法拉第定律基础知识例题练习
法拉第电磁感应定律优秀作业题

法拉第电磁感应定律(一)1.法拉第电磁感应定律可以这样表述:闭合电路中的感应电动势的大小( )A .跟穿过这一闭合电路的磁通量成正比B .跟穿过这一闭合电路的磁感应强度成正比;C .跟穿过这一闭合电路的磁通量的变化率成正比;D .跟穿过这一闭合电路的磁通量变化量成正比.2.如图所示,由大小两个半圆弧组成的弯曲金属导线位于匀强磁 场中,当整个导体向右平移时,下列结论正确的是:( ) A . A 、E 电势不相同;B . A 、C 、E 三点的电势相同; C .D 点电势比B 点高; D . 无法判断.3.如图所示,接有理想电压表的三角形导线框abc ,在匀强磁 场中向右匀速运动,问:框中有无感应电流?电压表有无示数?a 、b 两点间有无电势差?( )A .无、无、无B .无、无、有C .无、有、无D .有、有、有 4.如图所示,两根相距d 平行放置的导电轨道,轨道间接有电阻R ,处于磁感应强为B ,垂直轨道平面内的匀强磁场中,一根金属杆与轨道成60°角放置在轨道上,现让金属杆以垂直于杆的速度v 沿轨道匀速滑行,若导电轨道和金属杆的电阻不计,则通过电阻R 的电流为( )) 7题图C .dc 边刚进入磁场时线圈内感应电流的方向,与dc 边刚穿出磁场时感应电流的方向相反D .dc 边刚进入磁场时线圈内感应电流的大小,与dc 边刚穿出磁场时感应电流的大小一定相等 8.一个N 匝圆线圈,放在磁感强度为B 的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是 ( ) A.线圈匝数增加一倍; B 、将线圈面积增加一倍;C 、将线圈半径增加一倍;D 、适当改变线圈的取向。
9.如图所示,圆环a 和圆环b 半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a 环单独置于磁场中和b 环单独置于磁场中两种情况下,M 、N 两点的电势差之比为( ) A .4∶1 B .1∶4 C .2∶1 D .1∶210、穿过某线圈的磁通量随时间的变化关系如右图所示,在线圈内产生感应电动势最大值的时间是( ) A.0--2s B.2—4S C.4—6S D.6—10S11.如图所示,把金属圆环匀速拉出磁场,下列叙述正确的是:( ) A 、向左拉出和向右拉出所产生的感应电流方向相反B 、不管向什么方向拉出,只要产生感应电流,方向都是顺时针C 、 向右匀速拉出时,感应电流方向不变D 、要将金属环匀速拉出,拉力大小要改变 12. 在竖直指向地面的匀强磁场B 中,将长为L的水平棒由高h 处水平抛出,初速度v 0与棒垂直,不计空气阻力,落地时棒上的感应电动势等于 A .BL v 0 B gh v BL 220+ C.0(/2BL v D 2/)2(0gh v BL +13. 如图所示,MN 、PQ 为两平行金属导轨,M 、P 间连有一阻值为R 的电阻,导轨处于匀强磁场中,磁感应强度为B ,磁场方向与导轨所在的平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动、速度为v ,与导轨接触良好,圆环的直径d 与两导轨间的距离相等.设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时( )A.有感应电流通过电阻R ,大小为R dBvπ B.有感应电流通过电阻R ,大小为RdBvC.有感应电流通过电阻R ,大小为RdBv2 D.没有感应电流通过电阻R14、如图所示1、2、3表示三个回路,在回路2的内部有垂直于回路平面的 匀强磁场,当磁感应强度随时间均匀变化时,回路1、2、3产生的感应电动势分别为E1、E2、E3,下列哪个关系式是正确的( ) A 、E 1=E 2<E 3 B 、E 1=E 2=E 3C 、E 1<E 2<E 3D 、E1<E 2=E 315.如图所示,水平放置一光滑矩形导体框,,细棒ab 可在框上自由移动,整个装置处在磁感应强度为0.4T 的匀强磁场中,磁场方向与水平面成300角,ab 长0.2m,电阻为0.1Ω,其余部分电阻不计,棒在水平力F 作用下以2m/s 的速率匀速向右运动,求力F 的大小及力F 做功的机械功率。
(完整版)法拉第电磁感应定律的例题

法拉第电磁感应定律的例题【例1】如图所示,磁感强度B=1.2T的匀强磁场中有一折成30°角的金属导轨aob,导轨平面垂直磁场方向。
一条直线MN垂直ob方向放置在轨道上并接触良好。
当MN以v=4m/s从导轨O点开始向右平动时,若所有导线单位长度的电阻r=0.1Ω/m。
求:(1)经过时间t后,闭合回路的感应电动势的瞬时值和平均值;(2)闭合回路中的电流大小和方向。
【分析】磁场B与平动速度v保持不变,但MN切割磁感线有效【解答】 (1)设运动时间为t后,在ob上移动S=vt=4t,MN的回路总电阻R=Lr=10.9t×0.1=1.09t【说明】 (1)本题切割的有效长度是时间的函数,所以电动势的平均值、即时值与有效长度的平均值、即时值有关(2)解这一类有效长度随时间变化的问题,关键是找到有效长度与时间的函数关系。
【例2】如图所示,匀强磁场的磁感应强度为B,方向垂直纸面向里,长L电阻R0的裸电阻丝cd在宽L的平行金属轨道上向右滑行,速度为v。
已知R1=R2=R0,其余电阻忽略不计,求电键K闭合与断开时,M、N两点的电势差U MN。
【分析】 cd在磁场中做切割磁感线的运动,这部分电路是电源,你知道电键K 断开和闭合,U cd有什么不同吗?电键K断开时,电路abcd不闭合,只产生感应电动势,而没有感应电流,N、c、b等势,M、a、d等势,U MN=U dc=E;电键K闭合时,电路中有感应电流,此时U MN=U dc为路端电压。
【解答】ε=BLvK断开时,U MN=U dc=ε=BLv【说明】 1、不要以为切割磁感线导体两端电压都等于感应电动势,通过此题想想在什么情况下,两端电压不等于电动势的值。
2、cd部分是电源,在电源内部,电流方向是从低电势流向高电势(规定为电动势的方向),所以U MN=U dc为正值。
【例3】如图所示,小灯泡的规格为“2V、4W”,接在光滑水平导轨上,轨距0.1m,电阻不计。
法拉第电磁感应定律 典例与练习

法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。
导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。
【考点】考查电磁感应知识。
举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。
【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。
【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。
(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。
法拉第电磁感应定律(专题训练)

法拉第电磁感应定律一:感应电流(电动势)产生的条件(1)感应电流产生条件:(2)感应电动势产生条件:1.关于电磁感应,下列说法正确的是()A. 线圈中磁通量变化越大,产生的感应电动势越大B. 在电磁感应现象中,有感应电动势,就一定有感应电流产生C. 闭合电路内只要有磁通量,就有感应电流产生D. 磁感应强度与导体棒及其运动方向相互垂直时,可以用右手定则判断感应电流的方向2.图中能产生感应电流的是()A. B. C. D.3.如图所示,一个闭合三角形导线框位于竖直平面内,其下方固定一根与线框所在的竖直平面平行且相距很近(但不重叠)的水平直导线,导线中通以图示方向的恒定电流。
不计阻力,线框从实线位置由静止释放至运动到直导线下方虚线位置过程中()A. 线框中的磁通量为零时其感应电流也为零B. 线框中感应电流方向先为顺时针后为逆时针C. 线框减少的重力势能全部转化为电能D. 线框受到的安培力方向始终竖直向上4.如图所示,一个U形金属导轨水平放置,其上放有一根金属导体棒ab,有一磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ。
在下列各过程中,一定能在闭合回路中产生感应电流的是()A. ab向右运动,同时使θ角增大(0<θ<90°)B. 磁感应强度B减小,同时使θ角减小C. ab向左运动,同时减小磁感应强度BD. ab向右运动,同时增大磁感应强度B和角θ(0<θ<90°)5.如图所示,有一矩形闭合导体线圈,在范围足够大的匀强磁场中运动、下列图中回路能产生感应电动势的是()A. 水平运动B. 水平运动C. 绕轴转动D. 绕轴转动二:楞次定律(右手定则)内容:6.如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动。
金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面。
法拉第电磁感应定律习题知识点及练习题附答案解析

法拉第电磁感应定律习题知识点及练习题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析【解析】【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义W E q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况.【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t ∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q=解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用.【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值. 【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220 B l t m【解析】【分析】【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=- ⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R ⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向;(2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C【解析】【分析】【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V B E L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q =It ,E I R r =+;E t ∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++4.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
高中物理法拉第电磁感应定律例题试题总结

法拉第电磁感应定律一、基础练1.当穿过线圈的磁通量发生变化时,下列说法中正确的是( ) A .线圈中一定有感应电流 B .线圈中一定有感应电动势C .感应电动势的大小跟磁通量的变化成正比D .感应电动势的大小跟线圈的电阻有关答案 B 解析 穿过闭合电路的磁通量发生变化时才会产生感应电流,感应电动势与电路是否闭合无关,且感应电动势的大小跟磁通量的变化率成正比.2.一根直导线长0.1 m ,在磁感应强度为0.1 T 的匀强磁场中以10 m/s 的速度匀速运动,则导线中产生的感应电动势的说法错误的是( )A .一定为0.1 VB .可能为零C .可能为0.01 VD .最大值为0.1 V答案 A 解析 当公式E =BL v 中B 、L 、v 互相垂直而导体切割磁感线运动时感应电动势最大:E m =BL v =0.1×0.1×10 V =0.1 V ,考虑到它们三者的空间位置关系,B 、C 、D 正确,A 错.3.(双选)无线电力传输目前取得重大突破,在日本展出了一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力.两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图1所示.下列说法正确的是( )图1A .若A 线圈中输入电流,B 线圈中就会产生感应电动势B .只有A 线圈中输入变化的电流,B 线圈中才会产生感应电动势C .A 中电流越大,B 中感应电动势越大D .A 中电流变化越快,B 中感应电动势越大答案 BD 解析 根据产生感应电动势的条件,只有处于变化的磁场中,B 线圈才能产生感应电动势,A 错,B 对;根据法拉第电磁感应定律,感应电动势的大小取决于磁通量变化率,所以C 错,D 对.4.闭合回路的磁通量Φ随时间t 的变化图象分别如图2所示,关于回路中产生的感应电动势的下列论述,其中正确的是( )图2A .图甲回路中感应电动势恒定不变B .图乙回路中感应电动势恒定不变C .图丙回路中0~t 1时间内感应电动势小于t 1~t 2时间内感应电动势D .图丁回路中感应电动势先变大后变小答案 B 解析 因E =ΔΦΔt ΔΦΔt =0,即电动势E 为0;图乙中ΔΦΔt=恒量,即电动势E 为一恒定值;图丙中E 前>E 后;图丁中图象斜率ΔΦΔt先减后增,即回路中感应电动势先减后增,故只有B 选项正确.5.如图3所示,PQRS 为一正方形导线框,它以恒定速度向右进入以MN 为边界的匀强磁场,磁场方向垂直线框平面向里,MN 线与线框的边成45°角,E 、F 分别是PS 和PQ 的中点.关于线框中的感应电流,正确的说法是( )图3A .当E 点经过边界MN 时,线框中感应电流最大B .当P 点经过边界MN 时,线框中感应电流最大C .当F 点经过边界MN 时,线框中感应电流最大D .当Q 点经过边界MN 时,线框中感应电流最大 答案 B 解析 当P 点经过边界MN 时,切割磁感线的有效长度最大为SR ,感应电流达到最大.6.如图4(a)所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路.线圈的半径为r 1.在线圈中半径为r 2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t 0和B 0.导线的电阻不计.图4求0至t 1时间内(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电荷量q 及电阻R 1上产生的热量. 答案 (1)nB 0πr 223Rt 0从b 到a(2)nB 0πr 22t 13Rt 0 2n 2B 20π2r 42t 19Rt 20 解析 (1)由图象分析可知,0至t 1时间内ΔB Δt =B 0t 0.由法拉第电磁感应定律有E =n ΔΦΔt =n ΔB Δt·S ,而S =πr 22.由闭合电路欧姆定律有I 1=E R 1+R .联立以上各式得,通过电阻R 1上的电流大小I 1=nB 0πr 223Rt 0.由楞次定律可判断通过电阻R 1上的电流方向从b 到a . (2)通过电阻R 1上的电量:q =I 1t 1=nB 0πr 22t 13Rt 0电阻R 1上产生的热量:Q =I 21R 1t 1=2n 2B 20π2r 42t 19Rt 20二、提升练7.(双选)如图5所示,A 、B 两闭合线圈为同样导线绕成,A 有10匝,B 有20匝,两圆线圈半径之比为2∶1.均匀磁场只分布在B 线圈内.当磁场随时间均匀减弱时( )图5A .A 中无感应电流B .A 、B 中均有恒定的感应电流C .A 、B 中感应电动势之比为2∶1D .A 、B 中感应电流之比为1∶2答案 BD 解析 只要穿过线圈内的磁通量发生变化,线圈中就有感应电动势和感应电流,因为磁场变化情况相同,有效面积也相同,所以,每匝线圈产生的感应电动势相同,又由于两线圈的匝数和半径不同,电阻值不同,根据欧姆定律,单匝线圈电阻之比为2∶1,所以,感应电流之比为1∶2.因此正确的答案是B 、D.8.在匀强磁场中,有一个接有电容器的导线回路,如图6所示,已知电容C =30 μF ,回路的长和宽分别为l 1=5 cm ,l 2=8 cm ,磁场变化率为5×10-2 T/s ,则( )图6A .电容器带电荷量为2×10-9C B .电容器带电荷量为4×10-9 C C .电容器带电荷量为6×10-9 CD .电容器带电荷量为8×10-9 C答案 C 解析 回路中感应电动势等于电容器两板间的电压,U =E =ΔΦΔt =ΔB Δt·l 1l 2=5×10-2×0.05×0.08 V =2×10-4 V .电容器的电荷量为q =CU =CE =30×10-6×2×10-4 C =6×10-9C ,C 选项正确.9.(双选)如图7所示,一正方形线圈abcd 在匀强磁场中绕垂直于磁感线的对称轴OO ′匀速运动,沿着OO ′观察,线圈沿逆时针方向转动.已知匀强磁场的磁感应强度为B ,线圈匝数为n ,边长为l ,电阻为R ,转动的角速度为ω.则当线圈转至图示位置时( )图7 A .线圈中感应电流的方向为abcda B .线圈中的感应电流为nBl 2ωRC .穿过线圈的磁通量为0D .穿过线圈的磁通量的变化率为0答案 BC 解析 图示位置bc 和ad 的瞬时切割速度均为v =ωl 2,ad 边与bc 边产生的感应电动势都是E =Bl v =12Bl 2ω且bd 为高电势端,故整个线圈此时的感应电动势e =2×n 12Bl 2ω=nBl 2ω,感应电流为nBl 2ωR,B 正确.由右手定则可知线圈中的电流方向为adcba ,A 错误.此时磁通量为0,但磁通量变化率最大,故选项为B 、C. 10.(双选)如图8所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴.一导线折成边长为l 的正方形闭合回路abcd ,回路在纸面内以恒定速度v 0向右运动,当运动到关于OO ′对称的位置时( )图8A .穿过回路的磁通量为零B .回路中感应电动势大小为Bl v 0C .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同答案 AD 解析 线框关于OO ′对称时,左右两侧磁通量大小相等,磁场方向相反,合磁通量为0;根据右手定则,cd 的电动势方向由c 到d ,ab 的电动势方向由a 到b ,且大小均为Bl v 0,闭合电路的电动势为2Bl v 0,电流方向为逆时针;根据左手定则,ab 和cd 边所受安培力方向均向左,方向相同,故正确的选项为A 、D.11.用均匀导线做成的正方形线框边长为0.2 m ,正方形的一半放在垂直纸面向里的匀强磁场中,如图9甲所示.当磁场以10 T/s 的变化率增强时,线框中点a 、b 两点间的电势差是( )图9A .U ab =0.1 VB .U ab =-0.1 VC .U ab =0.2 VD .U ab =-0.2 V答案 B 解析 题中正方形线框的左半部分磁通量变化而产生感应电动势,从而在线框中有感应电流,把左半部分线框看成电源,设其电动势为E ,内电阻为r2,画出等效电路如图乙所示.则ab 两点间的电势差即为电源的路端电压,设l 是边长,正方形线框的总电阻为r ,且依题意知ΔB Δt 10 T/s. 由E =ΔΦΔt 得E =ΔBS Δt =ΔBl 22Δt =10×0.222V =0.2 V ,所以U =I r 2=E r 2+r 2·r 2=0.2r ×r2V =0.1 V . 由于a 点电势低于b 点电势,故U ab =-0.1 V ,即B 选项正确.12.如图10所示,在空间中存在两个相邻的、磁感应强度大小相等、方向相反的有界匀强磁场,其宽度均为L .现将宽度也为L 的矩形闭合线圈,从图示位置垂直于磁场方向匀速拉过磁场区域,则在该过程中,能正确反映线圈中所产生的感应电流或其所受的安培力随时间变化的图象是( )图10答案 D 解析 由楞次定律可知,当矩形导线框进入磁场和出磁场时,磁场力总是阻碍物体的运动,方向始终向左,所以外力F 始终水平向右,因安培力的大小不同,故选项D 是正确的,选项C 是错误的.当矩形导线框进入磁场时,由法拉第电磁感应定律判断,感应电流的大小在中间时是最大的,所以选项A 、B 是错误的.点评 题中并没有明确电流或安培力的正方向,所以开始时取正值或负值都可以,关键是图象能否正确反映过程的特点. 13.如图11所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.图11(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8) 解析 (1)金属棒开始下滑的初速度为零,根据牛顿第二定律得mg sin θ-μmg cos θ=ma ①,由①式解得 a =10×(0.6-0.25×0.8) m/s 2=4 m/s 2②(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡,mg sin θ-μmg cos θ-F =0③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率F v =P ④,由③④两式解得:v =P F =80.2×10×(0.6-0.25×0.8) m/s=10 m/s ⑤ (3)设电路中电流为I ,两导轨间金属棒的长为L ,磁场的磁感应强度为B ,I =BL vR⑥,P =I 2R ⑦由⑥⑦两式解得:,B =PRv L =8×210×1T =0.4 T ⑧,磁场方向垂直导轨平面向上法拉第电磁感应定律同步练习二基础达标:1、法拉第电磁感应定律可以这样表述:闭合电路中感应电动势的大小 ( )A.跟穿过这一闭合电路的磁通量成正比B.跟穿过这一闭合电路的磁感应强度成正比C.跟穿过这一闭合电路的磁通量的变化率成正比D.跟穿过这一闭合电路的磁通量的变化量成正比 2、将一磁铁缓慢地或迅速地插到闭合线圈中同样位置处,不发生变化的物理量有 ( ) A.磁通量的变化率 B.感应电流的大小 C.消耗的机械功率 D.磁通量的变化量E.流过导体横截面的电荷量3、恒定的匀强磁场中有一圆形闭合导线圈,线圈平面垂直于磁场方向,当线圈在磁场中做下列哪种运动时,线圈中能产生感应电流 A.线圈沿自身所在平面运动 B.沿磁场方向运动 C.线圈绕任意一直径做匀速转动 D.线圈绕任意一直径做变速转动4、一个矩形线圈,在匀强磁场中绕一个固定轴做匀速运动,当线圈处于如图所示位置时,此线圈 ( ) A.磁通量最大,磁通量变化率最大,感应电动势最小 B.磁通量最大,磁通量变化率最大,感应电动势最大 C.磁通量最小,磁通量变化率最大,感应电动势最大 D.磁通量最小,磁通量变化率最小,感应电动势最小5、一个N 匝的圆线圈,放在磁感应强度为B 的匀强磁场中,线圈平面跟磁感应强度方向成30°角,磁感应强度随时间均匀变化,线圈导线规格不变.下列方法中可使线圈中感应电流增加一倍的是 ( )A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向 6、闭合电路中产生的感应电动势的大小,跟穿过这一闭合电路的下列哪个物理量成正比( ) A 、磁通量 B 、磁感应强度 C 、磁通量的变化率 D 、磁通量的变化量 7、穿过一个单匝数线圈的磁通量,始终为每秒钟均匀地增加2 Wb ,则( ) A 、线圈中的感应电动势每秒钟增大2 V B 、线圈中的感应电动势每秒钟减小2 V C 、线圈中的感应电动势始终为2 V D 、线圈中不产生感应电动势8、如图1所示,矩形金属框置于匀强磁场中,ef 为一导体棒,可在ab 和cd 间滑动并接触良好;设磁感应强度为B ,ef 长为L ,在Δt 时间内向左匀速滑过距离Δd ,由电磁感应定律E=nt∆∆Φ可知,下列说法正确的是( )图1A 、当ef 向左滑动时,左侧面积减少L ·Δd,右侧面积增加L ·Δd ,因此E=2BL Δd/ΔtB 、当ef 向左滑动时,左侧面积减小L ·Δd ,右侧面积增大L ·Δd ,互相抵消,因此E=0C 、在公式E=nt∆∆Φ中,在切割情况下,ΔΦ=B ·ΔS ,ΔS 应是导线切割扫过的面积,因此E=BL Δd/ΔtD 、在切割的情况下,只能用E=BLv 计算,不能用E=nt∆∆Φ计算9、在南极上空离地面较近处,有一根与地面平行的直导线,现让直导线由静止自由下落,在下落过程中,产生的感应电动势( ) A 、增大 B 、减小 C 、不变 D 、无法判断10、一个200匝、面积为20 cm 2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05 s 内由0.1 T 增加到0.5 T.在此过程中穿过线圈的磁通量的变化是___________ Wb;磁通量的平均变化率是___________ Wb/s;线圈中的感应电动势的大小是___________ V.能力提升:11、如图所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab以水平初速度v0抛出,设运动的整个过程中棒的取向不变且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将()A.越来越大B.越来越小C.保持不变D.无法确定12、如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab以后的运动情况可能是()A.减速运动到停止B.来回往复运动C.匀速运动D.加速运动13、粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图4-3-12所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是()14、一个面积S=4×10-2m2、匝数n=100匝的线圈,放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,则下列判断正确的是()A、在开始的2 s内穿过线圈的磁通量变化率等于-0.08 Wb/sB、在开始的2 s内穿过线圈的磁通量的变化量等于零C、在开始的2 s内线圈中产生的感应电动势等于-0.08 VD、在第3 s末线圈中的感应电动势等于零15、如图所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场.若第一次用0.3 s时间拉出,外力做的功为W1,通过导线截面的电荷量为q1;第二次用0.9 s时间拉出,外力所做的功为W2,通过导线截面的电荷量为q2,则()<W2,q1<q2B、W1<W2,q1=q2 C、W1>W2,q1=q2D、W1>W2,q1>q2A、W16、如图所示,半径为r的n匝线圈套在边长为L的正方形abcd之外,匀强磁场局限在正方形区域内且垂直穿过正方形面积.当磁感应强度以ΔB/Δt的变化率均匀变化时,线圈中产生感应电动势的大小为____________________.17、在图中,EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆.有均匀磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB()A、匀速滑动时,I1=0,I2=0B、匀速滑动时,I1≠0,I2≠0C、加速滑动时,I1=0,I2=0D、加速滑动时,I1≠0,I2≠018、如图4-3-10所示,在光滑的绝缘水平面上,一个半径为10 cm、电阻为1.0 Ω、质量为0.1 kg的金属环以10 m/s的速度冲入一有界磁场,磁感应强度为B=0.5 T.经过一段时间后,圆环恰好有一半进入磁场,该过程产生了3.2 J的电热,则此时圆环的瞬时速度为___________m/s;瞬时加速度为___________ m/s2.19、如图所示,接有灯泡L的平行金属导轨水平放置在匀强磁场中,一导体杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同.图中O位置对应于弹簧振子的平衡位置,P、Q两位置对应于弹簧振子的最大位移处.若两导轨的电阻不计,则()A、杆由O到P的过程中,电路中电流变大B、杆由P到Q的过程中,电路中电流一直变大C、杆通过O处时,电路中电流方向将发生改变D、杆通过O处时,电路中电流最大20、如图4-3-14所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B,方向垂直于纸面向内.一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计.导体棒与圆形导轨接触良好.求:(1)、在滑动过程中通过电阻r的电流的平均值;(2)、MN从左端到右端的整个过程中,通过r的电荷量;(3)、当MN通过圆导轨中心时,通过r的电流是多大?21、如图所示,两根平行且足够长的金属导轨置于磁感应强度为B的匀强磁场中,磁场的方向垂直于导轨平面,两导轨间距为L,左端连一电阻R,右端连一电容器C,其余电阻不计。
法拉第电磁感应定律基础练习

法拉第电磁感应定律__自感和涡流基础练习1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同2.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直。
先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍。
接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半。
先后两个过程中,线框中感应电动势的比值为( )A.12 B .1 C .2D .43.如图9-2-14所示,匀强磁场的方向垂直于电路所在平面,导体棒ab 与电路接触良好。
当导体棒ab 在外力F 作用下从左向右做匀加速直线运动时,若不计摩擦和导线的电阻,整个过程中,灯泡L 未被烧毁,电容器C 未被击穿,则该过程中()图9-2-14A .感应电动势将变大B .灯泡L 的亮度变大C .电容器C 的上极板带负电D .电容器两极板间的电场强度将减小4.(2013·苏州模拟)如图9-2-15(a)、(b)所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯A 的电阻,接通S ,使电路达到稳定,灯泡A 发光,则()图9-2-15A .在电路(a)中,断开S 后,A 将逐渐变暗B .在电路(a)中,断开S 后,A 将先变得更亮,然后逐渐变暗C .在电路(b)中,断开S 后,A 将逐渐变暗D .在电路(b)中,断开S 后,A 将先变得更亮,然后逐渐变暗5.如图9-2-16所示,金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长l 1=0.8 m ,宽l 2=0.5 m ,回路总电阻R =0.2 Ω,回路处在竖直方向的磁场中,金属杆用水平绳通过定滑轮连接质量M =0.04 kg 的木块,磁感应强度从B 0=1 T 开始随时间均匀增加,5 s 末木块将离开水平面,不计一切摩擦,g 取10 m/s 2,求回路中的电流强度。
法拉第电磁感应定律专题

法拉第电磁感应定律练基础习题1.关于感应电动势大小的下列说法中,正确的是[ ]A .线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B .线圈中磁通量越大,产生的感应电动势一定越大C .线圈放在磁感强度越强的地方,产生的感应电动势一定越大D .线圈中磁通量变化越快,产生的感应电动势越大2.与x 轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l 的金属棒在此磁场中运动时始终与z 轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv 的电动势[ ]A .以2v 速率向+x 轴方向运动B .以速率v 垂直磁场方向运动3.如图2,垂直矩形金属框的匀强磁场磁感强度为B 。
导体棒ab 垂直线框两长边搁在框上,ab 长为l 。
在△t 时间内,ab 向右匀速滑过距离d ,则[ ]4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ]A .线圈中O 时刻感应电动势最大B .线圈中D 时刻感应电动势为零C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感电动势为0.4V5.一个N 匝圆线圈,放在磁感强度为B 的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A .将线圈匝数增加一倍B .将线圈面积增加一倍 C .将线圈半径增加一倍D .适当改变线圈的取向6.如图4所示,圆环a 和圆环b 半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a 环单独置于磁场中和b 环单独置于磁场中两种情况下,M 、N 两点的电势差之比为[ ] A .4∶1B .1∶4C .2∶1D .1∶27.沿着一条光滑的水平导轨放一个条形磁铁,质量为M,它的正前方隔一定距离的导轨上再放质量为m的铝块。
高中物理 选修二(2019)第二章 电磁感应 第2节法拉第电磁感应定律 基础练习(含答案)

法拉第电磁感应定律 基础练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.将多匝线圈置于磁感应强度大小随时间变化的磁场中,关于线圈中产生的感应电动势,下列说法正确的是( )A .感应电动势与线圈的匝数无关B .通过线圈的磁通量越大,感应电动势越大C .通过线圈的磁通量变化越快,感应电动势越大D .通过线圈的磁通量为0,感应电动势一定也为02.下列关于电磁感应说法正确的是( )A .只要磁通量发生变化,就会产生感应电流B .穿过闭合回路磁通量最大时,感应电流也一定最大C .穿过闭合回路磁通量为零时,感应电流也为零D .感应电流激发的磁场总是阻碍线圈中磁通量的变化3.如图所示,导体直导轨OM 和PN 平行且OM 与x 轴重合,两导轨间距为d ,两导轨间垂直纸面向里的匀强磁场沿y 轴方向的宽度按sin 2y d x d π=的规律分布,两金属圆环固定在同一绝缘平面内,外圆环与两导轨接触良好,与两导轨接触良好的导体棒从OP 开始始终垂直导轨沿x 轴正方向以速度v 做匀速运动,规定内圆环a 端电势高于b 端时,a 、b 间的电压u ab 为正,下列u ab -x 图像可能正确的是( )A .B.C.D.4.如图所示,导体棒ab沿水平面内的光滑导线框向右做匀速运动,速度v=6.0m/s.线框宽度L=0.3m,处于垂直纸面向下的匀强磁场中,磁感应强度B=0.1T.则感应电动势E的大小为A.0.18V B.0.20 V C.0.30V D.0.40V5.如图所示,xOy坐标系第一象限有垂直纸面向外的匀强磁场,第三象限有垂直纸面向里的匀强磁场,磁感应强度大小均为B,第二、四象限内没有磁场.一个围成四分之一圆弧形的导体环Oab,其圆心在原点O,开始时导体环在第四象限,从t=0时刻起绕O点在xOy坐标平面内逆时针匀速转动.若以逆时针方向的电流为正,下列表示环内感应电流i随时间t变化的图象中,正确的是()A.B.C.D.6.关于电场和磁场的有关问题,下列说法中正确的是()A.电场是电荷周围空间实际存在的物质B.由FEq=可知,电场中某点的场强E与q成反比,与F成正比C.导体切割磁感线产生的电动势为E=BLvD.根据公式FBIL=可知,通电导线受磁场力为零的地方磁感应强度一定为零7.如图所示的情况中,金属导体中产生的感应电动势为Blv的是()A.丙和丁B.甲、乙、丁C.甲、乙、丙、丁D.只有乙二、多选题8.如图甲所示,水平放置的平行金属导轨连接一个平行板电容器C和电阻R,导体棒MN放在导轨上且接触良好,整个装置放于垂直导轨平面的磁场中,磁感应强度B的变化情况如图乙所示(图示磁感应强度方向为正),MN始终保持静止,则20t-时间内()A.流过电阻R的电流方向始终没变B.电容器C的a板一直带正电C.1t时刻电容器C的带电量为零D.MN所受安培力的方向始终没变9.半径分别为r和2r的同心半圆光滑导轨MN、PQ固定在同一水平面内,一长为r、电阻为2R、质量为m且质量分布均匀的导体棒AB置于半圆轨道上面,BA的延长线通过导轨的圆心O,装置的俯视图如图所示.整个装置位于磁感应强度大小为B、方向竖直向下的匀强磁场中.在N、Q之间接有一阻值为R的电阻.导体棒AB在水平外力作用下,以角速度ω绕O顺时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨间的动摩擦因数为μ,导轨电阻不计,重力加速度为g,则下列说正确的是( )A.导体棒AB两端的电压为34Brω2B.电阻R中的电流方向从Q到N,大小为2 2 Br RωC.外力的功率大小为24234B rRω+32μmgrωD.若导棒不动要产生同方向的感应电流,可使竖直向下的磁感应强度增加,且变化得越来越慢10.下列关于物理学家的贡献,说法正确的是()A.法拉第最早发现了电流的磁效应,并提出电磁感应定律B.库仑通过实验提出库仑定律,并在实验室测出静电常量kC.美国物理学家密立根发明的回旋加速器能在实验室中产生大量的高能粒子D.牛顿用“月—地检验”证实了万有引力定律的正确性11.在水平光滑绝缘桌面上有一边长为l的正方形线框ABCD,被限制在沿AB方向的水平直轨道自由滑动.BC边右侧有一直角三角形匀强磁场区域Efg,直角边Ef等于l,边gE小于l,Ef边平行AB边,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力F作用下向右匀速穿过磁场区,若图示位置为t =0时刻,设逆时针方向为电流的正方向,水平向右的拉力为正.则感应电流i-t和F-t图象正确的是(时间单位为l/v,A、B、C图象为线段,D为抛物线)A.B.C.D.12.闭合线圈中感应电流大小与穿过线圈的磁通量之间的关系的下列说法,可能的是()A.穿过线圈的磁通量很大而感应电流为零B.穿过线圈的磁通量很小而感应电流很大C.穿过线圈的磁通量变化而感应电流不变D.穿过线圈的磁通量变化而感应电流为零三、解答题13.如图(俯视图),虚线右侧有竖直向下的磁感应强度为B=0.5T的匀强磁场,边长为L=0.4m,质量为m=0.5kg的正方形导线框起初静止在光滑水平地面上.从t=0时刻起,用水平恒力F向右拉线框从图示位置开始运动,此后线框运动的v-t图像如右图所示.求:(1)恒力F的大小;(2)线框进入磁场过程中感应电流的大小;(3)线框进入磁场过程中线框产生的热量.14.如图所示,光滑平行导轨置于磁感应强度B=0.1T的匀强磁场中,磁场方向垂直于导轨所在平面。
法拉第电磁感应定律习题知识点及练习题含答案解析

法拉第电磁感应定律习题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m g a M m-=+ 联立整理得: 12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V.(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J.(3) eb 边上产生的焦耳Q eb =0.9J.2.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高;()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2)0.1B T = (3) 0.26J 【解析】【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。
法拉第电磁感应定律练习(含答案)

法拉第电磁感应定律练习(含答案)A。
穿过线圈的磁通量越大,感应电动势越大;C。
穿过线圈的磁通量变化越大,感应电动势越大;D。
线圈中磁通量变化越快,产生的感应电动势越大。
改写:根据法拉第电磁感应定律,当磁通量穿过线圈越大时,感应电动势也越大;当穿过线圈的磁通量变化越大时,感应电动势也越大;线圈中磁通量变化越快,产生的感应电动势也越大。
3、如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则ef将往返运动。
改写:在一匀强磁场中,有一U形导线框abcd,线框位于水平面内,磁场与线框平面垂直。
R是一个电阻,ef是一根垂直于ab的导体杆,它可以在ab、cd上无摩擦地滑动。
忽略杆ef和线框中导线的电阻。
当给ef一个向右的初速度时,ef 将开始往返运动。
4、如图(a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯A的电阻,接通S,使电路达到稳定,灯泡A发光,则在电路(a)中,断开S后,A将逐渐变暗。
改写:在图(a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯A的电阻。
接通S,使电路达到稳定,灯泡A发光。
当断开S后,在电路(a)中,灯A将逐渐变暗。
5、如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边缘,线框平面与磁场垂直,ab边和bc边分别用L1和L2.若把线框沿v的方向匀速拉出磁场所用时间为△t,则通过框导线截面的电量是b。
改写:在图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁场中,其中ab边位于磁场边缘,线框平面与磁场垂直,ab边和bc边分别用L1和L2表示。
若把线框沿v的方向匀速拉出磁场所用时间为△t,则通过框导线截面的电量是b。
3Ω。
金属棒以匀速v=2m/s向右滑动,垂直于框架和磁场。
法拉第电磁感应定律典型练习题40道附答案

姓名:班级:题号 一、选择题二、填空 题三、计算题四、多项选择总分得分1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是0 >■hD2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符 创万史事实的是()A.法拉第首先引入“场”的概念来研究电和磁的现象B.法拉第首先引入电场线和磁感线来描述电场和磁场C.法拉第首先发现了电流的磁效应现象D.法拉第首先发现电磁感应现象并给出了电磁感应定律3、如图所示,两个同心放置的共面金属圆环a 和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量①a 和①b大小关系为:A.①a>①bB.①a<①b评卷人得分一、选择题(每空?分,共?分)D.无法比较C.①a=①b4、关于感应电动势大小的下列说法中,正确的是(A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大A.穿过线圈的磁通量越大,感应电动势越大B.穿过线圈的磁通量为零,感应电动势一定为零C.穿过线圈的磁通量变化越大,感应电动势越大D.穿过线圈的磁通量变化越快,感应电动势越大B .恒定不变,读数为BaVD.读数变小7、如图所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 磁感应弓S 度为B 的圆形匀强磁场区 域,导体棒中的感应电动势£与导体棒位置x 关系的图像是8、如图所示,一个高度为L 的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。
在线框 的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。
闭合线圈下落后, 刚好匀速进入磁场区,进入过程中,线圈中的感应电流I 0随位移变化的图象可能是5、对于法拉第电磁感应定律 F 面理解正确的是6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速向右运动时能总是与两边良好接触,一理想电压表跨接在表的读数:(金属框的长为a,宽为b,磁感应强度为 V 拉出,它的两边固定有带金属滑轮的导电机构,金属框 PQ 两导电机构上,当金属框向右匀速拉出的过程中,电压B)A.恒定不变,读数为BbV C.读数变大9、如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef 垂直于ab的一根导体杆,它可以在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给一个向右的初速度,则A.ef将匀速向右运动B.ef将往返运动C.ef将减速向右运动,但不是匀减速D.ef将加速向右运动10、用相同导线绕制的边长为L或2L的四个闭合导体线框、以相同的速度匀速进入右侧匀强磁场,如图所示。
法拉第电磁感应定律习题知识点及练习题及答案解析

法拉第电磁感应定律习题知识点及练习题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。
求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。
【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。
4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
(1)求金属棒达到稳定时的速度是多大;(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46【解析】 【详解】(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有sin A mg F θ=其中,A EF BIL I R r==+ 根据法拉第电磁感应定律,有E BLv = 联立解得:m 1.6sv =(2) 根据能量关系有21·sin 2mgs mv Q θ=+ 电阻R 上产生的热量R RQ Q R r=+ 解得:0.0183J R Q =(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:sin mg ma θ=根据位移时间关系公式,有212x vt at =+设t 时刻磁感应强度为B ,总磁通量不变,有:()BLs B L s x '=+当t =1s 时,代入数据解得,此时磁感应强度:5T 46B '=3.如图1所示,MN 和PQ 为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l ,电阻均可忽略不计.在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B 、方向垂直纸面向里的匀强磁场中.将导体杆ab 由静止释放.求:(1)a. 试定性说明ab 杆的运动;b. ab 杆下落稳定后,电阻R 上的热功率.(2)若将M 和P 之间的电阻R 改为接一电动势为E ,内阻为r 的直流电源,发现杆ab 由静止向上运动(始终未到达MP 处),如图2所示.a. 试定性说明ab 杆的运动:b. 杆稳定运动后,电源的输出功率.(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示.ab 杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.【答案】(1)加速度逐渐减小的变加速直线运动;P=2222m g RB l (2)加速度逐渐减小的加速;P=mgE Bl -2222m g r B l(3)a=22mgm B l C + 【解析】(1)a 、对ab 杆下滑过程,由牛顿第二定律22B l vmg ma R-=,可知随着速度的增大,加速度逐渐减小,当22B l vmg R=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐减小的加速,再做匀速直线运动.b 、ab 杆稳定下滑时,做匀速直线运动:22B l vmg R=,可得22mgR v B l =故22222222B l v mgR m g RP v mg R B l B l=⋅=⋅=(2)a 、对ab 杆上滑过程,由牛顿第二定律:BIL mg ma -=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.B 、杆向上匀速时,BIl mg = mg I Bl=电源的输出功率2P EI I r =- 解得:2()Emg mg P r Bl Bl=- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=, 电容器的充电电流QI t∆=∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆ 而va t∆=∆ 联立解得:mg B CBla l ma -⋅⋅=可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22mga m B l C=+【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.4.如图所示,一无限长的光滑金属平行导轨置于匀强磁场B 中,磁场方向垂直导轨平面,导轨平面竖直且与地面绝缘,导轨上M 、N 间接一电阻R ,P 、Q 端接一对沿水平方向的平行金属板,导体棒ab 置于导轨上,其电阻为3R ,导轨电阻不计,棒长为L ,平行金属板间距为d .今导体棒通过定滑轮在一物块拉动下开始运动,稳定后棒的速度为v ,不计一切摩擦阻力.此时有一带电量为q 的液滴恰能在两板间做半径为r 的匀速圆周运动,且速率也为v .求: (1)速度v 的大小; (2)物块的质量m .【答案】(1)2gdrL,(222B l dLrR g【解析】 【详解】(1)设平行金属板间电压为U .液滴在平行金属板间做匀速圆周运动,重力与电场力必定平衡,则有:Uqmg d= 由2v qvB m r=得mv r qB=联立解得gdrBU v=则棒产生的感应电动势为: ·(3)4U gdrB B R R R v=+= 由E BLv =棒, 得 4gdrv vL=棒 (2)棒中电流为:U gdrB I R vR== ab 棒匀速运动,外力与安培力平衡,则有 2gdrLB F BIL vR ==而外力等于物块的重力,即为 2gdrLB mg vR=解得2drLB m vR=5.如图所示,一个单匝矩形线圈水平放在桌面上,在线圈中心上方有一竖直的条形磁体,此时线圈内的磁通量为0.05Wb.在0.5s 的时间内,将该条形磁体从图示位置竖放到线圈内的桌面上,此时线圈内的磁通量为0.10Wb ,试求此过程: (1)线圈内磁通量的变化量;(2)线圈中产生的感应电动势大小。
【物理】物理法拉第电磁感应定律的专项培优练习题(含答案)含答案

【物理】物理法拉第电磁感应定律的专项培优练习题(含答案)含答案一、法拉第电磁感应定律1.如图甲所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路。
线圈的半径为r1。
在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示,图线与横、纵轴的截距分别为t0和B0。
导线的电阻不计,求0至t1时间内(1)通过电阻R1上的电流大小及方向。
(2)通过电阻R1上的电荷量q。
【答案】(1)2020 3n BrRtπ电流由b向a通过R1(2)20213n B r tRtπ【解析】【详解】(1)由法拉第电磁感应定律得感应电动势为22022n B rBE n n rt t tππ∆Φ∆===∆∆由闭合电路的欧姆定律,得通过R1的电流大小为20233n B rEIR Rtπ==由楞次定律知该电流由b向a通过R1。
(2)由qIt=得在0至t1时间内通过R1的电量为:202113n B r tq ItRtπ==2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。
已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:(1)磁通量变化率,回路的感应电动势。
(2)a、b两点间电压U ab。
【答案】(1)0.04Wb/s 4V(2)2.4V【解析】【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。
(2)a 、b 两点间电压U ab 为2.4V 。
法拉第定律练习题及答案

法拉第定律练习题及答案题目一电流 $I$ 通过一个导线时,它产生的磁场 $B$ 与电流强度$I$ 和导线到磁场的垂直距离 $r$ 成正比。
已知一个电流为 2 A 的导线在距离 3 m 处产生的磁场强度为 0.5 T。
求该导线上电流强度为 5 A 时,在距离 6 m 处产生的磁场强度。
答案:根据法拉第定律,磁场强度 $B$ 与电流强度 $I$ 和距离$r$ 的关系可以表示为 $B = k \frac{I}{r}$,其中 $k$ 是一个比例常数。
根据已知条件,我们可以列出方程求解:$0.5 = k \frac{2}{3}$解得 $k = \frac{3}{4}$。
当电流强度变为 5 A,距离变为 6 m 时,根据法拉第定律,磁场强度 $B$ 可以表示为:$B = \frac{3}{4} \frac{5}{6} = \frac{5}{8}$所以,当导线上电流强度为 5 A 时,在距离 6 m 处产生的磁场强度为 0.625 T。
题目二某导线中的电流为 1 A,导线长度为 2 m。
已知导线所处的磁感应强度为 0.5 T。
求该导线在磁感应方向上所受到的磁场力。
答案:根据法拉第定律,磁场力 $F$ 与电流强度 $I$,导线长度 $L$ 和磁感应强度 $B$ 的关系可以表示为 $F = I \cdot L \cdot B$。
根据已知条件,我们可以计算出磁场力:$F = 1 \cdot 2 \cdot 0.5 = 1$所以,该导线在磁感应方向上所受到的磁场力为 1 N。
题目三在一个导线中通过 5 A 的电流,电流方向为从北极到南极。
该导线距离地球表面的水平距离为 1 m。
已知地球表面的磁感应强度为 0.4 T。
求该导线在垂直于地球表面方向上所受到的磁场力。
答案:根据法拉第定律,磁场力 $F$ 与电流强度 $I$,导线长度 $L$ 和磁感应强度 $B$ 的关系可以表示为 $F = I \cdot L \cdot B$。
专题:法拉第电磁感应定律综合应用

【例5】如图所示,竖直平面内有一金属环,半径为a,总 电阻为R,磁感应强度为B的匀强磁场垂直穿过环平面,与环的 最高点A铰链连接的长度为2a、电阻为R/2的导体棒AB由水平 位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则 这时AB两端的电压大小为( )
【例6】(2012· 课标全国· 19)如 图所示,均匀磁场中有 一由半圆弧 及其直径构成的导线框,半圆直径与磁场边缘 重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大 小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的 轴以角速度ω匀速转动半周,在线框中产生感应电流.现使 线框保持图中所示位置,磁感应强度大小随时间线性变 化.为了产生与线框转动半周过程中同样大小的电流,磁感 应强度随时间的变化率 ΔB/Δt的大小应为 ( ) A.4ωB0/π B.2ωB0/π C.ωB0/π D.ωB0/2π
【例4】(2013福建,18)如图,矩形闭合线框在匀强 磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab 边和cd边刚进入磁场的时刻。线框下落过程形状不变,ab 边始终保持与磁场水平边界OO′ 平行,线框平面与磁场方向 垂直。设OO′ 下方磁场磁场区域足够大,不计空气影响,则 下列哪一个图像不可能反映线框下落过程中速度v随时间t变 化的规律( )
M v P a 2R e c C R B b f d N 2v Q
【例6】如图所示,在匀强磁场中,与磁感应强度B成 30°角放置一矩形线圈,线圈长l1=10cm、宽l2=8cm,共 100匝,线圈电阻r=1.0Ω,与它相连的电路中,电阻 R1=4.0Ω,R2=5.0Ω,电容C=50μF,磁感应强度变化如图 乙所示,开关S在t0=0时闭合,在t2=1.5s时又断开,求: (1)t=1.0s时,R2中电流的大小及方向; (2)S断开后,通过R2的电量。
法拉第电磁感应定律及应用(二)

电磁感应定律的应用(二)知识点1、动生电动势中的安培力例题1.如图所示,一质量m =0.1kg 的金属棒ab 可沿接有电阻R =1Ω的足够长的竖直导体框架无摩擦地滑动,框架间距L =50cm ,匀强磁场的磁感应强度B =0.4T ,方向如图示,其余电阻均不计。
若棒ab 由静止开始沿框架下落 ,且与框保持良好接触,那么在下落的前一阶段,棒ab 将做 运动,当棒ab 运动达到稳定状态时的速度v = 。
(g =10m/s 2)例题2. 如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距L =1m ,导轨平面与水平面成θ=37º角,下端连接着阻值为R 的电阻。
匀强磁场方向与导轨平面垂直,质量m =0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数μ=0.25,g 取10m/s 2 (1)求金属棒沿导轨由静止开始下滑时的加速度大小; (2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8W ,求该速度的大小;(3)在上问中,若R =2Ω,金属棒中的电流由a 到b ,求磁感应强度的大小和方向。
(a =4m/s 2 ,v =10m/s ,B =0.4T ,方向垂直导轨平面向下)例题3.如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平。
在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。
线圈从水平面a 开始下落。
已知磁场上下边界之间的距离大于水平面a 、b 之间的距离。
若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为b F 、c F 和d F ,则( D )A.d F >c F >b FB.c F <d F <b FC.c F >b F >d FD.c F <b F <d F练习1、均匀导线制成的单位正方形闭合线框abcd ,每边长为L ,总电阻为R ,总质量为m 。
法拉第定律基础知识、例题、练习

法拉第定律基础知识、例题、练习法拉第电磁感应定律【本讲教育信息】⼀. 教学内容:法拉第电磁感应定律【基础知识】1. 法拉第电磁感应定律在电磁感应现象中,不管电路是否闭合,只要穿过这个电路所围⾯积的磁通量发⽣变化,电路中就有感应电动势产⽣,电路中感应电动势的⼤⼩,跟穿过这⼀电路的磁通量的变化率成正⽐,即,在国际单位制中可以证明其中的k=1,所以有。
对于n匝线圈有。
公式中,若恒定,则感应电动势E恒定,若变化,则感应电动势也是变化的。
通常Δt为⼀段时间,计算的是Δt时间内的平均感应电动势。
Δt→0时,的极限值等于感应电动势的瞬时值。
2. 法拉第电磁感应定律的运⽤有两种典型情形:第⼀,回路⾯积不变,穿过回路的磁场变化,如本例,此时;第⼆,穿过回路的磁场恒定,回路⾯积变化,此时。
(1)根据法拉第电磁感应定律可以证明:垂直于磁场⽅向的导体棒,当它以垂直于磁场⽅向的速度运动时,产⽣的感应电动势⼤⼩为E=BLv。
式中B为磁场的磁感应强度,L 为导体棒长度,v为导体棒运动的速度。
如果导体棒运动的速度⽅向和磁场⽅向不垂直,如图所⽰。
此时,我们可以将导体棒的速度v分解为垂直于磁场⽅向的分量和沿磁场⽅向的分量,显然对感应电动势没有贡献。
所以,导体棒中感应电动势为。
产⽣感应电动势那部分导体相当于电源,在电源内部,电流从负极流向正极,不论回路是否闭合,都设想电路闭合,由楞次定律或右⼿定则判断出感应电流⽅向,根据在电源内部电流从负极到正极,就可确定感应电动势的⽅向。
将均匀电阻丝做成的边长为l的正⽅形线圈abcd从匀强磁场中向右匀速拉出的过程,仅ab边上有感应电动势E=Blv,ab边相当于电源,另3边相当于外电路。
ab边两端的电压为3Blv/4,另3边每边两端的电压均为Blv/4。
(2)导体棒转动产⽣的感应电动势直导线在磁场中转动切割磁场线⽽产⽣感应电动势,电动势的⼤⼩如何求呢?如图,磁感应强度为B的匀强磁场⽅向垂直于纸⾯向外,长L的⾦属棒oa以o为轴(转动轴与磁感线平⾏)在该平⾯内以⾓速度ω逆时针匀速转动,求⾦属棒中的感应电动势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法拉第电磁感应定律【本讲教育信息】一. 教学内容:法拉第电磁感应定律【基础知识】1. 法拉第电磁感应定律在电磁感应现象中,不管电路是否闭合,只要穿过这个电路所围面积的磁通量发生变化,电路中就有感应电动势产生,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,在国际单位制中可以证明其中的k=1,所以有。
对于n匝线圈有。
公式中,若恒定,则感应电动势E恒定,若变化,则感应电动势也是变化的。
通常Δt为一段时间,计算的是Δt时间内的平均感应电动势。
Δt→0时,的极限值等于感应电动势的瞬时值。
2. 法拉第电磁感应定律的运用有两种典型情形:第一,回路面积不变,穿过回路的磁场变化,如本例,此时;第二,穿过回路的磁场恒定,回路面积变化,此时。
(1)根据法拉第电磁感应定律可以证明:垂直于磁场方向的导体棒,当它以垂直于磁场方向的速度运动时,产生的感应电动势大小为E=BLv。
式中B为磁场的磁感应强度,L 为导体棒长度,v为导体棒运动的速度。
如果导体棒运动的速度方向和磁场方向不垂直,如图所示。
此时,我们可以将导体棒的速度v分解为垂直于磁场方向的分量和沿磁场方向的分量,显然对感应电动势没有贡献。
所以,导体棒中感应电动势为。
产生感应电动势那部分导体相当于电源,在电源内部,电流从负极流向正极,不论回路是否闭合,都设想电路闭合,由楞次定律或右手定则判断出感应电流方向,根据在电源内部电流从负极到正极,就可确定感应电动势的方向。
将均匀电阻丝做成的边长为l的正方形线圈abcd从匀强磁场中向右匀速拉出的过程,仅ab边上有感应电动势E=Blv,ab边相当于电源,另3边相当于外电路。
ab边两端的电压为3Blv/4,另3边每边两端的电压均为Blv/4。
(2)导体棒转动产生的感应电动势直导线在磁场中转动切割磁场线而产生感应电动势,电动势的大小如何求呢?如图,磁感应强度为B的匀强磁场方向垂直于纸面向外,长L的金属棒oa以o为轴(转动轴与磁感线平行)在该平面内以角速度ω逆时针匀速转动,求金属棒中的感应电动势。
在应用感应电动势的公式时,必须注意其中的速度v应该指导线上各点的平均速度,在本题中应该是金属棒中点的速度,因此有。
另一种推导方法:如图所示,铜棒OA长为L,在匀强磁场B中以角速度ω逆时针方向旋转,我们可以以OA为边,作一假想的非闭合回路OCA在Δt时间内,铜棒转过角度Δθ,回路面积的改变为扇形面积若是半径r的圆盘在匀强磁场B中以角速度ω匀速转动,当盘平面垂直于磁场方向时,导体盘可以视为无数由半径相同的铜条并联而成。
故半径为r的圆盘在磁感应强度为B的匀强磁场中以均匀角速度ω匀速转动所产生的感应电动势,且盘心的电势高于盘边缘的电势。
【典型例题】例1. 在一横截面积为的100匝圆形闭合线圈,电阻为0.2Ω。
线圈处在匀强磁场中,磁场方向垂直线圈截面,其磁感应强度B随时间t的变化规律如图所示,求线圈中感应电流的大小。
由题给B—t图像可知,B随时间均匀变化,磁感应强度的变化率(B—t图线的斜率)为恒量。
线圈截面与磁场方向垂直,则穿过截面的磁通量变化率。
因此,线圈中产生的感应电动势和感应电流为(V)(A)例2. 如图所示,U形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R。
从t=0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B=kt,(k>0)那么在t为多大时,金属棒开始移动?解:由= kL1L2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安培力F=BIL∝B=kt∝t,所以安培力将随时间而增大。
当安培力增大到等于最大静摩擦力时,ab将开始向左移动。
这时有:例3. 如图所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。
求:将线圈以向右的速度v匀速拉出磁场的过程中,⑴拉力的大小F;⑵拉力的功率P;⑶拉力做的功W;⑷线圈中产生的电热Q;⑸通过线圈某一截面的电荷量q。
解:这是一道基本练习题,要注意计算中所用的边长是L1还是L2 ,还应该思考一下这些物理量与速度v之间有什么关系。
⑴⑵⑶⑷⑸与v无关特别要注意电热Q和电荷q的区别,其中与速度无关!例4. 如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。
磁感应强度为B的匀强磁场方向垂直于纸面向外。
金属棒ab的质量为m,与导轨接触良好,不计摩擦。
从静止释放后ab保持水平而下滑。
试求ab下滑的最大速度v m。
解:释放瞬间ab只受重力,开始向下加速运动。
随着速度的增大,感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。
当F增大到F=mg时,加速度变为零,这时ab达到最大速度。
由,可得这道题也是一个典型的习题。
要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。
达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。
这时重力的功率等于电功率也等于热功率。
进一步讨论:如果在该图上端电阻的右边串联接一只电键,让ab下落一段距离后再闭合电键,那么闭合电键后ab的运动情况又将如何?(无论何时闭合电键,ab可能先加速后匀速,也可能先减速后匀速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样的)。
例5. 如图(a),圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q,P和Q 共轴。
Q中通有变化电流,电流随时间变化的规律如图(b)所示。
P所受的重力为G,桌面对P的支持力为N,则()A. B.C. D.解:线圈Q内电流变化使穿过P的磁通量发生变化,线圈P中产生的感应电流阻碍引起产生感应电流的磁通量的变化。
如图(b)、时刻Q中电流不变,穿过P的磁通量不变,根据法拉第电磁感应定律,P中不产生感应电流,P只受重力G和桌面的支持力N 作用,由平衡条件N=G,所以D正确,B错。
时刻Q中电流增强,穿过P的磁通量增多,P中产生感应电流,感应电流产生的效果是阻碍P中磁通量的增多,即安培力欲使P远离Q,此时P受重力G,桌面支持力N和向下的安培力F作用,由平衡条件G+F=N,所以N>G,A正确。
时刻Q中电流的变化率、P中磁通量的变化率均不为零,所以P中产生感应电流,但因Q中电流i=0,故P不受安培力作用,N=G,所以C错。
答案:AD【模拟试题】1. 一匀强磁场,磁场方向垂直纸面,规定向里的方向为正。
在磁场中有一细金属圆环,线圈平面位于纸面内,如图(甲)所示。
现令磁感应强度B随时间t变化,先按图乙中所示的Oa图线变化,后来又按图线bc和cd变化,令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则()A. E1>E2,I1沿逆时针方向,I2沿顺时针方向B. E1<E2,I1沿逆时针方向,I2沿顺时针方向C. E1<E2,I2沿顺时针方向,I3沿逆时针方向D. E2=E3,I2沿顺时针方向,I3沿顺时针方向2. 如图所示,有一闭合线圈放在匀强磁场中,线圈的轴线和磁场线方向成30°角,磁感应强度随时间均匀变化,用下述方法中的哪一种可使线圈中的感应电流增加一倍()A. 使线圈的匝数增加一倍B. 使线圈的面积增加一倍C. 使线圈的半径增加一倍D. 改变线圈的轴线方向,使之与磁场方向平行3. 如图所示,金属三角形导轨COD上放置一根金属棒MN,拉动MN使它以速度v向右匀速平动。
如果导轨和金属棒都是粗细相同的均匀导体,电阻率都相同,那么在MN运动过程中,闭合回路的()A. 感应电动势保持不变B. 感应电流保持不变C. 感应电动势逐渐增大D. 感应电流逐渐增大4. 如图所示,平行导轨间距为d,一端跨接一个电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在平面。
一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计。
当金属棒沿垂直于棒的方向以恒定的速度v在金属轨上滑行时,通过电阻R的电流强度是()A. B. C. D.5. 如图所示,a、b、c为三个在同一平面内的同心圆环,环的半径,各环的电阻都相等。
当a环中通入的顺时针方向的电流突然增大时,b、c两环中感应电流的方向及大小的关系是()A. 均为顺时针,B. 均为逆时针,C. 均为顺时针,D. 均为逆时针,6. 两个匝数不同,但大小、材料、总质量均相同的正方形线圈,先后从磁场外同一高度自由下落,垂直穿过磁场区域后落地(不计空气阻力)则它们()A. 下落的时间相同,线圈产生的热量相同B. 下落的时间相同,匝数少的线圈产生的热量多C. 匝数少线圈落地的时间少,产生的热量多D. 匝数多线圈落地的时间少,产生的热量多7. 如图(a)所示,水平放置的两平行导轨左侧连接电阻,其他电阻不计,导体杆MN放在导轨上,在水平恒力F的作用下,沿导轨向右运动,并将穿过方向竖直向下的有界匀强磁场,磁场边界PQ与MN平行,从MN进入磁场开始计时,通过的感应电流i随时间t的变化可能是图(b)中的()(a)(b)8. 如图所示矩形线圈长为L,宽为h,电阻为R,质量为m,自某一高度在空中自由下落(空气阻力不计),然后进入一宽度也为h的磁感应强度为B的匀强磁场中,线圈进入磁场时的动能为,穿出磁场时的动能为,这一过程线圈中产生的焦耳热为Q,线圈克服安培力做功,重力做功为,线圈重力势能减少量为Δ,则下列关系中正确的是()A. B.C. D.9. 如图(a)所示,A是一边长为l的正方形线框,电阻为R。
今维持线框以恒定速度v 沿x轴转动,并穿过图中所示的匀强磁场B区域。
若以x轴正方向作为力的正方向,线框在图示位置的时刻作为时间的零点,则磁场对线框的作用力F随时间t的变化图线为图(b)中的()(a)(b)10. 如图所示,用铝板制成“”型框,将一质量为m的带电小球用绝缘细绳悬挂在框的上板上,让整体在垂直于水平方向的匀强磁场中向左以速度v匀速运动,悬线拉力为T,则()A. 悬线竖直,T=mgB. 悬线竖直,T<mgC. v选择合适的大小,可使T=0D. 条件不足,不能判定11. 如图所示,匀强磁场的磁感应强度为B,磁场中有正方形线框abcd,线框总电阻为R,边长为L,每边质量为m,磁场方向水平向右。
开始时线框处于水平位置且bc边与磁场垂直。
把线框由静止释放使它以bc为轴,在t s内由水平位置转到竖直位置刚好又静止下来,则在这个过程中,线框中平均感应电动势为____________,产生的热量为____________。
12. 一电容器的电容为10μF,垂直于回路平面的磁场的磁感应强度以的变化率增加,回路面积为,如图所示,则A、C两板的电势差为____________V,A板带电荷的种类为____________,带电量为____________C。