航空结构健康监测的压电夹层设计

航空结构健康监测的压电夹层设计
航空结构健康监测的压电夹层设计

传感器与微系统(Transducer and M icr osyste m Technol ogies) 2008年第27卷第7期设计与制造

航空结构健康监测的压电夹层设计3

王 强,袁慎芳

(南京航空航天大学智能材料与结构航空科技重点实验室,江苏南京210016)

摘 要:根据智能夹层思想和真实航空飞行器结构特点,研究了面向航空结构健康监测的压电夹层技术,

并将该技术应用到了某无人机机翼盒段结构健康监测验证实验中。实验结果表明:压电夹层工作性能稳

定,寿命长,压电元件的一致性良好,抗干扰、串扰能力较好,该技术对于结构健康监测技术实用化具有推

动作用。

关键词:结构健康监测;压电夹层;机翼盒段

中图分类号:T B552;V214.8 文献标识码:A 文章编号:1000-9787(2008)07-0072-03 PZTs l ayer techn i que for aerocraft structure

hea lth m on itor i n g3

WANG Q iang,Y UAN Shen2fang

(The Aeronauti c Key Labora tory for S martM a ter i a l and Structure,Nan ji n g Un i versity of

Aeronauti c and A stronauti c,Nan ji n g210016,Ch i n a)

Abstract:Based on the ideal of s mart layer and the structure characterastic of aviati on flyer,PZTs Layer

technique f or aer ocraft structure health monit oring(S HM)is studied and used in the SH M validati on experi m ent f or

a testbox of an UAV wing.The experi m ent result p r oves that the PZTs layer works stably and has l ong service life,

and the PZTs have good consistency,l ow interference.A ll of these indicate that the PZTs layer technique is hel pful

for the p racticality of SHM.

Key words:SH M;PZTs layer;wing testbox

0 引 言

自20世纪后期以来,由于世界各地发生的航空事故所引起的灾难性后果,使得来源于仿生原理的结构健康监测技术得以提出并迅速发展起来[1~4]。该技术研究在结构中安装或集成传感器/激励器、控制器以及信号处理器等功能单元来实现对结构健康状态的在线监测。在众多的传感器和激励器中,压电元件由于具有正逆压电效应,既可作为驱动器也可以作为传感器,因此,得到很多研究学者的关注并大量采用。在安装时,传统的方法是将压电元件逐个粘贴与分别连线,这样的做法会引起各压电元件存在性能差异,且稳定性、电气特性以及使用寿命等方面难以控制。为此,美国斯坦福大学率先进行了分布式传感器系统的研制,将这种分布式传感器系统叫做智能夹层(s mart layer)[5,6],国内南京航空航天大学是首先进行此方面研究的机构,在原理研究和应用等方面取得了一系列成果[7,8]。然而,目前国内压电智能夹层的应用研究还都是以小型结构为主,工作环境也大多局限于实验室内,距离真实工程应用还存在一定差距。本文以航空结构为应用对象,在国内外研究成果的基础上,研究了面向航空结构健康监测的实用化压电夹层技术,并在大型某无人机机翼盒段综合健康监测系统验证实验中得到了成功应用,取得了良好的效果。

1 压电夹层原理

电夹层的设计思想是采用柔性印刷线路工艺将压电传感器/激励器网络设计制作成夹层的形式,其中,压电元件按照一定工艺封装在夹层中,并用印刷线路代替普通导线连线[7,8]。通过这样的方法有效解决压电监测系统中常用的直接将压电元件粘贴在结构上所引起的胶层厚度不均、电绝缘问题、传感性能分散、串扰大的弊端。

2 设计方案

将压电夹层集成到结构中实现航空飞行器健康监测时,需要根据结构的特点和使用环境来确定夹层设计、安装工艺等。机翼盒段是航空飞行器中较为典型的结构部件,

收稿日期:2008-03-25

3基金项目:国家自然科学基金国际合作重大计划资助项目(50420120133);航空科学基金资助项目(20060952);教育部新世纪优秀人才支持计划资助项目(NCET-04-0513);江苏省研究生科技创新计划资助项目(CX07B_076Z)

27

第7期 王 强,等:航空结构健康监测的压电夹层设计

也是结构健康监测中研究较为集中的一种结构[9,10],同时,由于碳纤维增强复合材料以其高模量、高强度和轻质等优点,在飞行器设计中得到了广泛应用。因此,本文选择碳纤维增强复合材料机翼盒段为应用对象,根据其特点和使用环境设计符合实用化要求的压电夹层。碳纤维复合材料机翼盒段的结构特征为中空矩形立方体,盒段内部肋和前后梁平行排列;结构对Lamb波能量的吸收能力较强;结构表面粗糙度较好,便于薄膜粘贴。机翼盒段一般都密封在飞行器内部,使用环境较为稳定,电气特性以信号线之间的串扰为主。据此,本文在设计时采用和遵循了以下设计要点:

1)压电元件布局:压电元件采用直线排列的方式,3只压电元件为一个单元等间距集成到一张夹层中,多张夹层平行安装组成压电监测网络。压电元件的尺寸和间距根据实际工程需要设定。

2)基材:基材选择较为轻薄坚固的聚酰亚胺薄膜,厚度达到了12.5μm,以保证在不影响结构特性的同时保证压电传感网络的使用寿命。

3)压电元件集成方式:为减少因胶层、基材等不同材料对能量的吸收,保证压电元件的灵敏度和信号的信噪比,压电元件采用嵌入的方式集成到夹层中。

此外,在布线、屏蔽设计和夹层安装等工艺中均制定了相关技术要点。

图1为根据上述要点设计出的压电夹层结构图。夹层的长宽为400mm×50mm,选用的压电元件直径为8mm,厚度为0.48mm,相邻压电元件的间距为75mm 。

图1 压电夹层结构图

F i g1 Structura l d i a gram of PZTs l ayer

图2(a)为传统方法安装的压电元件电气特性图,可以发现由于复杂的引线问题,信号存在很大的串扰,虽然通过屏蔽线连接可以缓解这一问题,但按照要求只能采用轻而细的屏蔽线,这样的屏蔽效果有限,且很难做到完全屏蔽,因此,并不能完全克服。图2(b)是压电夹层的重复性实验和电气特性实验,首先,可以看到,由于采用了印刷电路布线技术,对串扰的问题解决得很好,而且,夹层测量的信号重复性很好,10次测量的结果几乎完全重叠。

3 应用与性能分析

本文在国内首次将压电夹层应用到了真实航空结构的健康监测研究中。该碳纤维复合材料机翼盒段尺寸为4000mm×1200mm×245mm,中间部分为复合材料盒段

,

图2 夹层重复性实验和电气特性实验对比

F i g2 Cam par ison of electr i c character between trad iti ona l

PZTs and PZTs l ayer

一端为铝制的支持端,另一端为铝制的加载端。复合材料盒段的上下蒙皮壁板为泡沫夹层板,盒段上下结构对称,只不过上下翼面与梁、肋连接方式不同:下翼面为前后梁突缘与蒙皮缝合成预成型件,5个肋突缘与蒙皮是抽钉连接,上翼面为紧固连接。肋的间距为800mm,监测目标为盒段上壁板与肋之间的螺钉连接失效。实验中,在盒段的上壁板内外表面总共布置了6片压电夹层,共计18只压电元件,对盒段中的两条肋与壁板的连接情况进行了监测。其中, 4片压电夹层在盒段制作时预先用环氧胶平行布置在盒段内部待监测肋两侧的壁板内表面,另2片布置在上壁板上表面,夹层中压电元件到肋中心线的垂直距离均为75mm,布置完毕后统一由信号屏蔽线连接到固定在铝加载端的航空接头上。

图3为结构抽钉失效情况下,一组压电阵列监测到的典型波形。其中,激励信号为调制后的5波峰窄带正弦波信号,从图中可以看出:信号中没有明显的噪声,且信号的某些参数在损伤前后发生了清晰的变化,最典型的是损伤信号相对于健康信号来说幅值变大了。提取响应信号的5个特征参数:时域信号能量、时域信号峰值、时域信号峰值到达时间、中心频率处小波细节信号能量以及中心频率处小波细节峰值,这5个参数组成一组状态向量表征抽钉状态,由人工神经网络成功辨识了抽钉的松动和松动级别。所有的实验情况证明所采用的压电夹层设计在传感器灵敏度、电气特性、稳定性以及寿命等方面性能良好。

37

传感器与微系统 第27

图3 一组压电夹层阵列监测到的典型波形

F i g3 Som e typ i ca l waveform m ea sured by PZT l ayer

4 结 论

本文对压电夹层的实用化技术进行了系统研究和验证,以飞行器机翼盒段为应用对象,设计了面向航空结构健康监测的压电夹层,并以某无人机复合材料机翼盒段为对象,在真实航空结构健康监测系统验证实验中得到了应用。实验过程与数据表明:压电夹层工作状态良好,能经受起长距离的运输,安装和连线简单、整洁,安装后夹层中的压电元件一致性较好,信号中的电磁干扰和串扰很小,满足监测要求。

参考文献:

[1] Boller C.Next generati on structural health monit oring and its inte2

grati on int o aircraft design[J].I nternati onal Journal of Syste m s

Science,2000,31(11):1333-1349.

[2] Yuan Shenfang,W ang Lei,Shi L ihua.On2line da mage monit oring

in composite structures[J].Journal of V ibrati on and Acoustics,

2003(125):178-186.

[3] Peng Ge,Yuan Shengfang.Da mage l ocalizati on on t w o2di m ensi o2

nal structure based on wavelet transf or m and active la mb wave2

based method[J].Materials Science Forum,2005(475~479):

2119-2122.

[4] 彭 鸽,袁慎芳.基于主动监测技术的结构冲击损伤BP神经

网络识别[J].仪器仪表学报,2005,26(6):574-577.

[5] L in M,Chang F K.The manufacturing of composite structureswith

a built2in net w ork of p iez ocera m ics[J].Comp Sci Technol,2002,

62(7):919-939.

[6] Q ing X P,Beard S J,Am rita Kumar,et al.Advances in the deve2

l opment of built2in diagnostic syste m f or fila mentwound composite

structures[J].Composites Science and Technol ogy,2006(66):

1694-1702.

[7] 唐守锋,熊 克,梁大开,等.用于结构健康监测的智能夹层

研究进展[J].实验力学,2005,20(2):226-234.

[8] 唐守锋,熊 克,李 刚.压电智能夹层及其特性分析[J].传

感器技术,2005,24(7):32-34.

[9] V incent Caccese,R ichard Me wer,Vel S S.Detecti on of bolt l oad

l oss in hybrid composite/metal bolted connecti ons[J].Enginee2

ring Structures,2004(26):895-906.

[10]Gr ondel S,A ssaad J,Delebarre C,et al.Health monit oring of a

composite wingbox structure[J].U ltras onics,2004(42):819-

824.

作者简介:

王 强(1980-),男,江苏句容人,博士研究生,研究方向为结构健康监测、压电夹层技术、信号处理。

(上接第68页)

4 结 论

本文基于H I T/DLR灵巧手手指基关节力矩传感器研究了手指基关节基于轨迹跟踪位置控制内环的阻抗控制,并给出了实验效果。分析实验结果可得,柔性环境和位置精确控制方向应选择较大的目标刚度;相反,刚性环境和力精确控制方向应选择较小的目标刚度以保证手指与环境间小的接触力和较大的阻尼以保证过渡过程的稳定性。

参考文献:

[1] Morel G,Malis E,Boudet S.I m pedance based combinati on of vi2

sual and force contr ol[C]∥Pr oceedings of the I EEE I nternati onal

Conference on Robotics and Aut omati on,1998:1743-1748. [2] 刘伊威,刘 宏,姜 力.基于机电一体化的机器人灵巧手手

指的研制[J].哈尔滨工业大学学报,2005,37(8):1022-

1024.

[3] L i J iang,L iu Hong,Xie Zong wu.Design of a novel dexter ous r o2

bot hand[J].Chinese Journal of Mechanical Engineering,2004,

17(3):360-363.

[4] J iangL,Jin M H,Gao X H.Multisens ory H I T/DLR dexter ous r o2

bot hand[C]∥Pr oceedings of the2003I EEE/AS ME I nternati o2

nal Conference on Advanced I ntelligentMechatr onics,2003:76-

81.

[5] J iang L,Sun D,L iu H.Study on inverse kine matics and traject ory

tracking contr ol of humanoid r obot fingerwith nonlinearly coup led

j oints[C]∥Pr oceedings of the2007I EEE I nternati onal Confe2

rence on Mechatr onics and Aut omati on,2007:3214-3219.

作者简介:

孙金凤(1985-),女,河南鹤壁人,硕士研究生,研究方向为机器人灵巧手的控制。

47

课程设计:航空发动机结构与强度课程设计思考

航空发动机结构与强度课程设计思考 一、航空发动机构造与强度课程设计的作用 对于飞行器动力工程的学生,航空发动机构造与强度的课程设计显得尤为重要。课程设计的重要性主要体现在航空发动机构造和强度课程的特点。实践性是航空发动机构造与强度课程最显著的特点。本课程研究的是实际发动机的结构及其强度,从表面上看,内容简单、易懂,理论性、系统性不强。但是要学生自己分析,则往往无从下手,特别是碰到实际的结构分析、结构设计更是束手无策。因此,通过课程设计这个教学环节,完成航空发动机某一结构的设计,起到加深对课堂教学内容的理解,实现理论向实践的转化,巩固理论知识的重要作用。航空发动机构造与强度课程的第二个重要特点是多学科综合的特点。实际的航空发动机结构是一个容纳多学科的、相互渗透的、具体的统一体,一个发动机具体结构的诞生是多学科综合的结果。即使一个简单的叶片结构设计都涉及到气体动力学、传热学、弹性力学、疲劳与断裂力学、有限元分析方法等等。因此本课程的教材涉及的内容多,知识面广,几乎包括了所学过的所有课程。总体上看显得内容繁杂,没有系统性和规律性。这给学生的学习带来了困难。而在完成课程设计的过程中,学生需要综合运用《航空发动机构造》、《航空发动机强度计算》等专业课程以及《弹性力学》、《有限元分析方法》、《机械制图》等专业基础课程的知识,需要查阅国家标准、材料手册等相关资料。因此,航空发动机构造与强度课程设计作为航空发动机构造与强度课程的后续教学环节,起到了提高学生综合运用相关专业课程的能力、加深对航空发动机构造的与强度认识和理解的重

要作用。综上所述可知,课程设计作为大学实践教学环节的组成部分,是实现理论与实践相结合的重要环节。而航空发动机构造与强度课程设计,由于航空发动机构造与强度课程的实践性和多学科性的特点,其课程设计对于提高学生的综合运用学科的能力以及加深对课程的认识和理解尤为重要。 二、工科相关课程设计的研究进展 美国麻省理工学院提出了高等工科教育要“回归工程实践”的教育理念。在《中共中央国务院关于深化教育改革全面推进素质教育的决定》中,明确提出以培养学生的创新精神和实践能力为实施素质教育的重点。清华大学老教授容文盛指出课程设计作为大学某一课程的综合性教学实践环节,它不仅仅是理论教学的辅助环节,而是全面培养学生必不可少的组成部分。因此,如何更好地开展课程设计实现培养高素质人才的目标成为各大高校教师积极探索和思考的问题。西南交通大学的鲁汉清教授提出要发挥课程设计的优势提高学生的综合素质和能力,在课程设计中要注意处理好以下几个关系: (1)人文素质和工程素质的关系。工程素质是工科学生课程设计培养的主要目标,鲁教授提出工程素质是与人文素质不可分割的,借助课程设计,树立起学生老实做人、严谨治学的思想,为工程素质的培养打下良好的基础。 (2)知识、能力与素质教育的关系。鲁教授提出在课程设计的过程中可以通过以下两个途径促进学生的知识、能力与素质教育的协调发展:第一,设计题目的设置向产品设计的方向靠拢,让学生接受真实产品设计的完整过程的训练和熏陶。第二,计算机模拟和实物讲解相结合,计算机模拟的最大优点是可以进行设计结果的快速仿真分析,实物讲解可以直观地提供设计结果。课程设计可以充分

结构健康监测

工程结构健康监测与诊断 姓 名: 查 忍 指 导教 师: 学 号: 专 业: 沈 圣 170527005 建筑与土木工程

琅岐大桥结构健康监测系统初步设计方案 目录 1 桥梁健康监测的必要性 (3) 2琅岐闽江大桥工程概况 (5) 3系统设计原则与功能目标 (9) 3.1 系统设计依据 (9) 3.2 系统设计原则 (10) 3.3 功能目标 (11) 4 健康监测系统方案设计 (11) 4.1 传感器子系统 (11) 4.1.1 环境监测 (12) 4.1.2 视频监测系统 (12) 4.1.3 结构变形监测 (13) 4.1.4 应变(应力)及温度场监测 (14) 4.1.5 斜拉索索力监测 (15) 4.1.6 结构动力性能监测 (15) 4.1.7 监测传感器统计 (16) 4.2 数据采集系统 (17) 4.2.1 数据采集系统设计 (17) 4.2.2 数据采集系统硬件系统 (18)

4.3 数据传输系统 (19) 4.4 监测数据分析与结构安全评定及预警子系统 (19) 4.5 健康监测网络化集成技术和用户界面子系统 (21) 4.6 中心数据库子系统 (21) 4.7 系统后期维护、升级和服务等要求 (21) 4.8 施工注意事项 (22) 4.9 其它 (22) 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522m米的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立

南航飞机结构设计习题答案43

4-1 梁的根部接头是固接,梁的缘条可以传递弯矩,纵墙的根部接头是绞接,它本身不能传递弯矩。 4-2 4-3

4-23 4-24 4-26 (1)在A-A 肋处,蒙皮没有发生突变,所以A-A 肋在传扭时不起作用。 (2)前梁在A-A 剖面处发生转折,前梁上弯矩M 分为两部分21M M M +=,1M 由前 梁传给机身,2M 传给A-A 肋。

4-30 机翼外段长桁上的轴向力通过蒙皮剪切向前后梁扩散,到根部全部转移到前后梁的缘条上去。 4-31 1. L 前=L 后

(1) Q 的分配 K=2 2EJ L L 前=L 后 ∴ 只与2EJ 有关 Q 1=112K Q K K += 122EJ L [22L (121EJ EJ +)]Q = 112EJ Q EJ EJ + = 1 12Q + = 0.333Q = 3330kg = 33.3KN Q 2= 6670kg = 66.7KN (2) M 的分配 K=KJ L ∴ 关系式仍同上 1M = 0.333?5?105 = 1666.7 KN m M 2= 0.667?5?105 = 3335 KN m (3) M t 的分配 M t1= 5510t M += 0.333?3?103 = 0.999?103 kg.m = 10 KN m M t2 = 0.667?3?103 = 2.001?103 kg.m = 20 KNm 2. L 前=3000 mm L 后=1500 mm (1) Q 的分配 K=2 2EJ L K 1= 2? () 12 2 103000= 2?12 6 10910 ?=2 9?106 = 2?106?0.111 K 2= 2?( )12 2 101500= 2?29?106 = 22 2.25??106 = 2?106?0.889 K 1+ K 2 = 2?106 ( 19 +1 2.25) = 2?106 ( 0.111 +0.889) = 1?2?106 ∴ Q 1= 0.111?10000 = 1110kg = 11.1KN Q 2= 8890kg = 88.9KN (2) M 的分配 K 1 = KJ L = 12103000 = 0.333?109 K 1 = 12 101500Q ? = 1.333?109 K 1+ K 2 = 1.666?109 1M = 0.333 1.666?5?105 = 0.1999?5?105 = 0.2?5?105 = 105 kg m = 1000 KN m 2M = 4?105 kg m = 4000 KN m (3) M t 的分配

现代桥梁健康安全监测系统++

目录 一、传统桥梁结构检查与评估概述 (1) 二、现代桥梁健康监测系统概述 (2) 三、健康监测系统研究现状 (3) 四、健康监测系统实施现状 (5) $ 五、健康监测系统应用效果与存在问题 (9) 六、健康监测系统改善建议与发展前景 (10) "

一、传统桥梁结构检查与评估概述 桥梁在建成后,由于受到气候、腐蚀、氧化或老化等因素,以及长期在静载和活载的作用下易于受到损坏,相应地其强度和刚度会随时间的增加而降低。这不仅会影响行车的安全,并会使桥梁的使用寿命缩短。为保证大桥的安全与交通运输畅通,加强对桥梁的维护管理工作极为重要。桥梁管理的目的在于保证结构的可靠性,主要指结构的承载能力、运营状态和耐久性能等,以满足预定的功能要求。桥梁的健康状况主要通过利用收集到的特定信息来加以评估,并作出相应的工程决策,实施保养、维修与加固工作。评估的主要内容包括:承载能力、运营状态、耐久能力以及剩余寿命预测。承载能力评估与结构或构件的极限强度、稳定性能等有关,其评估的目的是要找出结构的实际安全储备,以避免在日常使用中产生灾难性后果。运营状态评估与结构或构件在日常荷载作用下的变形、振动、裂缝等有关。运营状态评估对于大桥工件条件的确认和定期维修养护的实施十分重要。耐久能力评估侧重于大桥的损伤及其成因,以及其对材料物理特性的影响。 传统上,对桥梁结构的评估通过人工目测检查或借助于便携式仪器测量得到的信息进行。人工桥梁检查分为经常检查、定期检查和特殊检查。但是人工桥梁检查方法在实际应用中有很大的局限性。美国联邦公路委员会的最近调查表明,根据目测检查而作出的评估结果平均有56%是不恰当的。传统检测方式的不足之处主要表现在: (i)需要大量人力、物力并有诸多检查盲点。现代大型桥梁结构布置极其复杂,构件多且尺寸大,加之大部分的构件和隐蔽工程部位难于直接接近检查,因此,这对现代大型桥梁尤其突出; (ii)主观性强,难于量化。检查与评估的结果主要取决于检查人员的专业知识水平以及现场检测的经验。经过半个多世纪的发展,虽然桥梁的分析设计与施工技术已日趋完善,但对某些响应现象,尤其是损伤的发展过程,尚处于经验积累中,因此定量化的描述是很重要的; (iii)缺少整体性。人工检查以单一构件为对象,而用于现代机械、光学、超声波和电磁波等技术的检测工具,都只能提供局部的检测和诊断信息,而不能

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

发动机课程设计汇总

课程设计说明书 设计题目 院(系)专业班学生姓名 完成日期 指导教师(签字) 华中科技大学

目录 一目的与要求 (1) 二设计任务 (2) 三工作过程模拟计算 (3) 四动力学计算 (7) 五设计感想 (10) 参考文献 (11) 附录A 发动机外特性曲线 (12) 附录 B F g-?、F j-?、F-?曲线图 (13) 附录 C F N-?、F L-?、F t-?、F k-?、R B-?曲线图 (14) 附录 D 发动机合成扭矩∑M k-?曲线图 (15)

一目的与要求 1.目的 发动机课程设计是《发动机现代设计》课程的后续教学环节,旨在对刚学习过的发动机设计课程以及发动机原理课程的知识进行综合运用,加深对专业知识的理解。在课程设计环节,通过总体性能计算(工作过程模拟计算与动力学计算)将发动机的结构参数与性能参数结合起来,弄清结构与性能之间的内在联系;通过发动机总体布置图设计,对发动机的总体结构有一个全面而具体的了解,并深化对发动机各主要零件的作用和设计要求的理解。 2.要求 对提供的教学参考资料要认真分析,在理解的基础上借鉴,不要盲目照搬照抄。独立完成,可以讨论,不许抄袭;按时完成,不得延期。交课程设计材料(计算说明书与图纸)时必须通过指导教师的考核,不得代交。计算说明书应包括:计算目的、已知条件、变量说明、计算结果及说明(分析)等,其中动力学计算应有受力分析图,曲线图应标明坐标及单位。所绘图纸应符合工程图纸规范要求。

二设计任务 4110柴油机总体方案设计 1. 技术参数 机型:立式,直列,水冷,四冲程,废气涡轮增压、中冷燃烧室型式:直喷式 气缸直径:110mm 活塞行程:125mm(曲柄半径:62.5mm) 缸数:4 发火顺序:1-3-4-2 压缩比:17 标定功率(kW)/转速(r/min):140/2300 最大扭矩(N.m)/转速(r/min): 640/1450~1550 外特性最低燃油耗率(g/kW.h):200 标定工况燃油耗率(g/kW.h):210 机油耗率(g/kW.h):≤1.0 调速率:≤8% 怠速(r/min): 750 曲轴旋转方向(从前端看):顺时针 气门间隙(冷态):进气门0.3~0.4,排气门0.4~0.5 冷却方式:强制水冷 润滑方式:压力、飞溅复合式 启动方式:电启动 配气定时:进气门开,上止点前20oCA;进气门关,下止点后43oCA排气门开,下止点前60oCA;排气门关,上止点后20oCA 供油提前角:上止点前18±2oCA 2. 其他有关数据 活塞质量:1.32kg 活塞销质量:0.58kg 活塞环总质量:0.088kg 连杆大头质量(直开口/斜开口, kg): 1.89/1.98 连杆小头质量(kg):0.704 连杆长度L(mm):210 曲柄销直径:70mm 曲柄销长度:40mm 主轴颈直径:85mm 主轴颈长度(非止推挡):36mm 曲柄臂厚度:28mm 曲柄臂宽度:126mm

结构健康监测

结构健康监测 【结构健康监测】是指对工程结构实施损伤检测和识别。我们这里所说的损伤包括材料特性改变或结构体系的几何特性发生改变,以及边界条件和体系的连续性,体系的整体连续性对结构的服役能力有至关重要的作用。结构健康监测涉及到通过分析定期采集的结构布置的传感器阵列的动力响应数据来观察体系随时间推移产生的变化,损伤敏感特征值的提取并通过数据分析来确定结构的健康状态。对于长期结构健康监测,通过数据定期更新来估计结构老化和恶劣服役环境对工程结构是否有能力继续实现设计功能。监测简介 监测起源 长期以来,我们一直使用针对质量的不连续的方法来评估结构是否有能力继续服役以实现设计目的。从19世纪初开始,列车员借助小锤通过听锤击铁轨的声音来确定是否存在损伤。在旋转机械行业,几十年来振动监测一直作为检测手段。在过去的十到十五年里,结构健康监测技术开始兴起并产生一个联合不同工程学科分支的新的领域,而且专注于这个领域的学术会议和科学期刊开始产生。因此这些技术变得更为常见。 识别算法 结构健康监测的问题可归入数据模式识别算法的范畴[3-4] 。这个算法可分解为四部分:(1)实用性评估,(2)数据采集和提纯,(3)特征提取和数据压缩,(4)统计模型的发展。当你试图将此算法应用于实际工程结构上获取的数据时,很明显的是,第2-4部分,即数据提纯、压缩、正规化和数据融合来贴近工程实际服役环境是非常关键的环节,我们可通过硬件、软件以及二者的有机结合来实现。 实用性评估 对于健康监测对结构的损伤识别能力,实用性评估涉及到四个方面:

(1)结构健康监测的应用对于生命安全和经济效益有什么好处, (2)怎样对结构进行损伤定义,多重损伤同时存在的可能性,哪种类型最值得关注, (3)什么条件下(不同用途、不同环境)的体系需要监测 (4)使用过程中采集数据的局限性 使用环境对监测的体系和监测过程的完成形成限制条件。这种评估开始将损伤识别的过程和损伤的外部特征联系起来,当然也用到独特的损伤特征来完成检测。 数据采集和提纯 结构健康监测的数据采集部分涉及到选择激励方法、传感器类型、数量和布置,以及数据采集、存储、传输设备。经济效益是选择方案一个重要的参考因素,采样周期是另一个不可忽视的因素。因为数据可在变化的环境中获取,将这些数据正规化的能力在损伤识别过程中变得非常重要。当应用于结构健康监测时,数据正规化是一个分离出由于环境或操作而导致的传感器测得的不准确的数值。最常见的方法是通过测量输入参数来正规化测得的响应。当环境或操作影响比较显著时,我们需要来对比相似时间段的数据或对应的操作周期。数据的不 稳定性的来源需要认识到并把它对系统监测的影响降到最低。总的来说,不是所有的影响因素都可以消除,因此,我们有必要才去适当的措施来确保这些无法消除的因素对监测系统的影响作用大小。数据的不稳定性会因为变化的环境因素、测试条件以及测试的不连续性而加剧。 数据提纯是一个筛选部分有价值数据以完成传递的过程,与特征提取的过程相反。数据提纯很大程度上基于个人相关数据采集的经验。举例来说,通过检查测试设备的安装或许会发现某个传感器的固结已经松动,因此基于个人经验可以在数据

机械原理习题及答案要点

兰州2017年7月4日于家属院复习资料 第2章平面机构的结构分析 1.组成机构的要素是和;构件是机构中的单元体。 2.具有、、等三个特征的构件组合体称为机器。 3.从机构结构观点来看,任何机构是由三部分组成。 4.运动副元素是指。 5.构件的自由度是指;机构的自由度是指。 6.两构件之间以线接触所组成的平面运动副,称为副,它产生个约束,而保留个自由度。 7.机构具有确定的相对运动条件是原动件数机构的自由度。 8.在平面机构中若引入一个高副将引入______个约束,而引入一个低副将引入_____个约束,构件数、约束数与机构自由度的关系是。 9.平面运动副的最大约束数为,最小约束数为。 10.当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运动副引入的约束至多为,至少为。 11.计算机机构自由度的目的是______。 12.在平面机构中,具有两个约束的运动副是副,具有一个约束的运动副是副。 13.计算平面机构自由度的公式为F=,应用此公式时应注意判断:(A)铰链,(B)自由度,(C)约束。 14.机构中的复合铰链是指;局部自由度是指;虚约束是指。 15.划分机构的杆组时应先按的杆组级别考虑,机构的级别按杆组中的级别确定。 16.图示为一机构的初拟设计方案。试: (1〕计算其自由度,分析其设计是否合理?如有复合铰链,局部自由度和虚约束需说明。 (2)如此初拟方案不合理,请修改并用简图表示。 题16图题17图 17.在图示机构中,若以构件1为主动件,试: (1)计算自由度,说明是否有确定运动。

(2)如要使构件6有确定运动,并作连续转动,则可如何修改?说明修改的要点,并用简图表示。18.计算图示机构的自由度,将高副用低副代替,并选择原动件。 19.试画出图示机构的运动简图,并计算其自由度。对图示机构作出仅含低副的替代机 构,进行结构分析并确定机构的级别。 题19图 题20图 20.画出图示机构的运动简图。 21. 画出图示机构简图,并计算该机构的自由 度。构件3为在机器的导轨中作滑移的整体构件,构件2在构件3的导轨中滑移,圆盘1的固定轴位于偏心处。 题21图 题22图 22.对图示机构进行高副低代,并作结构分析,确定机构级别。点21,P P 为在图示位置时,凸轮廓线在接触点处的曲率中心。 第3章 平面机构的运动分析 1.图示机构中尺寸已知(μL =0.05m/mm ,机构1沿构件4作纯滚动,其上S 点的速度为v S (μV =0.6m/S/mm)。 (1)在图上作出所有瞬心; (2)用瞬心法求出K 点的速度v K 。

健康监测系统设计方案

天津市海河大桥结构健康监测系统初步设计方案 天津市市政工程研究院 2009年3月

天津市海河大桥结构健康监测系统初步设计方案 1桥梁健康监测的必要性 由于气候、环境等自然因素的作用和日益增加的交通流量及重车、超重车过桥数量的不断增加,大跨度桥梁结构随着桥龄的不断增长,结构的安全性和使用性能必然发生退化。自1940年美国Tacoma悬索桥发生风毁事故以后,桥梁结构安全监测的重要性就引起人们的注意。但是受科技水平的限制和人们对自然认识的局限性,早期的监测手段比较落后,在工程应用上一直没有得到很好的发展。20世纪80年代以来,在北美、欧洲和亚洲的一些国家和地区,相继发生了桥梁结构的突然性断裂事件,这些灾难性事故不仅引起了公众舆论的严重关注,也造成国家财产的严重损失,威胁到人民生命安全。国外从20世纪80年代中后期开始建立各种规模的桥梁健康监测系统。例如,英国在总长522mM的三跨变高度连续钢箱梁桥Foyle桥上布设传感器,监测大桥运营阶段在车辆与风荷载作用下主梁的振动、挠度和应变等响应,同时监测环境风和结构温度场。国外建立健康监测的典型桥梁还有英国主跨194mM的Flintshire独塔斜拉桥、日本主跨为1991mM 的明石海峡大桥和主跨1100m的南备赞濑户大桥、丹麦主跨1624m的Great Belt East悬索桥、挪威主跨为530m的Skarnsunder斜拉桥、美国主跨为440m的Sunshine Skyway Bridge斜拉桥以及加拿大的Confederatio Bridge桥。中国自20世纪90年代起也在一些大型重要桥梁上建立了不同规模的长期监测系统,如香港的Lantau Fixed Crossing和青马大桥、内地的虎门大桥、徐浦大桥,江阴长江大桥等在施工阶段已安装健康监测用的传感设备,以备运营期间的实时监测。 导致桥梁结构发生破坏和功能退化的原因是多方面的,有些桥梁的破坏是人为因素造成的,但大多数桥梁的破坏和功能退化是自然因素造成的。自然原因中,循环荷载作用下的裂缝失稳扩展是造成许多桥梁结构发生灾难性事故的主要原因。近年来,国内发生的几起大桥坍塌或局部破坏事故在很大程度上是由于构件疲劳和监测养护措施不足,从而严重影响构件的承重能力和结构的使用,进而发生事故。理论研究和经验都表明,成桥后的结构状态识别和桥梁运营过程中的损伤检测,预警及适时维修,有助于从根本上消除隐患及避免灾难性事故的发生。 现代大跨桥梁设计方向是更长、更轻柔化、结构形式和功能日趋复杂化。虽然在设计阶段已经进行了结构性能模拟实验等科研工作,然而由于大型桥梁的力学和结构特点以及所处的特定气候环境,要在设计阶段完全掌握和预测结构在各种复杂环境和运营条件下的结构特性和行为是非常困难 的。为确保桥梁结构的结构安全、实施经济合理的维修计划、实现安全经济的运行及查明不可接受的响应原因,建立大跨桥梁结构健康监测系统是非常必要的。通过健康监测发现桥梁早期的病害,能大大节约桥梁的维修费用,避免出现因频繁大修而关闭交通所引起的重大经济损失。 桥梁健康监测就是通过对桥梁结构进行无损检测,实时监控结构的整体行为,对结构的损伤位置和程度进行诊断,对桥梁的服役情况、可靠性、耐久性和承载能力进行智能评估,为大桥在特殊气候、交通条件下或桥梁运营状况严重异常时触发预警信号,为桥梁的维修、养护与管理决策提供依据和指导。安装结构健康监测系统是提高桥梁的养护管理水平,保证桥梁安全运营的高效技术手段。 特别值得一提的是,桥梁的健康监测和施工监控系统均是通过检测和监测手段,测试桥梁结构的内力、变形、环境和荷载,因此,它们在传感器系统、数据传输系统和数据采集系统都具有很大的共享性和重复性。此外,两个阶段在时间顺序上具有衔接性,施工监控阶段的监测数据是健康监测阶段的基础。为了节约资源、降低工程造价,应充分发挥两个系统的共享性,对上述两个系统进行统筹规划和实施,即采取统一设计、统一施工和统一管理的方式,以实现海河大桥的健康监测和施工监控两位一体的工程实施。 2海河大桥工程简况 集疏港公路二期中段工程起点于津沽一线立交以北,向北过津沽公路、海河大桥南侧收费站,与现状海河大桥相邻向北跨越海河后沿现状临港路、东海路向北分别跨越进港铁路一线,新港二号路,三号路,进港铁路二线,新港四号路,泰达大街,会展中心入口,第五大街,第八大街,第九大街,丰田七号路,与疏港二线立交相接。该段桩号范围K9+342.802~K20+419.245,路线全长11.076公里,除起点引路约500M和海河大桥南侧收费站前后各约300M为道路外,其余将近9.8公里均为高架桥。从南向北依次有津沽公路支线上跨分离式立交一座,海河特大桥一座,临港立交、泰达大街立交、第九大街立交互通式立交三座,其他与现状及规划道路交叉位置为直线上跨。海河特大桥工程为海滨大道工程的一部分,设计速度V=80km/h,双向八车道。

V2500航空发动机课程设计范文要点

航空工程学院 航空发动机综合课程设计 此范文仅供飞动1206班同学进行格式及内容模块参考实际课程设计的篇幅等具体要求以正式下发的通知要求为准 题目Failure of the HP Bleed Valve Closure Control Solenoid on Engine 1 1号发动机高压引气活门关断控制电磁阀故障 作者姓名 专业名称飞行器动力工程指导教师李梦副教授 提交日期答辩日期

航空发动机综合课程设计 目录 第一章V2500发动机概述 ..................................................................................................................... - 1 - 1.1 V2500发动机简介............................................................................................................................ - 1 - 1.2 V2500发动机结构............................................................................................................................ - 2 - 1.3 V2500发动机主要参数.................................................................................................................... - 3 - 第二章V2500空气系统 ......................................................................................................................... - 4 - 2.1 V2500空气系统概述........................................................................................................................ - 4 - 2.2 V2500空气系统结构........................................................................................................................ - 4 - 2.2.1 推进气流 ............................................................................................................................... - 4 - 2.2.2 涡轮间隙控制 ....................................................................................................................... - 4 - 2.2.3 压气机气流控制 ................................................................................................................... - 5 - 2.2.4 第四级轴承冷却 ................................................................................................................... - 7 - 2.2.5 风扇及核心机冷却 ............................................................................................................... - 7 - 第三章高压引气活门关断控制电磁阀故障分析 ................................................................................. - 9 - 3.1 发动机高压压气机引气气系统 ...................................................................................................... - 9 - 3.2 高压引气活门关断控制电磁阀故障分析....................................................................................... - 9 - 3.2.1 高压电磁引气阀关断控制故障 ......................................................................................... - 12 - 3.2.2 从高压引气活门关断控制电磁阀(4029KS)到EEC(4000KS)的接线故障 .......... - 13 - 3.2.3 EEC故障.............................................................................................................................. - 13 - 3.3故障树 ............................................................................................................................................. - 14 - 3.4排故步骤 ......................................................................................................................................... - 15 -参考文献 ....................................................................................................................................................... - 16 - 修改正文后请记得更新目录页码 同一级标题格式相同,对左边页边顶格书写,数字和汉字之间统一留1空或2空 同一标题下的数字编号方法要统一,例如:一级标题用一、二、三、<此为汉字顿号,占2个字符位>;二级标题用1、2、3、<此为汉字顿号,占2个字符位>;三级标题用(1)(2)(3)<此为汉字扩号>、占2个字符位。注意目录页页码的格式是罗马字

桥梁结构健康监测

桥梁结构健康监测

目录 1. 桥梁结构健康监测的概念 0 2. 桥梁结构健康监测系统 0 2.1. 监测内容 0 2.2. 数据传输 (1) 2.3. 数据分析处理和控制 (2) 2.4. 大型桥梁结构健康监测系统 (2) 2.5. 桥梁结构健康监测的现状与发展方向 (3) 3. 桥梁结构健康监测系统的意义 (4) 3.1. 桥梁结构健康监测系统的主要作用包括: (4) 3.2. 桥梁健康监测意义 (4) 4. 现有桥梁结构监测系统存在的问题 (5) 5. 结语 (6)

桥梁结构健康监测 1.桥梁结构健康监测的概念 交通是社会的经济命脉,桥梁是交通的咽喉,交通不畅会制约社会的经济发展,所以保障桥梁的功能性、耐久性,尤其是安全性至关重要。为保证桥梁安全运行、避免严重事故发生,对桥梁结构进行健康监测应运而生,桥梁结构健康监测是以科学的监测理论与方法为基础,采用各种适宜的检验、检测手段获取数据,为桥梁结构设计方法、计算假定、结构模型分析提供验证;对结构的主要性能指标和特性进行分析,及早预见、发现和处理桥梁结构安全隐患和耐久性缺陷,诊断结构突发和累计损伤发生位置与程度,并对发生后果的可能性进行判断与预测。通过对桥梁结构健康状态的监测与评估,为桥梁在各种气候、交通条件下和桥梁运营状况异常时发出预警信号,为桥梁维护、维修与管理措施提供依据,并通过及时采取措施达到防止桥梁坍塌、局部破坏,保障和延长桥梁的使用寿命的目的。 2.桥梁结构健康监测系统 2.1.监测内容 数据采集与测量的内容主要为:变形(沉降、位移、倾斜)、应力、动力特性、温度、外观检测等。 1)变形监测 采取适宜的测量手段,对桥梁主体结构关键部位的沉降、位移、倾斜量进行监测。常用监测变形的方法有:导线测量法、几何水准测量法、GPS测定三维位移量法、自动极坐标实时差分测量法和自动全站仪三维坐标非接触量测等。 2)应力监测 桥梁运营状态中主体结构的应力变化是由于主体结构的外部条件和内部状态变化引起

工技大飞机结构习题

一、判断题(正确的请打√,错误的请打×) 1.飞机在不稳定气流中飞行时的外载荷主要受到水平与垂直突风的影响,其中水平突风对升力产生明显的影响。(×) 2.由蒙皮和桁条传给翼肋的力可以合成一个垂直向上的合力△Q,它作用在压力中心上,而压力中心与刚心通常是重合的。(×) 3.机身的隔框可分为普通隔框和加强隔框两种,普通隔框的功用是形成与保持机身外形、提高蒙皮的稳定性以及承受局部空气动力;加强隔框除了具有普通隔框的功用外,主要是承受和传递某些大部件传来的集中载荷(√) 4. 现代飞机一般都采用腹板式翼梁,它由缘条和腹板等组成。主要功用是承受弯矩和 剪力,为了减轻机翼结构重量,梁的缘条和腹板的截面积一般都是沿展向逐渐变小。 (√) 5. 桁梁式机身由几根较强的大梁、弱的桁条、较薄的蒙皮和隔框组成,机身弯曲时, 弯矩引起的轴向力主要由大梁承受。(√) 6. 增压空气压力对旅客机机身结构形成了较大的增压载荷,增压载荷不具有重复载荷 的性质,不会影响到机身结构的疲劳寿命。(×) 7. 油气式减震器主要利用气体的压缩变形吸收撞击动能,利用油液高速流过小孔的摩 擦消 耗能量。(√) 8. 机轮滚动时接触面前半部压力增大,后半部压力减小,地面反压力的合力必然向前 偏移而形成机轮的滚动阻力Pe。(×) 9. 飞机在垂直平面内作曲线飞行时,作用于飞机的外力是升力、重力、推力和阻力, 近似认为这些力都是通过飞机的重心且相互平衡,即: Y0=G ; P0=XO 。(×)10.飞机的安全系数越大,说明飞机的结构强度越富裕,但它对飞机的结构重量和飞行性能没有明显的影响。(×) 11. 梁式机翼主要受力构件是翼梁,具有便于开舱口,生存力较强的特点,但与机身连 接比较复杂。(×) 12. 在飞行中机身表而虽然也要承受局部空气动力,但与机翼相比,机身的大部分表面 承受的局部空气动力较小,并且局部空气动力是沿横截面周缘大致对称分布的,基本上能自相平衡而不再传给机身的其他部分。(√)

航空发动机结构设计中可装配性案例分析

航空发动机结构设计中可装配性案例分析 摘要:航空发动机零部件数目繁多,结构复杂,精度及性能要求高,型号规格相似,在生命周期内需要多次装配、分解及维修,且为手工装配,工作量大,错装、漏装现象容易发生。因此,对于航空发动机这种高度复杂的产品,除了应当完善严格的工艺规划、装配操作与流程管理外,更应当在设计初期对产品的可装配性进行分析,总体上提高产品质量和可靠性,降低成本,缩短发动机的开发和制造周期。 关键词:航空;发动机;结构设计;可装配性;案例 1分组设计 在航空发动机压气机转子设计中,后几级叶片通常采用环形燕尾榫头固定,即在轮缘上车出 1 个环形燕尾槽安装叶片,使加工简单,装配方便。考虑到叶片在工作中受热膨胀以及为了有利于安装分解,叶片榫头与鼓筒榫槽设计为间隙配合,为防止工作状态叶片甩开后,缘板出现周向碰摩或较大串动,静态装配时要求叶片周向总间隙 M 在合理范围内。 叶片首次装配或更换新叶片后,通常会出现总间隙M 小于规定要求的情况,操作者会将最后 1 个叶片(不带锁紧槽的叶片)暂时不装,将安装的叶片手动排除活动间隙后,用卡尺测量空缺位置的缘板间隙,比对最后 1 个安装叶片的缘板宽度,计算二者差值,即为装配工序留 给加工修磨工序的修磨值,通过修磨值确定对 1 片或多片叶片进行修磨。目前设计要求为:如果装配后不能满足总间隙 M 的要求,允许修磨叶片缘板的 2 个周向侧面,但每边叶片修磨量有上限要求。有时会发生叶片修磨过量,导致叶片修磨后仍无法满足要求,需要更换叶片进行重新修磨,造成叶片的损坏或浪费。 2非均布设计 在某型发动机设计中,4 支点轴承外环安装在高压涡轮后轴颈内,轴向用 4 支点轴承螺母紧固,采用锁紧环防松方法。锁紧环安装在轴承螺母径向安装槽内,通过锁紧环上的定位销插入高压涡轮后轴颈和轴承螺母周向同一个卡槽内防松。其中,高压涡轮后轴颈后端面和轴承螺母后端周向均布 12 个卡槽。要求轴承螺母拧紧至一定的力矩(1193~1342N m)后,用锁紧环锁紧。在实际装配中,在规定的力矩范围内,高压涡轮后轴颈后端面和轴承螺母后端的卡槽只有 1 次机 会重合,或者 12 个槽全部对上,或者 1 个也对不上,旋转角度需为360°÷12÷1=30°,每次都需采用修磨螺母端面的方法解决,既损坏机件连接性能,又耗费人力物力。而在 CFM56 系列发动机类似设计中,高压涡轮后轴颈后端面周向均布 12 个卡槽,而轴承螺母后端面周向均 布 11 个卡槽,螺母旋转 1 周,有 11 次机会可以对正锁紧,旋转角度只需为 360°÷12÷11=2.73°,这样可使力矩范围更窄,也能 1 次对正成功。 3防错设计

机械设计习题及答案

机械设计习题及答案 第一篇总论 第一章绪论 一.分析与思考题 1-1 机器的基本组成要素是什么 1-2 什么是零件什么是构件什么是部件试各举三个实例。 1-3 什么是通用零件什么是专用零件试各举三个实例。 第二章机械设计总论 一.选择题 2-1 机械设计课程研究的内容只限于_______。 (1) 专用零件的部件 (2) 在高速,高压,环境温度过高或过低等特殊条件下工作的以及尺寸特大或特小的通用零件和部件 (3) 在普通工作条件下工作的一般参数的通用零件和部件 (4) 标准化的零件和部件 2-2 下列8种机械零件:涡轮的叶片,飞机的螺旋桨,往复式内燃机的曲轴,拖拉机发动机的气门弹簧,起重机的起重吊钩,火车车轮,自行车的链条,纺织机的纱锭。其中有_____是专用零件。 (1) 3种 (2) 4种 (3) 5种 (4) 6种

2-3 变应力特性可用σmax,σmin,σm, σa, r 等五个参数中的任意_____来描述。 (1) 一个 (2) 两个 (3) 三个 (4) 四个 2-4 零件的工作安全系数为____。 (1) 零件的极限应力比许用应力 (2) 零件的极限应力比零件的工作应力 (3) 零件的工作应力比许用应力 (4) 零件的工作应力比零件的极限应力 2-5 在进行疲劳强度计算时,其极限应力应为材料的____。 (1) 屈服点 (2) 疲劳极限 (3) 强度极限 (4) 弹性极限 二.分析与思考题 2-1 一台完整2-3 机械零件主要有哪些失效形式常用的计算准则主要有哪些 2-2 机械零件主要有哪些失效形式常用的计算准则主要有哪些 2-3 什么是零件的强度要求强度条件是如何表示的如何提高零件的强度 2-4 什么是零件的刚度要求刚度条件是如何表示的提高零件刚度的措施有哪些 2-5 机械零件设计中选择材料的原则是什么 2-6 指出下列材料的种类,并说明代号中符号及数字的含义:HTl50,ZG230-450,2-7 机械的现代设计方法与传统设计方法有哪些主要区别 第三章机械零件的强度

相关文档
最新文档