总结和体会 (12)第二章霍夫曼编码 (13)2.1设计目的与要求 (13)2.2设计原理 (13)2.3设计过程 (14)2.3.1霍夫曼编码的软件流程 (15)2.3.2 设计结果 (15)2.4设计结果分析 (16)2.4.1生成测试文件 (16)2.4.2随机文件读取 (17)2.4总结 (19)第三章网络流量监测及分析 (21)3.1 设计背景和目的 (21)3.2 设计要求 (21)3.3监测及分析的原理 (22)Ⅲ3.3.1监测的原理 (22)3.3.2监测软件Sniffer (22)3.4 方法与过程 (22)3.5数据包分析 (23)3.6全天数据总流量变化图 (27)3.7流量分析 (27)3.7.1 网络进出流量分析 (27)3.7.3 TCP和UDP流量分析 (28)3.7.4 FTP流量分析 (29)3.8安全漏洞 (29)3.9结论与体会 (30)第四章WEB SERVER (31)4.1设计目的 (31)4.2设计环境 (31)4.2.1硬件环境 (31)4.2.2软件环境 (32)4.2.2.1 Linux系统 (32)4.2.2.2虚拟机 (32)4.3基本操作 (32)4.5HTTP协议简介 (33)4.5.1 报文 (33)4.5.2 请求报文 (34)4.5.3 响应报文 (34)4.5.4 首部 (35)4.6TCP通信流程 (36)4.7 程序功能实现 (37)4.7.1功能实现设计思想 (37)4.7.2程序中相关代码解释 (38)4.8程序最终效果 (41)4.9总结 (42)第五章 DSK语音 (43)Ⅳ目录5.1设计目的 (43)5.2设计环境 (43)5.2.1硬件设备 (43)5.2.2软件 (44)5.3设计原理 (45)5.3.1DSK语音编解码原理: (45)5.3.2PCM3002的结构框图如下图: (45)5.4设计步骤 (45)5.4.1PCM3002C ODEC API介绍 (45)5.4.2为设计好的方案画各部分的流程图。

OFDM调制解调系统的设计

OFDM调制解调系统的设计

OFDM调制解调系统的设计OFDM(正交频分复用)调制解调系统是一种用于高速数据传输的主要技术之一、它采用频域上的正交载波分割信号,提供了高效、可靠的数据传输方式。

本文将探讨OFDM调制解调系统的设计,并介绍其关键组成部分和性能优势。

首先,调制器将数据流分割成多个较低速率、正交的子载波,并对每个子载波进行调制。

这些调制子载波通过对数据进行调制,例如使用相位移键控(PSK)、正交振幅调制(QAM)或者混合调制方式,来传输不同的数据。

OFDM调制使用正交载波的特性,避免了多径干扰,提高了频谱效率。

其次,OFDM信号通过信道传输。

由于信道引起的时、频衰落效应,传输信号可能会衰减、延迟和失真,影响系统的性能。

因此,设计一个有效的信道估计和均衡算法对于提高OFDM系统的性能至关重要。

信道估计可以通过引入训练序列,在接收端对信道进行估计,然后进行频域上的均衡处理。

最后,接收机使用解调器来从接收的信号中解调和还原原始数据。

解调器通过提取每个子载波的调制信号,并应用相应的反调制方法对数据进行解调。

该过程包括载波同步、时间同步、频率补偿和解码等步骤。

解调器还需要进行信道估计和均衡处理来纠正信道引起的失真。

1.子载波数量:子载波数量决定了OFDM系统的频谱效率和性能。

子载波数量的选择应该平衡频谱效率和抗干扰性能。

2.调制方式:OFDM系统支持多种调制方式,如PSK、QAM或混合调制等。

为了提高系统性能,应该选择合适的调制方式。

3.信道估计和均衡算法:选择合适的信道估计和均衡算法对于降低信道引起的失真至关重要。

常用的方法包括最小二乘(LS)估计、线性补偿和时间域均衡等。

4.自适应调制和编码:OFDM系统可以应用自适应调制和编码技术,根据信道条件和需求动态地选择最佳调制和编码方式,来提高系统的容量和性能。

1.频谱效率高:OFDM系统可以将高速数据流划分为多个低速子载波,有效地利用了频谱资源,提高了频谱利用率。

2.抗多径干扰性能好:由于子载波之间正交,OFDM系统对多径干扰的抗干扰性能好。

频分多路复用系统设计说明

频分多路复用系统设计说明

*****************实践教学*******************兰州理工大学计算机与通信学院2015年春季学期信号处理课程设计题目:频分多路复用系统的设计专业班级:通信工程姓名:学号:指导教师:成绩:摘要频分复用是一种用频率来划分信道的复用方式。

在FDM中,信道的带宽被划分成很多个互不重叠的频率段(子通道),每路信号占据其中一个字信道,并且各路之间必须留有未被占用的频段(防护频带)进行隔离,以防止信号重叠。

在接收端,采用适当的带通滤波器将多路信号分开,从而恢复出来所需要的信号。

本次以“频分多路复用系统的防真设计”为题目的《信号处理》课程设计,在MATLAB 仿真环境为基础,利用STMULINK仿真工具,根据频分复用的原理,仿真频分多路复用系统。

并设计必要的带通滤波器。

低通滤波器,从复用信号中恢复所采集的语音信号。

最后通过系统的仿真波形图对系统进行分析。

通过本次《信号处理》课程设计,再次熟悉了频分复用的相关理论知识,对如何通过SIMULINK仿真工具进行系统仿真也有了更清晰的认识和掌握。

关键词:频分复用;FFT;Matlab;频谱分析前言 (1)一、概述 (2)二、基本原理 (2)3.1 语音信号采样 (6)3.2 语音信号的调制 (7)3.3滤波器的设计 (8)3.4 信道噪声 (10)四、仿真及实验分析 (11)4.1 设计流程图 (11)4.2 语音信号的时域和频域仿真 (12)4.2.1 信号的时域仿真 (12)4.2.2信号频域仿真 (13)4.3 复用信号的频谱仿真 (13)4.4传输信号的仿真 (14)4.5 解调信号的频谱仿真 (15)4.6恢复信号的时域与频域仿真 (16)五、总结 (17)致谢 (17)参考文献 (19)附录 (20)依据频分复用的复用原理运用MATLAB仿真软件采集4路语音信号通过合适的高频载波调制,然后设计必要的带通滤波器和低通滤波器把得到的复用信号恢复成所采样的语音信号。

时分多路复用与复接技术

时分多路复用与复接技术

第三章时分多路复用与复接技术1 时分多路复用为了提高信道利用率,使多个信号沿同一信道传输而互相不干扰,称多路复用。

目前采用较多的是频分多路复用和时分多路复用。

频分多路复用用于模拟通信,例如载波通信,时分多路复用用于数字通信,例如PCM通信。

时分多路复用通信,是各路信号在同一信道上占有不同时间间隙进行通信。

由前述的抽样理论可知,抽样的一个重要作用,是将时间上连续的信号变成时间上离散的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。

具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。

图3-1为时分多路复用示意图,各路信号经低通滤波器将频带限制在3400Hz以下,然后加到快速电子旋转开关(称分配器)开关不断重复地作匀速旋转,每旋转一周的时间等于一个抽样周期T,这样就做到对每一路信号每隔周期T时间抽样一次。

由此可见,发端分配器不仅起到抽样的作用,同时还起到复用合路的作用。

合路后的抽样信号送到 PCM编码器进行量化和编码,然后将数字信码送往信道。

在收端将这些从发送端送来的各路信码依次解码,还原后的PAM信号,由收端分配器旋转开关K2依次接通每一路信号,再经低通平滑,重建成话音信号。

由此可见收端的分配器起到时分复用的分路作用,所以收端分配器又叫分路门。

当采用单片集成PCM编解码器时,其时分复用方式是先将各路信号分别抽样、编码、再经时分复用分配器合路后送入信道,接收端先分路,然后各路分别解码和重建信号。

要注意的是:为保证正常通信,收、发端旋转开关必须同频同相。

同频是指的旋转速度要完全相同,同相指的是发端旋转开关连接第一路信号时,收端旋转开关K2也必须连接第一路,否则收端将收不到本路信号,为此要求收、发双方必须保持严格的同步。

时分复用后的数码流示意图示于图3-21.1 时分复用中的同步技术时分复用通信中的同步技术包括位同步(时钟同步)和帧同步,这是数字通信的又一个重要特点。

频分复用技术

频分复用技术

频分复用技术1 频分复用技术简介频分复用技术(Frequency Division Multiplexing,FDM)是一种多路复用技术,即将不同的信号通过频域分割,分别占用不同的频带进行传输,解决了多个信号同时传输时容易发生的干扰问题。

FDM是一种比较简单、实用的技术,广泛应用于各种通信系统中,如有线电视、卫星通信等。

2 频分复用技术原理当多个信号需要同时传输时,可以将它们分配给不同的频带进行传输,这就是频分复用技术的原理。

对于每一个需要传输的信号,通过一个带通滤波器将其发射频带分离出来,并进行调制。

传输端将分离后的信号通过调制后叠加到一条信号线上,同时接收端也需要将接收到的信号进行分离,将不同的信号分配给不同的解调器进行解调。

3 频分复用技术优缺点频分复用技术具有如下优点:1. 可以使用现有的信道资源,提高信道的利用率;2. 传输距离远,可以节省布线成本;3. 简单易用,对于不同的信号源没有特殊要求;4. 多路复用容量大,可以同时传输多路信号。

缺点是:1. 系统复杂度不高,但需要大量的滤波器和解调器,增加整个系统的设计难度和成本。

2. 带宽分配固定,不适合于频率资源紧张的情况。

4 频分复用技术应用频分复用技术已经广泛应用于通信系统中,如有线电视、卫星通信、移动通信等。

其中,有线电视频分复用技术可以将多个通道的信号通过同一根传输线纵向区分,也可以将多个信号叠加在同一信道中,实现多频段上的信号混合传输,提高了信号的载荷效率;移动通信频分复用技术则采用了CDMA技术对频段进行了扩展,支持跨越较大的距离传输信号。

5 总结频分复用技术是一种简单、高效的多路复用技术,通过占用不同的频段来分别传输多路信号,提高了信道利用率,同时也减少了系统的复杂度和布线成本。

在通信系统中得到广泛应用,对于改善信号传输质量、提高信号传输速度等方面都有重要作用。

什么是电路的多路选择和复用

什么是电路的多路选择和复用

什么是电路的多路选择和复用电路的多路选择和复用是指在电路设计中,通过一组开关或逻辑电路控制来选择电路中的多个信号源或信号路径,并将其合并为一个输出信号。

这种技术可以提高电路的灵活性和效率,减少芯片面积和功耗。

一、多路选择多路选择是指在电路中选择多个信号源中的一个或几个进行处理的技术。

它常常用于数据选择、信号切换、多通路选择和多分辨率显示等领域。

常见的多路选择电路包括利用传输门实现的多路选择器、解码器以及复用器等。

1. 多路选择器多路选择器是一种常见的多路选择电路,其功能是根据输入控制信号选择某个信号源输出。

多路选择器根据输入控制信号的数量,可分为2选1、4选1、8选1等多种类型。

在多路选择器中,仅有一个输入信号能够被选中,并通过输出端输出。

多路选择器常用于数据选择、信号切换等场景。

2. 数据选择器数据选择器是多路选择电路的一种应用场景。

它将多个数据输入信号与一个二进制选择输入相连接,在不同的选择输入模式下,选中不同的数据输入,并将选中的数据输出。

数据选择器可以实现多个数据源之间的切换,并且只输出选择的数据。

3. 多通路选择多通路选择是指在电路中有多个输入信号路径,通过控制信号选择其中一个或多个路径进行信号传输。

这种技术广泛应用于通信系统中的信号切换、路由器、交换机等设备中。

多通路选择可以实现信号的动态转接,提高通信系统的灵活性和可靠性。

二、复用技术复用是指在一定的时间内,将多个信号或数据流通过一条物理通路进行传输的技术。

复用技术可以提高通信信道的利用率,减少系统的资源占用。

常见的复用技术包括时分复用(TDM)、频分复用(FDM)、波分复用(WDM)等。

1. 时分复用时分复用是将多个信号按照时间不重叠地放在同一条通信线路上进行传输的技术。

多个信号源按照时间先后顺序进行传输,并在接收端通过时序控制将各个信号分离出来。

时分复用技术广泛应用于电话、数据通信等领域,可以提高信道的利用率和传输效率。

2. 频分复用频分复用是将多个信号按照不同的频率进行分割,并分配到不同的子信道上进行传输的技术。

相干光正交频分复用光纤通信系统的设计与研究-毕业论文

相干光正交频分复用光纤通信系统的设计与研究-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---摘要随着近几年的信息技术发展,对大容量信息的要求日益增加,有限的频带资源需要高频谱效率的通信系统。

尽管波分复用满足了大容量的传输要求,但固定的频率栅格造成了频带资源的浪费。

为了提高频谱利用率,相干光正交频分复用技术开始研究,它是一种结合了正交频分复用和相干光检测的技术,在保证了高频谱利用率,强抗干扰能力的同时又提升了系统的灵活度,大大增加了中继距离。

本文主要对相干光正交频分复用的原理和关键技术作了阐述,并研究了光纤信道对其传输性能的影响。

主要内容包括理论和仿真两个方面。

首先,理论上研究了基于正交频分复用的传输系统,从逆快速傅里叶变换/快速傅里叶变换,循环前缀切入,分析了它的高频谱利用率和高效的算法。

其次,利用商用OptiSystem软件仿真了CO-OFDM背靠背及传输系统,分析了光纤链路对CO-OFDM系统性能的影响。

关键词:相干光检测,正交频分复用,色散作者:仇佳指导老师:高明义Design and research of coherent optical orthogonal frequency division multiplexing optical communication systemAbstractWith the development of information technology in recent years, the demand for large-capacity information is increasing. The limited frequency band resources require a highly spectrum-efficient communication system. Although wavelength division multiplexing meets large-capacity transmission requirements, fixed frequency grids cause waste of frequency band resources. In order to improve the spectrum utilization, coherent optical orthogonal frequency division multiplexing technology has begun to be studied. It is a technology that combines orthogonal frequency division multiplexing and coherent optical detection to ensure high spectrum utilization and strong anti-interference ability. At the same time, the flexibility of the system is increased, and the relay distance is greatly increased. This paper mainly describes the principle and key technologies of coherent optical orthogonal frequency division multiplexing, and studies the influence of fiber channel on its transmission performance. The main content includes both theoretical and simulation aspects. First of all, the transmission system based on Orthogonal Frequency Division Multiplexing is theoretically studied. From the Inverse Fast Fourier Transform/Fast Fourier Transform, cyclic prefix cut-in, its high spectral efficiency and efficient algorithm are analyzed.Secondly, using commercial OptiSystem software to simulate the CO-OFDM back-to-back and transmission system, the influence of the optical fiber link on the performance of the CO-OFDM system is analyzed.Keywords: Coherent light detection, Orthogonal frequency division multiplexing, DispersionWritten by QiuJiaSupervised by Gao Mingyi第一章绪论1.1 引言我们生活在一个信息时代中,随着社会对于信息传递的要求日益增长,通信系统的结构也在日渐复杂和多元化。

复用器电路 -回复

复用器电路 -回复

复用器电路-回复复用器电路是一种常用的电子电路,它常用于数据传输、信号处理和通信系统中。

复用器电路的主要功能是将多个输入信号组合成一个或多个输出信号,从而有效利用信号传输通道的带宽。

本文将一步一步回答有关复用器电路的各种问题,以帮助读者更好地理解和应用这一电子电路。

第一步:理解复用器电路的基本原理和作用复用器电路是一种多路复用技术,其基本作用是将多个信号输入并通过同一条传输通道或线路输出。

复用器可以有多种工作模式,包括时分复用(TDM)、频分复用(FDM)和码分复用(CDM)等。

每种模式都有其特定的应用场景和优势,但它们的基本原理都是将不同信号进行时间、频率或码序列的变换,以便在同一信道上进行传输。

第二步:了解复用器电路的主要组成部分复用器电路通常由多个输入端、一个输出端和控制逻辑组成。

输入端用于接收多个信号,输出端用于将组合后的信号输出,而控制逻辑用于选择和切换输入信号。

复用器的输入端可以是模拟信号或数字信号,具体取决于需要处理的信号类型。

而输出端通常是一个复合信号,它包含了所有输入信号的组合。

第三步:掌握复用器电路的工作原理复用器电路的工作原理基于信号的时分、频分或码分。

以时分复用为例,它将不同输入信号按照一定的时间顺序进行划分,并在不同时间段内将各个输入信号传输到输出端。

这样,即使只使用了一个通道,也能够在不同时间段内传输多个信号。

具体实现时,复用器电路会利用时钟信号来对输入信号进行同步和调度。

第四步:学习复用器的设计和应用复用器电路的设计需要考虑多个因素,包括输入信号的数目、传输通道的带宽、信号质量的要求等。

对于数字信号的复用器设计,还需要考虑数据位宽、时钟频率和数据压缩等因素。

复用器的应用非常广泛,如电话系统中的语音信号复用、电视广播中的视频和音频信号复用等。

此外,复用器还可以与解复用器、调制解调器等其他电路配合使用,以实现更复杂的信号处理任务。

第五步:了解复用器电路的发展趋势随着通信技术的不断发展,复用器电路也在不断演化和改进。

第5章 多路复用技术

第5章 多路复用技术

3.码组交织法
第三种方式为码组交织法。这种方式 按某一码元长度(若干比特)为单位进行 复用,即在每个时间片取出某支路的一个 码字。
5.4 统计时分复用(STDM)
5.4.1 STDM的概念
统计时分复用STDM,又称智能时分 复用ITDM,它采用动态地分配集合信道 的时隙,只给那些确实要传送数据的终端 分配一个时隙,使它们建立数据链路。
构示意图。
140 ~ 160 ms 起 1
第一起止字符 2 3 4 C 止 起 5
第二起止字符 6 7 8 C 止
图5-15 虚拟信道传送标志的结构图
5.5 T1与E1线路
5.5.1 T1线路
图5-16所示为T1线路系统框图。T1线 路能够将24条语音话路复用成一条高速数 据电路。因为每条话路(样本)以每秒 8000次的速率采样,而每个样本被编制成 8bit码,所以一条话路的传输速率是8000 样本/秒8bit/样本=64kbit/s。
调制器 相 加 器 调制器 接 收 器
滤波器
解调器
调制器
滤波器
解调器
滤波器
解调器
图5-3 频分多路复用原理图
5.2.2 FDM处理过程
FDM系统最常见的应用就是电话系统。 下面以话音信号为例,说明FDM的复用和 解复用过程。
1.复用过程
频分多路复用是一个模拟过程,多用 于模拟信号的传输。
2.解复用过程
5.3.1 TDM原理及特点
1.原理
抽样定理为时分多路复用提供了理论 依据,因为抽样定理使得在时间上离散的 抽样脉冲值代替基带信号成为可能,这样 当抽样脉冲占据较短时间时,在抽样脉冲 之间就留出了空隙。
2.特点
TDM的工作特点如下。 ① 通信双方是按照预先指定的时间 片进行数据传输的,而且这种时间关系是 固定不变的; ② 就某一瞬时来看,公用信道上传 送的仅是某一对设备之间的信号,但就某 一段时间而言,公用信道则传送着按时间 分割的多路复用信号。 ③ 与FDM相比TDM更适合于传输数 字信号。

FDMA通信系统的设计

FDMA通信系统的设计

加) 移动通信中频分复用技术的分析和研究频分多路复用系统的信道复用率高,分路方便,因此目前模拟通信中常采用这种复用方式,特别是在有线和微波通信系统中应用广泛。

一、原理研究和分析1、频分复用的原理复用是指将若干个彼此独立的信号合并成可在同一信道上传输的复合信号的方法,常见的信号复用采用按频率区分与按时间区分的方式,前者称为频分复用,后者称为时分复用。

通常在通信系统中,信道所提供的带宽往往比传输一路信号所需要的带宽宽得多,这样就可以将信道的带宽分割成不同的频段,每频段传输一路信号,这就是频分复用(frequencydivision multiple access)(FDMA)。

为此,在发送端首先要对各路信号进行调制将其频谱函数搬移到相应的频段内,使之互不重叠。

再送入信道一并传输。

在接收端则采用不同通带的带通滤波器将各路信号分隔,然后再分别解调,恢复各路信号。

调制的方式可以任意选择,但常用的是单边带调制。

因为每一路信号占据的频段小,最节省频带,在同一信道中传送的路数可以增加。

cos(Q/)图1频分复用系统的示意图图1给出了频分复用系统的示意图。

如图所示,其中f1(t),f2(t), …,fn(t)为n路低频信号,通过调制器形成各路处于不同频段上的边带信号。

频分复用的理论基础仍然是调制和解调。

通常为防止邻路信号的相互干扰,相邻两路间还要留有防护频带,因此各路载频之间的间隔应为每路信号的频带与保护频带之和。

以语音信号为例,其频谱一般在0.3~3.4kHz范围内,防护频带标准为900Hz,则每路信号占据频带为 4.3kHz,以此来选择相应的各路载频频率,在接收端则用带通滤波器将各路信号分离再经同步检波即可恢复各路信号,为减少载波频率的类型,有时也用二次调制。

频分复用技术除传统意义上的频分复用(FDMA外,还有一种是正交频分复用(OFDM。

(1)传统的频分复用传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。

第4章-时分多路复用及PCM3032路系统要点

第4章-时分多路复用及PCM3032路系统要点
同步码邻接区,r=7
3)帧同步码检出方式 ➢ 逐位比较方式 ➢ 码型检出方式
4)同步引入方式 ➢逐步引入方式 ➢复位同步方式
33/51
34/51
帧同步码检出方式
a.逐位比较方式:接收端产生一组与发送端 插入的帧同步码组相同的本地帧码,在识 别电路中使本地帧码与接收的PCM序列码逐 位进行比较。
b.码型检出方式:接收端设置一个移位寄存 器,该寄存器的每级输出端的组合是按发 送的帧同步码型设计的,当接收的PCM序列 中帧同步码全部进入移存器时才能有识别 检出脉冲。



t
10/51
4.1.3 时分多路复用系统中的位同步
1. 帧同步的概念 ➢ 数字通信的同步:也称为定时,包括位同步和
帧同步。 ➢ 位同步(码元同步、时钟同步):是指收发两
端时钟频率相等,相位一致。 说明:位同步相当于开关旋转速度相同保证收 发两端设在指定时间协调一致地工作,能正确 区分,接收每一路信号。
18/51
4.1.4 时分多路复用系统中的帧同步
帧同步:是指收发两端相应的话路在时间上对准,以便接收端能够正确分路。
说明:复用时多路信号构成一帧,并且附加帧起始标志(帧同步
码),以便接收端识别。每一帧内信号位固定,若能识别出首尾,
就可以正确区分每一路信号,实现帧同步,相当于开关起始位置
相同。
s∑(t)
几个基本概念:
➢ 帧:重复出现的数字图案;帧周期就是各路信号的
抽样周期,tF=T重复出现的数字图样
➢ 路 时 隙 : 合 路 PAM 信 号 每 个 样 值 所 允 许 的 时 间 ,
tC=T/N ➢ 位时隙:一个码元占用的时间,tB=tC/l
s∑(t)

使用FFT实现任意三个同频带信号的频分复用

使用FFT实现任意三个同频带信号的频分复用

使用FFT实现任意三个同频带信号的频分复用频分复用(Frequency Division Multiplexing,简称FDM)是一种多路复用技术,通过将不同频率的信号叠加在同一条传输介质上,实现多个信号的同时传输。

FFT(Fast Fourier Transform,快速傅里叶变换)是一种高效的计算傅里叶变换的算法,可用于将时域信号转换为频域信号。

实现任意三个同频带信号的频分复用,首先需要生成这三个信号,并将它们转换为时域信号。

然后,对这三个时域信号分别进行FFT变换得到对应的频域信号,再将这三个频域信号叠加在一起,得到复用后的信号。

最后,将复用后的信号进行IFFT(Inverse Fast Fourier Transform,傅里叶逆变换)操作,得到时域信号,可以通过声音输出设备播放出来。

具体步骤如下:1.生成三个同频带信号,可以使用任意的信号生成方式,如正弦波、方波、三角波等,并确定它们的频率、幅度和相位。

2.将这三个信号叠加在一起,得到复用前的信号。

在时域上,这三个信号直接相加即可。

3. 对复用前的信号进行FFT变换,得到频域信号。

可以使用现有的FFT库或算法,如Cooley-Tukey算法。

4.将三个频域信号分别叠加在一起,得到复用后的频域信号。

频域信号的叠加可以简单地将三个信号的频谱相加。

5.对复用后的频域信号进行IFFT操作,得到时域复用后的信号。

同样可以使用现有的IFFT库或算法。

6.将复用后的信号输出到声音设备,通过喇叭或耳机播放出来。

需要注意的是,在进行FFT和IFFT的过程中,要根据采样的点数和采样频率进行适当的设置,以确保信号的准确性和恢复性。

频分复用技术广泛应用于无线通信领域,如电视广播、移动通信、卫星通信等,可以有效地提高信道利用率和传输效率。

通过使用FFT算法实现任意三个同频带信号的频分复用,可以更好地理解和应用这一技术。

频分复用原理和优缺点

频分复用原理和优缺点

频分复用原理和优缺点频分复用是一种将多个信号在频域上进行分离和合成的技术,它可以使多个信号共享同一信道,从而提高信道利用率。

频分复用的优点是可以提高信道利用率,减少信道的占用,同时可以保证多个信号在同一信道上传输,从而降低了通信成本。

不过频分复用也存在一些缺点,比如信号的带宽比较窄,容易受到干扰和衰减,同时需要进行精密的频率调整和同步,增加了系统的复杂度和成本。

频分复用技术是基于信号在频域上的特性来实现的,将多个信号的频率范围划分为不同的子带,每个子带都可以用来传输一个信号。

在发送端,多个信号经过频率调制后叠加在一起,形成一个复合信号,然后通过信道传输到接收端。

在接收端,经过分频器将复合信号分解成多个子带,然后进行解调,得到原始信号。

频分复用的优点是可以提高信道利用率,减少信道的占用。

在传统的时分复用和码分复用技术中,每个信号都需要占用一个独立的信道,而频分复用可以将多个信号共享同一信道,从而提高信道利用率。

这对于资源有限的通信系统尤为重要,可以在保证通信质量的前提下,实现更多的通信连接。

同时,频分复用也可以降低通信成本,因为同一信道可以传输多个信号,从而减少了信道的占用,降低了通信的费用。

不过频分复用也存在一些缺点,比如信号的带宽比较窄,容易受到干扰和衰减。

在频分复用中,每个信号都需要占用一个子带,因此每个子带的带宽比较窄,一旦受到干扰或衰减,就容易导致信号的失真和损失。

这对于高速数据传输来说尤为重要,因为高速数据需要更宽的带宽来传输,而频分复用的带宽受限,容易导致传输速率的下降。

频分复用还需要进行精密的频率调整和同步,增加了系统的复杂度和成本。

在频分复用中,每个信号都需要在不同的频率子带中传输,因此需要进行精确的频率调制和同步,以避免信号重叠和干扰。

这需要更高的技术要求和更复杂的系统设计,增加了系统的成本和复杂度。

频分复用技术有其优点和缺点。

频分复用可以提高信道利用率,减少通信成本,但同时也存在信号带宽窄、容易受干扰和衰减、系统复杂度高等缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*****************实践教学*******************兰州理工大学计算机与通信学院2015年春季学期数字信号处理课程设计题目:频分多路复用系统的设计专业班级:姓名:学号:指导教师:成绩:摘要频分复用是一种用频率来划分信道的复用方式。

在FDM中,信道的带宽被划分成很多个互不重叠的频率段(子通道),每路信号占据其中一个字信道,并且各路之间必须留有未被占用的频段(防护频带)进行隔离,以防止信号重叠。

在接收端,采用适当的带通滤波器将多路信号分开,从而恢复出来所需要的信号。

本次以“频分多路复用系统的防真设计”为题目的《数字信号处理》课程设计,在MATLAB仿真环境为基础,利用STMULINK仿真工具,根据频分复用的原理,仿真频分多路复用系统。

并设计必要的带通滤波器。

低通滤波器,从复用信号中恢复所采集的语音信号。

最后通过系统的仿真波形图对系统进行分析。

通过本次《数字信号处理》课程设计,再次熟悉了频分复用的相关理论知识,对如何通过SIMULINK仿真工具进行系统仿真也有了更清晰的认识和掌握。

关键词:频分复用;FFT;Matlab;频谱分析目录一设计任务目的及要求 (1)1.1设计目的及意义 (1)1.2设计要求 (1)二原理与模块介绍 (2)2.1 频分复用通信系统模型建立 (2)2.2 语音信号采样 (5)2.3 语音信号的调制 (7)2.4滤波器的设计 (8)2.4.1 切比雪夫I型滤波器 (8)2.5 信道噪声 (10)三设计内容 (11)3.1 设计流程图 (11)3.2 语音信号的时域和频域仿真 (12)3.2.1 信号的时域仿真 (12)3.2.2信号频域仿真 (13)3.3 复用信号的频谱仿真 (13)3.4传输信号的仿真 (14)3.5 解调信号的频谱仿真 (15)3.6恢复信号的时域与频域仿真 (16)总结 (18)参考文献 (19)附录 (20)一设计任务目的及要求1.1设计目的及意义要求学生独立应用所学知识,对通信系统中的典型部件电路进行方案设计、分析制作与调测电路。

通过本专题设计,掌握频分复用的原理,熟悉简单复用系统的设计方法。

频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰。

频分复用是通信中广泛使用的一种通信方式。

频分复用技术可以使不同的用户分配在时隙相同而频率不同的信道上传输。

本次课程设计要求设计三路频分复用系统。

通过这次课程设计欲达到以下目的:巩固课程所学的有关理论知识;加深对频分复用系统的理解和掌握;掌握带通滤波器和低通滤波器的设计;掌握MATLAB软件的基本使用;学会使用MATLAB软件进行一些仿真和设计。

1.2设计要求1.2.1课程设计的内容根据频分复用的通信原理,运用Matlab软件采集两路以上的语音信号,选择合适的高频载波进行调制,得到复用信号。

然后设计必要的带通滤波器、低通滤波器,从复用信号中恢复所采集的语音信号。

整个过程运用Matlab进行仿真,并对各个信号进行时域和频域分析。

1.2.2课程设计的要求与数据(1)根据频分复用原理,设计三路频分复用系统。

(2)使用MATLAB语言产生三个不同频段的信号,画出三个信号的时域波形。

(3)对产生的三个信号进行频谱分析。

(4)将三路信号叠加为一路信号。

(5)根据三路信号的频谱特点设计三个合适的带通滤波器。

(6)用设计的滤波器对信号进行滤波。

(7)分析得到的信号的频谱,并画出滤波后的信号的时域波形和频谱图。

二 原理与模块介绍2.1 频分复用通信系统模型建立传统的频分复用典型的应用莫过于广电HFC 网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。

频分多址(FDMA )是使用最早、目前使用较多的一种多址接入方式,广泛应用于卫星通信、移动通信、一点多址微波通信系统中。

FDMA 通信系统核心的思想是频分复用(FDM ),复用是一种将若干个彼此独立的信号合并为一个可在同一个信道上传送的复合信号的方法。

例如,在电话通信系统中,语音信号频谱在300—3400Hz 内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。

这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。

频分复用(FDM )是信道复用按频率区分信号,即将信号资源划分为多个子频带,每个子频带占用不同的频率,如图(1)所示。

然后把需要在同一信道上同时传输的多个信号的频谱调制到不同的频带上,合并在一起不会相互影响,并且能再接收端彼此分离开。

频分复用的关键技术是频谱搬移技术,该技术是用混频来实现的。

混频的原理,如图(2)所示。

混频过程的时域表示式为:)2cos()()(0t f t x t s π⋅= (1)图 1 频分复用的子频带划分其双边带频谱结构如图(3)所示。

其中,下边带也称为反转边带,从低到高的频率分量是基带频率分量的翻转,双边带频谱经过低通滤波就可以得到下边带;上边带也称为正立边带,从低到高频率分量与基带频率分量一致,双边带频谱经过高通滤波就可以得到上边带。

图 2 混频原理图 3 双边带频谱结构从图(3)可以看出上、下边带所包含的信息相同,所以恢复原始数据信息只要上边带和下边带的其中之一即可。

另外,混频器本身不是线性设备。

线性设备的输出与输入信号具有相同的频率成分,只以幅度和相位的不同来区分。

但是,混频器所对应的调制方式之所以称之为“线性调制”,主要是由于从频谱的角度只进行了简单的搬移。

在FDMA 通信系统中,首先把传输频带划分为若干个较窄的且互不重叠的子频带,每个用户分配带一个固定子频带,按频带区分用户,如图(4)所示。

信号调制到该子频带内,各用户信号同时传送,接收时分别按频带提取信号,实现多址通信。

所以FDMA 实现的是频率域上的正交性。

其中FDMA 的正交分割条件为:⎩⎨⎧≠==⎰m n m n df f x f x n f f m ,,01)()(21 (2) 如果用理想滤波器分割各用户信号,不需要保护间隔也能满足正交分割条件。

但是,理想滤波器在工程上是不可能实现的,则各信号间总存在一定的相关性,总会有一定的干扰。

因此各频带之间需留有一定的保护间隔以减少各频带之间的串扰。

FDMA 有采用模拟调制的,也有采用数字调制方式的,可以由一组模拟信号用频分复用方式(FDM/FDMA )或一组数字信号用时分复用方式(TDM/FDMA )占用一个较宽的频带,调制到相应的子频带后传送到同一个地址。

图 4 频分多址的子频带划分通过前面的分析可以得出FDMA 通信系统之所以可以使不同的用户分配在时隙相同而频率不同的信道上传输,其核心的思想是频分复用。

即不同的信号运用不同的载波进行调制,而载波带宽被划分为多种不同频带的子信道,每个子信道可以并行传送一路信号。

而接收端通过不同的带通滤波器将各路不同的信号提取出来,再通过解调和低通滤波器,进而恢复原始信号。

从而可以得到如图(5)所示的简化FDMA 通信模型。

2.2 语音信号采样语音信号的采样即为信号的抽样过程,是把连续时间模拟信号转换成离散时间连续幅度的抽样信号,其实质就是用一固定频率的抽样信号周期性的读出或测量该连续时间模拟信号。

设抽样信号的频率为s f ,则抽样周期为s T 。

抽样以后的信号仍为模拟量,只不过是时间上离散的脉冲调制信号。

如图(6)所示,f(t)为输入的被抽样信号,p(t)为抽样信号,而f 0(t)为抽样后输出信号。

理想的抽样应是冲激序列,但实际抽样通常是平顶抽样或自然抽样。

图5 频分复用通信系统模型图 6 抽样过程波形抽样的理论基础是抽烟定理,它说明在什么条件下能从抽样输出信号f 0(t)中恢复输入信号f(t)。

根据频谱分析理论,只有抽样信号的频率不发生重叠现象时,抽样的频谱才能与信号频谱相一致。

因此,抽样定理可表述为:为了使抽样信号f 0(t)能完全恢复连续信号f(t),抽样信号重复频率s f 必须大于等于2倍的H f ,H f 为包含任何干扰在内的信号f(t)的最高有效频率,即H s f f 2≥ (3) 其中,H s f f 2=为奈奎斯特频率。

由于实际滤波器特性的不理想,抽样频率s f 通常都有高于H f ,一般取3到5倍H f 。

语音信号频谱在300—3400Hz 内,由(3)式可知语音采样频率s f 必须大于6.8KHz 。

在MATLAB 数据采集箱中提供语音采集wavrecord 命令,wavrecord 命令利用Windows 音频输入设备记录声音,其调用形式为:wavrecord (n ,fs ,ch)。

利用Windows 音频输入设备记录n 个音频采样, 频率为fs Hz ,通道数为ch 。

采样值返回到一个大小为n*ch 的矩阵中。

缺省时,fs = 11025 ,ch = 1。

其中MATLAB 提供的标准音频采样频率有:8000、11025、22050 和44100Hz 。

为了保证语音的质量,本次设计中取语音信号的采用频率为44100Hz ,该采样频率为语音信号CD 音质。

语音信号采集后,可以用MATLAB 数据采集箱中wavwrite 命令保存采集的语音信号。

2.3 语音信号的调制语音信号的调制即为频分复用的混频过程,该过程关键是对各路语音信号载波频率的选取。

混频过程的时域表示式如前面的(1)式所示,为双边带信号(DSB ),它的带宽是基带信号带宽H f 的2倍,即调制后的带宽为:H f B 2= (4) 为了使各个信号不会相互干扰,各个载频的间隔既要大于调制后带宽B ,设各载波的频率间隔为g f ,由于kHz f H 4.3=,所以kHz kHz f B f H g 8.64.322=⨯==≥ (5) 另外,在选取各路信号载波频率时,还需要考虑混叠频率a f 。

所谓混叠频率,就是当利用一个抽样频率为s f 的离散时间系统进行信号处理时信号所允许的最高频率。

任何大于a f 的分量都将重叠起来而不能恢复,并使正规频带内的信号也变得模糊起来。

根据抽样定理可知: s a f f 21= (6) 由于前面语音信号采样频率kHz f s 1.44=,所以混叠频率: kHz kHz f f s a 05.221.442121=⨯== (7) 综合上述考虑,由(5)式可取载波频率间隔g f 为7000Hz ,由(7)式可知最高载波频率要小于a f 为22050Hz ,如果本次设计取第1路语音信号的载波频率1c f 为4000Hz ,则第2路信号的载波频率2c f 为11000Hz ,第3路信号的载波频率3c f 为18000Hz 。

相关文档
最新文档