一元一次不等式的应用压轴题精选2
专题08 一元一次不等式组的应用【2022春人教版七下数学压轴题突破专练】(原卷版)
【2022春人教版七下数学压轴题突破专练】专题08 一元一次不等式组的应用一.选择题1.(2021•台湾)美美和小仪到超市购物,且超市正在举办摸彩活动,单次消费金额每满100元可以拿到1张摸彩券.已知美美一次购买5盒饼干拿到3张摸彩券;小仪一次购买5盒饼干与1个蛋糕拿到4张摸彩券.若每盒饼干的售价为x元,每个蛋糕的售价为150元,则x的范围为下列何者?()A.50≤x<60 B.60≤x<70 C.70≤x<80 D.80≤x<90 2.(2021春•西平县期末)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少12元.”乙说“至多10元.”丙说“至多8元.”小明说:“你们三个人都说错了.”则这本书的价格x(元)所在的范围为()A.8<x<10 B.9<x<11 C.8<x<12 D.10<x<12 3.(2020•台湾)如图为小丽和小欧依序进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过300公斤时警示音响起,且小丽、小欧的重量分别为50公斤、70公斤.若小丽进入电梯前,电梯内已乘载的重量为x公斤,则所有满足题意的x可用下列哪一个不等式表示?()A.180<x≤250 B.180<x≤300 C.230<x≤250 D.230<x≤300 4.(2020春•丛台区校级期末)把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生()A.11人B.12人C.11或12人D.13人5.(2020•游仙区模拟)为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A、B两种园艺造型共50个摆放在校园内,已知搭配一个A种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种()A.2 B.3 C.4 D.5 6.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89 7.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种二.填空题8.(2021春•綦江区期末)按图中程序计算,规定:从“输入一个值x”到“结果是否≥17”为一次程序操作,如果程序操作进行了两次才停止,则x的取值范围为.9.(2021春•兖州区期末)现有一批学生住若干间宿舍,若每间住4人还余19人,若每间住6人将有一间宿舍不满不空,则学生人数最多有人.10.(2021春•江汉区期末)把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,那么这些书共有本.11.(2019•雨花区校级开学)有学生若干人,住若干间宿舍,若每间住5人,则有14人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为.12.(2019春•武邑县校级月考)某班男女同学分别参加植树劳动,要求男女同学各种8行树,男同学种的树比女同学种的树多,如果每行都比预定的多种一棵树,那么男女同学种树的数目都超过100棵;如果每行都比预定的少种一棵树,那么男女同学植树的数目都达不到100棵.这样原来预定男同学种树棵;女同学种树棵.13.(2012春•和平区校级期末)某次知识竞赛共有20道题,每答对一题得5分,答错或不答的题都扣3分.小亮获得二等奖(70~90分),则小亮答对了道题.14.临近中秋,某超市发起限时抢购散装月饼活动,规定中秋节前一天价格打九折,中秋节当天价格打八折,其余时间不打折,今天中午(非打折时间)王老师在该超市选购甲、乙、丙三种月饼,他发现2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在中秋节当天的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在中秋节前一天的总价的,且4千克甲中秋节前一天的总价不低于65元,也不超过100元,如果三种月饼每千克的价格均为正整数,则王老师买2千克甲,1千克乙,1千克丙共付款元.15.(2017春•鄂城区期末)六一儿童节到了要把一些苹果分给几个小朋友,如果每人分3个,则剩8个;如果每人分5个,那么最后一个小朋友就分不到3个,则共有个小朋友.16.(2017春•肥城市期中)某货运公司准备用8辆车运送某种物资,要求每辆车运送的货物质量相同,若按每辆车运送的货物比预定数多1吨,则总数会超过100吨;若按每辆车运送的货物比预定数少1吨,则总数不足90吨,那么预定每辆车分配的吨数是(每辆车分配的吨数为整数).17.(2016春•随县期末)有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为人.三.解答题18.(2021春•西乡县期末)列不等式(组)解应用题:一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.19.(2021春•原州区期末)某希望小学收到捐赠的一批图书,要分给同学,让他们带回家方便阅读,读完后再交换给其他同学阅读.如果每名同学分3本,那么余8本;如果前面的每名同学分5本,那么最后一名同学就分不到3本.捐赠的这批书有多少本?共有多少名同学?20.(2021春•绵阳期末)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?说明理由.21.(2021春•射洪市期末)6月22日,2021年(第十八届)世界品牌大会在北京召开,沱牌舍得集团连续18年入选中国500最具价值品牌,位列品牌榜108位.为加快复工复产,沱牌舍得集团需运输一批物资,据调查得知,2辆大货车与3辆小货车一次可以运输物资600箱;5辆大货车与6辆小货车一次可以运输物资1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?22.(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?23.(2021•黄冈模拟)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案的费用最低?最低费用为多少元?24.(2021•罗湖区校级模拟)某汽车销售公司经销某品牌A,B两款汽车,今年一、二月份销售情况如下表所示:(A,B两款汽车的销售单价保持不变)销售数量(辆)销售额(万元)A款B款一月份 3 1 35二月份 1 3 33(1)求A,B两款汽车每辆售价分别多少万元?(2)若A款汽车每辆进价为8万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,请确定a的取值,并说明理由.25.(2021春•饶平县校级期末)在我市中小学标准化建设工程中,某学校计划购进一批电脑和一体机,经过市场考察得知,购进1台笔记本电脑和2台一体机需要3.5万元,购进2台笔记本电脑和1台一体机需要2.5万元.(1)求每台笔记本电脑、一体机各多少万元?(2)根据学校实际,需购进笔记本电脑和一体机共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出几种购买方案,哪种方案费用最低.26.(2021春•柳南区校级期末)某服装店老板到厂家选购A、B两种型号的服装,如果购进A种型号服装9件,B种型号服装10件,就需要1810元;如果购进A种型号服装12件,B种型号服装8件,就需要1880元.问题:(1)求A、B两种型号的服装每件分别为多少钱?(2)已知销售1件A种型号服装可获利18元,销售B种型号服装可获利30元.根据市场需求,服装店老板的决定,购进A种型号服装的数量要比B种型号服装数量的2倍多4件,且A种型号服装最多购进28件,这样服装全部售出后,可使总的获利不少于732元.问有几种进货方案?27.(2020春•惠东县期末)某旅店有两种客房,甲种客房每间可安排4位客人入住,乙种客房每间可安排3位客人入住.如果将某班男生都安排到甲种客房,将有一间客房住不满;若都安排到乙种客房,还有2人没处住.已知该旅店两种客房的数量相等,求该班男生人数.28.(2019•河池一模)随着新能源汽车的发展,某公交公司将用新能源公交车淘汰某一条线路上“冒黑烟”较严重的燃油公交车,计划购买A型和B型新能源公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需300万元;若购买A型公交车2辆,B型公交车1辆,共需270万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1000万元,且确保这10辆公交车在该线路的年均载客量总和不少于900万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?。
期末必刷题(压轴题,10种题型)—2023-2024学年七年级数学下学期期末(苏科版)(解析版)
期末必刷题(压轴题,35题10种题型)【考试题型1】二元一次方程组的应用1.(23-24八年级上·四川成都·期末)“沉睡数千年,一醒惊天下”,三星堆遗址出土的文物再现了古蜀文明的辉煌景象.某校组织师生共480人开展三星堆博物馆研学活动.该校计划向运输公司租用A,B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则还有15人没有座位.(1)求A,B两种车型各有多少个座位?(2)若要求租用的每辆客车都坐满,那么共有多少种租车方案?并列出所有的租车方案.2.(23-24七年级上·四川成都·期末)一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)该市政府决定甲、乙、丙三种车型至少两种车型参与运送,己知它们的总辆数为18辆,请通过列方程组的方法分别求出三种车型的数量.【答案】(1)需甲车型8辆,需车型10辆;(2)方案一:甲车型12辆,乙车型0辆,丙车型6辆;方案二:甲车型10辆,乙车型5辆,丙车型3辆;方案三:甲车型8辆,乙车型10辆,丙车型0辆.【分析】本题考查了二元一次方程组和三元一次方程的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.(1)设需甲车x辆,乙车y辆,根据运费600元,总吨数是120,列出方程组,再进行求解即可;(2)设甲车有x辆,乙车有y辆,则丙车有z辆,列出等式,再根据x、y、z均为非负整数,求出x,y,z 的值,从而得出答案.【详解】(1)解:设需甲车型x辆,乙车型y辆,根据题意,得:{5x+8y=120300x+400y=6400,解得:{x=8y=10,答:需甲车型8辆,需车型10辆;(2)解:甲车型x辆,乙车型y辆,丙车型z辆,根据题意,得:{x+y+z=185x+8y+10z=120,消去z得5x+2y=60,∴x=12−25y,因x,y是非负整数,且不大于18,得y=0,5,10,15,则x=12,10,8,6;又z是非负整数,解得z=6,3,0,∴{x=12y=0z=6或{x=10y=5z=3或{x=8y=10z=0,∴共有三种运送方案:方案一:甲车型12辆,乙车型0辆,丙车型6辆;方案二:甲车型10辆,乙车型5辆,丙车型3辆;方案三:甲车型8辆,乙车型10辆,丙车型0辆.3.(23-24八年级上·山东青岛·期末)“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,电动自行车驾驶人和乘坐人员应当戴安全头盔.某商场欲购进一批安全头盔,已知购进2个甲种型号头盔和5个乙种型号头盔需要390元;购进4个甲种型号头盔和3个乙种型号头盔需要360元.(1)甲,乙两种型号头盔的进货单价分别是多少?(2)若该商场分别以55元/个、80元/个的价格销售完甲,乙两种型号的头盔共200个,请写出销售收入Q (元)与销售的甲种型号头盔的数量m (个)之间的函数关系式;(3)在(2)的条件下,商场销售该批头盔的利润能否为3150元?若能,请写出相应的采购方案;若不能,请说明理由.【答案】(1)甲,乙两种型号头盔的进货单价分别45元和60元 (2)Q 与m 之间的函数关系式为Q =−25m +16000 (3)能,采购甲,乙两种型号头盔分别为85个和115个【分析】本题考查了二元一次方程组的应用,一次函数的应用,根据题意,找到等量关系,列出方程组和函数关系式是解题的关键.(1)设甲,乙两种型号头盔的进货单价分别是x 元和y 元,根据题意列二元一次方程组并求解即可; (2)根据销售收入=售价×数量,分别计算甲、乙两种型号的头盔销售收入并求和即为Q ;(3)根据销售利润=(售价−进价)×数量,分别计算甲、乙两种型号的头盔销售利润并求和就是总的销售利润,令其值为3150,若解得的值符合题意,说明商场销售该批头盔的利润可以达到元,并求出此时(200−m )的值,否则,则不能.【详解】(1)解:设甲,乙两种型号头盔的进货单价分别是x 元和y 元. 根据题意,得{2x +5y =3904x +3y =360 ,解得{x =45y =60 ,∴甲,乙两种型号头盔的进货单价分别45元和60元; (2)销售的乙种型号头盔的数量为(200−m )个, 根据题意,得Q =55m +80(200−m )=−25m +16000, ∴ Q 与m 之间的函数关系式为Q =−25m +16000; (3)能.采购方案如下:设商场销售该批头盔的利润为w 元,则w =(55−45)m +(80−60)(200−m )=−10m +4000, 当w =3150时,−10m +4000=3150, 解得:m =85,200−m=200−85=115(个),∴当采购甲,乙两种型号头盔分别为85个和115个.4.(23-24八年级上·山东枣庄·期末)第19届杭州亚运会2023年10月8日闭幕了,在亚运会期间某经销商销售带有“琮琮”吉祥物标志的甲、乙两种纪念品很畅销,该经销商用12400元一次性购进了甲、乙两种纪念品共200件.已知甲、乙两种纪念品的进价和售价如表:(1)该经销商一次性购进甲、乙两种纪念品各多少件?(2)在杭州亚运会开幕式当天销售完全部纪念品,则可获得利润为多少元?【答案】(1)甲种纪念品80件,乙种纪念品120件(2)6400元【分析】本题考查二元一次方程组的应用.找准等量关系,正确的列出方程组和代数式,是解题的关键.(1)该经销商一次性购进甲种纪念品各x件,乙种纪念品各y件,利用进货总价=进货单价×进货数量,结合该经销商用12400元一次性购进了甲、乙两种纪念品共200件,列二元一次方程组,解之即可得出结论;(2)利用总利润=每件销售利润×销售数量(进货数量),即可得出结论;【详解】(1)设该经销商一次性购进甲种纪念品各x件,乙种纪念品各y件,根据题意得:{x+y=20050x+70y=12400,解得:{x=80y=120答:该经销商一次性购进甲种纪念品80件,乙种纪念品120件;(2)甲种纪念品每件利润为(100−50)元,乙种纪念品每件利润为(90−70)元,根据题意得:(100−50)×80+(90−70)×120=50×80+20×120=4000+2400=6400(元)答:可获得利润为6400元.5.(23-24七年级上·福建厦门·期末)请你观察下列几种简单多面体模型,解答下列问题:(1)计算长方体棱数,可依据长方体有6个面,每个面均为四边形即有4条棱,得出总棱数为12;请你猜想多面体面数、形状、棱长之间的数量关系,完成以下计算:①如图所示,正八面体的每一个面都是三角形,则正八面体有__________条棱;②正十二面体的每一个面都是正五边形,则它共有__________条棱;(2)如下图,一种足球(可视作简单32面多面体)是由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,已知图中足球有90条棱;某体育公司采购630张牛皮用于生产这种足球,已知一张牛皮可用于制作30个正五边形或者制作20个正六边形,要使裁剪后的五边形和六边形恰好配套,应怎样计划用料才能制作尽可能多的足球?【答案】(1)12;30(2)用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.【分析】本题考查了几何体中点、棱、面之间的关系以及二元一次方程组的应用与整除问题,解题的关键是审清题意.(1)根据每一个面有三条棱,每二个面共用一条棱即可求解,即:棱数=面数×3÷2.(2)设一个足球有黑皮x块,白皮y块,根据二个面共用一条棱,结合题意可列方程组,求得每个足球黑皮块数与白皮块数;然后再设用于制作正五边形的需要m张,用于制作正六边形的需要n张,依据题意建立方程组,求得m与n的最大整数值,并检验是否符合题意即可得到答案.【详解】(1)解:①正八面体的每一个面都是三角形,则每一个面有三条棱,故八个面共有8×3=24条棱,但每两个面共用一条棱,因此正八面体棱数是:24÷2=12(条).②根据①的思路可知,正十二面体共有棱数:12×52=30(条).故答案为:12;30.(2)设一个足球有黑皮x 块,白皮y 块,根据题意得: {5x +6y =90×2x +y =32,解得:{x =12y =20设630张牛皮中,用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意得:{m +n ≤63030m 12=20n 20,解得:{m ≤180n ≤450(m 、n 为整数)m 、n 取最大的整数并经过检验知,m =180,n =450正好符合题意, ∴最多制作20n20=450(个)足球,且正好将630张牛皮全部用完.答:用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张. 【考试题型2】一元一次不等式(组)的应用 6.(23-24八年级上·浙江湖州·期末)【问题背景】小明所在的班级开展知识竞赛,需要去商店购买A 、B 两种款式的盲盒作为奖品.B 款【问题解决】(1)某商店在无促销活动时,求A 款盲盒和B 款盲盒的销售单价各是多少元?(2)小明计划在促销期间购买A 、B 两款盲盒共40个,其中A 款盲盒m 个(0<m <40),若在线下商店购买,共需要______元;若在线上淘宝店购买,共需要______元.(均用含m 的代数式表示)请你帮小明算一算,购买A 款盲盒的数量在什么范围内时,线下购买方式更合算?【答案】(1)某商店在无促销活动时,A 款盲盒销售单价为10元,B 款单价销售单价为8元(2)(1.6m +291),(1.8m +288);当购买A 款盲盒的数量超过15个且少于40个时,线下购买方式更合算 【分析】本题考查了二元一次方程组的应用,整式加减的应用,一元一次不等式的应用;(1)设A 款盲盒销售单价为x 元,B 款盲盒销售的单价为y 元,根据题意列出二元一次方程组,解方程,即可求解;(2)根据题意列出线下购买的费用的代数式和线上淘宝购买费用的代数式,即可求解;结合题意,列出一元一次不等式,解不等式,即可求解.【详解】(1)解:设某商店在无促销活动时,A 款盲盒销售单价为x 元,B 款盲盒销售的单价为y 元, 由题意得,{15x +10y =23025x +25y =450,解得{x =10y =8答:某商店在无促销活动时,A 款盲盒销售单价为10元,B 款单价销售单价为8元;(2)解:依题意,若在线下商店购买,共需要35+0.8×10m +0.8×8×(40−m )=1.6m +291(元) 若在线上淘宝店购买,共需要0.9×10m +0.9×8×(40−m )=1.8m +288(元) 当1.6m +291<1.8m +288 解得m >15, ∴15<m <40;答:当购买A 款盲盒的数量超过15个且少于40个时,线下购买方式更合算.7.(23-24七年级上·浙江杭州·期末)某校课后服务开设足球训练营,需要采购一批足球运动装备,市场调查发现每套队服比每个足球多60元,三套队服与五个足球的费用相等 (1)求足球的单价.(2)该训练营需要购买30套队服和y (y >10)个足球,甲、乙两商家以同样的价格出售所需商品,各自优惠方案不同:①按照以上方案到甲、乙商家购买装备各需费用多少?(用含有y 的代数式分别表示). ②请比较到哪个商家购买比较合算? 【答案】(1)足球的单价为90元;(2)①到甲商家购买装备所需费用:(4230+90y )元, 到乙商家购买装备所需费用:(4500+72y )元;② 当训练营需要购买30套队服和15个足球时,在甲乙两个商家所需费用一样多, 当训练营需要购买30套队服和超过15个足球时,在乙商家购买较合算, 当训练营需要购买30套队服和购买足球超过10个而不足15个时,在甲商家购买较合算.【分析】本题考查了一元一次方程的应用,一元一次不等式的应用,列代数式的应用,以及最优购物问题,找出题目中的等量关系是解题的关键.(1)设足球的单价为x元,则队服的单价为(x+60)元,根据题意“三套队服与五个足球的费用相等”,可得到等量关系,列方程求解即可;(2)①购买装备所需费用=买队服的费用+买足球的费用,用含有y的代数式表示即可;②由①中的结论,先求出当甲商家的消费=乙商家的消费时,再分情况比较哪个商家购买较合算.【详解】(1)解:设足球的单价为x元,则队服的单价为(x+60)元,根据题意得,3(x+60)=5x,解得x=90,答:足球的单价为90元;(2)①由(1)得足球的单价为90元,则队服的单价为90+60=150元,到甲商家购买装备所需费用:150×30+90(y−3)=4230+90y,到乙商家购买装备所需费用:150×30+90×80%y=4500+72y;②当甲商家的消费=乙商家的消费时,即4230+90y=4500+72y,解得y=15,∴当训练营需要购买30套队服和15个足球时,在甲乙两个商家所需费用一样多,当甲商家的消费>乙商家的消费时,即4230+90y>4500+72y,解得y>15,∴当训练营需要购买30套队服和超过15个足球时,在乙商家购买较合算,当甲商家的消费<乙商家的消费时,即4230+90y<4500+72y,解得y<15,又∵y>10,∴当训练营需要购买30套队服和购买足球超过10个而不足15个时,在甲商家购买较合算.8.(23-24八年级上·浙江绍兴·期末)嵊州是香榧的盛产地之一,某榧农与某快递公司合作寄送香榧.素材1:素材2:问题解决:【答案】(1)y=6x−28(x>10);(2)最省寄送费用是94元;(3)小红最多可以购买96kg香榧,寄送方式为9件10kg,1件6kg.【分析】本题考查一元一次方程和一元一次不等式的应用,根据题意列出方程或不等式求解是解题的关键.任务1:利用电子存单2或3的总费用和计量重量列出方程求出m,从而得解;任务2:根据总计量重量是25千克,设计方案求出总费用,比较大小即可;任务3:要尽可能的多寄送,则应该多寄10千克一件的,也就是一件少于10千克的,其余都是10千克,或者也就是一件10−20千克的,其余都是10千克,设小红购买的香榧一共分y件不超过10kg的寄送方式,根据总费用不超过8000元列出不等式,求出y的取值范围,继而求出y的最大值,计算购买9件10千克的香榧剩余的钱或8件10千克的香榧剩余的钱,再根据剩余的钱计算剩余的寄送的重量,从而得解.【详解】任务1:由电子存单2可得:m(12−10)+32=44,解得:m=6,∴香榧重量超过10千克时寄送费用y(元)关于香榧重量x(千克)之间的函数关系式为:y=6(x−10)+32= 6x−28(x>10)任务2:若单件寄送,则需寄费y=6×25−28=122元,若分两件寄送,则可使得每件都不少于10千克,例如一件10千克,一件15千克,需寄费32+15×6−28=94元,若分三件寄送,则可使得三件都少于10千克,,则需寄费32×3=96元,∴94<96<122,最省寄送费用是94元.任务3:∵前10千克的快递费是3.2元/千克,超过10千克的部分是6元/千克,∴设小红购买的香榧一共分y件10kg的寄送方式,由题意得,80×10y+32y≤8000,,解得y≤12513又∵y是正整数,∴y最大值为9,∴还剩下8000−80×10×9−32×9=512元,∵512=80×6+32∴9件10kg,余下的钱刚好能再购买并寄送6kg,故共可寄送96kg.若8件10kg的寄送的寄费为80×10×8+32×8=6656元,15×6−28+15×80=1262,6656+1262=7918<8000,16×6−28+16×80=1348,6656+1348=8004>8000,此时最多可寄送95kg.∴最省钱的寄送方式应该是9件不超过10kg的寄送,一件6kg寄送,∴小红最多可以购买10×9+6=96kg香榧,寄送方式为9件10kg,1件6kg.9.(23-24八年级上·浙江宁波·期末)随着梦天实验舱的顺利发射,我国空间站完成了在轨组装,为了庆祝这令人激动的时刻,某校开展了关于空间站的科学知识问答竞赛.为了奖励在竞赛中表现优异的学生,学校准备一次性购买A,B两种航天器模型作为奖品.已知购买1个A模型和1个B模型共需159元;购买3个A模型和2个B模型共需374元.(1)求A模型和B模型的单价.(2)根据学校的实际情况,需一次性购买A模型和B模型共20个,但要求购买A模型的数量多于12个,且不超过B模型的3倍.请你给出一种费用最少的方案,并求出该方案所需的费用.【答案】(1)56元,103元;(2)购买A模型15个,B模型5个,费用最少,该方案所需的费用为1355元.【分析】(1)设1个A模型的价格为x元,1个B模型的价格为y元,根据“购买1个A模型和1个B模型共需159元;购买3个A模型和2个B模型共需374元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A模型m个,则购买B模型(20-m)个,根据“购买A模型的数量多于12个,且不超过B模型的3倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各购买方案,利用总价=单价×数量可求出各方案所需费用,比较后即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.【详解】(1)解:设1个A模型的价格为x元,1个B模型的价格为y元,依题意得:{x+y=1593x+2y=374,解得:{x=56y=103.答:1个A模型的价格为56元,1个B模型的价格为103元.(2)设购买A模型m个,则购买B模型(20−m)个,依题意得:{m>12m≤3(20−m),解得:12<m≤15.又∵m为整数,∴m可以为13,14,15,∴共有3种购买方案,方案1:购买A模型13个,B模型7个,所需费用为56×13+103×7=728+721=1449(元);方案2:购买A模型14个,B模型6个,所需费用为56×14+103×6=784+618=1402(元);方案3:购买A模型15个,B模型5个,所需费用为56×15+103×5=840+515=1355(元).∵1449>1402>1355,∴方案3购买A模型15个,B模型5个费用最少,最少费用为1355元.10.(23-24九年级上·湖南邵阳·期末)某商场同时采购了A,B两种品牌的运动装,第一次采购A品牌运动装10件,B品牌运动装30件,采购费用为8600元;第二次只采购了B品牌运动装50件,采购费用为11000元.(1)求A ,B 两种品牌运动装的采购单价分别为多少元每件?(2)商家通过一段时间的营销后发现,B 品牌运动装的销售明显比A 品牌好,商家决定采购一批运动装,要求:①采购B 品牌运动装的数量是A 品牌运动装的2倍多10件,且A 品牌的采购数量不低于18件;②采购两种品牌运动装的总费用不超过15000元,请问该商家有哪几种采购方案?【答案】(1)A 种品牌运动装的采购单价为200元每件,B 种品牌运动装的采购单价为220元每件; (2)该商家共有3种采购方案,方案1:A 种品牌运动装采购18件,B 种品牌运动装采购46件; 方案2:A 种品牌运动装采购19件,B 种品牌运动装采购48件; 方案3:A 种品牌运动装采购20件,B 种品牌运动装采购50件.【分析】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键.(1)设A 种品牌运动装的采购单价为x 元每件,B 种品牌运动装的采购单价为y 元每件,根据题意列出二元一次方程组求解即可;(2)设A 种品牌运动装采购m 件,则B 种品牌运动装采购(2m +10)件,根据题意列出一元一次不等式组求解即可.【详解】(1)设A 种品牌运动装的采购单价为x 元每件,B 种品牌运动装的采购单价为y 元每件.根据题意,得:{10x +30y =860050y =11000,解得{x =200y =220答:A 种品牌运动装的采购单价为200元每件,B 种品牌运动装的采购单价为220元每件. (2)设A 种品牌运动装采购m 件,则B 种品牌运动装采购(2m +10)件. 根据题意,得:{200m +220(2m +10)≤15000m ≥18解得18≤m ≤20又∵m 为整数,m =18,19,20. ∴该商家共有3种采购方案,方案1:A 种品牌运动装采购18件,B 种品牌运动装采购46件; 方案2:A 种品牌运动装采购19件,B 种品牌运动装采购48件; 方案3:A 种品牌运动装采购20件,B 种品牌运动装采购50件.【考试题型3】由不等式组的解集求参数11.(22-23七年级下·湖南长沙·期末)已知关于x的不等式组{x+1>mx−1≤n(1)若上不等式组的解集与不等式组{1−2x<53x−12≤4的解集相同,求m+n的值;(2)当m=−1时,若上不等式组有4个非负整数解,求n的取值范围.【答案】(1)1(2)2≤n<3【分析】(1)分别求出不等式组{1−2x<53x−12≤4和不等式组{x+1>mx−1≤n的解,再根据两个不等式组的解集相同,即可得出m=−1,n=2,从而得出答案;(2)把不等式组{x+1>mx−1≤n的解集表示出来,根据4个非负整数解即可求出n的取值范围.【详解】(1)解:{x+1>m①x−1≤n②,解不等式①得,x>m−1,解不等式②得,x≤n+1,∴不等式组{x+1>mx−1≤n的解为:m−1<x≤n+1,{1−2x<5③3x−12≤4④,解不等式③得x>−2,解不等式④得x≤3,∴不等式组{1−2x<53x−12≤4的解为:−2<x≤3,∵不等式组{x+1>mx−1≤n的解集与不等式组{1−2x<53x−12≤4的解集相同,∴m−1=−2,n+1=3,∴m=−1,n=2,∴m+n=−1+2=1;(2)当m=−1时,由(1)可知不等式组{x+1>mx−1≤n的解集为:−2<x≤n+1∵不等式组有4个非负整数解,分别为0,1,2,3∴3≤n+1<4,∴2≤n<3.【点睛】本题考查了一元一次不等式组的整数解,解题的关键时熟练掌握解不等式组的方法.12.(22-23七年级下·河北秦皇岛·期末)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”,例如,方程2x−6=0的解为x=3,不等式组{x−2>0x<5的解集为2<x<5.因为2<3<5,所以称方程2x−6=0为不等式组{x−2>0x<5的“相伴方程”.(1)下列方程式不等式组{x+1>0x<2的“相伴方程”的是;(填序号)①x−1=0②2x+1=0③−2x−2=0(2)若关于x的方程2x−k=2是不等式组{3x−6>4−xx−1≥4x−10的相伴方程,求k的取值范围.【考试题型4】不等式组和方程组综合13.(22-23七年级下·江西宜春·期末)已知关于x ,y 的方程组{x −4y =2m −22x +y =m +5.(1)若该方程组的解满足x −y =2024,求m 的值; (2)若该方程组的解满足x ,y 均为正数,求m 的取值范围;(3)在(2)的条件下,若不等式(2m +1)x −2m <1的解为x >1,求m 的整数值.∴整数m 的值为−1,−2.【点睛】本题考查了二元一次方程组和一元一次不等式组,正确理解题意、熟练掌握解二元一次方程组和一元一次不等式组的方法是解题的关键.14.(22-23七年级下·安徽合肥·期中)阅读下列材料:已知x −y =2,且x >1,y <0,试确定x +y 的取值范围.有如下解法: 解:∵x −y =2,且x >1,∴y +2>1,又∵y <0, ∴−1<y <0…①同理得1<x <2…②. 由①+②得−1+1<x +y <0+2, ∴x +y 的取值范围是0<x +y <2.按上述方法完成下列问题:关于x ,y 的方程组{3x −y =2a −5x +2y =3a +3 的解都为正数.(1)求a 的取值范围;(2)已知a −b =4,且b <2,求a +b 的取值范围. 【答案】(1)a >1 (2)−2<a +b <8【分析】(1)先把方程组解出,再根据解为正数列关于a 的不等式组解出即可; (2)分别求a 、b 的取值范围,相加可得结论. 【详解】(1)解方程组{3x −y =2a −5x +2y =3a +3 ,得{x =a −1y =a +2, ∵方程组{3x −y =2a −5x +2y =3a +3的解都为正数,∴{a −1>0a +2>0 ,解得{a >1a >−2,∴a 的取值范围为a >1;(2)∵a −b =4,b <2,a >1, ∴b =a −4<2,a =b +4>1, ∴a <6,b >−3, ∴1<a <6,−3<b <2, ∴−2<a +b <8.【点睛】本题考查了二元一次方程组的解法及不等式组的解的应用,解答本题的关键是仔细阅读材料,理解解题过程.15.(22-23七年级下·安徽合肥·期中)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x−1=3的解为x=4,而不等式组{x−1>1 x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x−1=3是不等式组{x−1>1x−2<3的“关联方程”(1)在方程①3(x+1)−x=9;②4x−7=0;③x−12+1=x中,不等式组{2x−2>x−13(x−2)−x≤4的“关联方程”是______;(填序号)(2)若关于x的方程2x−k=6是不等式组{3x+12>xx−12≥2x+13−2的“关联方程”,求k的取值范围;(3)若关于x的方程x+72−3m=0是关于x的不等式组{x+2m2>mx−m≤2m+1的“关联方程”,且此时不等式组有4个整数解,试求m的取值范围【考试题型5】与整数乘法与因式分解有关的阅读理解问题16.(23-24八年级上·山东济宁·期末)阅读下面的材料学习完《第十四章整式的乘法与因式分解》,某校八年级数学兴趣小组探索了代数式3a2+6a−9的最值问题,具体过程如下:∵3a2+6a−9=3(a2+2a)−9=3(a2+2a+1−1)−9=3[(a+1)2−1]−9=3(a+1)2−3−9= 3(a+1)2−12,不论a取何值,(a+1)2≥0,当且仅当a=−1时等号成立.∴(a+1)2−12≥−12.∴代数式3a2+6a−9有最小值是−12.根据上面材料的信息,解决下列问题(1)求证:代数式a2−8a+10的最小值为−6.(2)判断代数式−2x2+12x−7有最大值还是最小值?并求出此时x的值.【答案】(1)见解析(2)有最大值,当x=3时,代数式−2x2+12x−7有最大值11【分析】此题考查配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】(1)证明:a2−8a+10=a2−8a+16−16+10=(a−4)2−6,不论a取何值,(a−4)2≥0,当且仅当a=4时等号成立.∴(a−4)2−6≥−6.∴a2−8a+10的最小值为−6.(2)解:代数式−2x2+12x−7有最大值.−2x2+12x−7=−2(x2−6x)−7=−2(x2−6x+9−9)−7=−2(x−3)2+11,不论x取何值,(x−3)2≥0,当且仅当x=3时等号成立.∴−2(x−3)2+11≤11,∴当x=3时,代数式−2x2+12x−7有最大值11.17.(23-24八年级上·陕西西安·期末)阅读下列材料:数学研究发现常用的因式分解的方法有提取公因式法、公式法,但还有很多的多项式只用上述方法无法分解,如:“m2−mn+2m−2n”,细心观察这个式子就会发现,前两项可以提取公因式,后两项也可提取公因式,前后两部分分别因式分解后产生了新的公因式,然后再提取公因式就可以完成整个式子的因式分解了,过程为m2−mn+2m−2n=(m2−mn)+ (2m−2n)=m(m−n)+2(m−n)=(m−n)(m+2).此种因式分解的方法叫做“分组分解法”.请在这种方法的启发下,解决以下问题:(1)因式分解:a3−3a2+6a−18;(2)因式分解:ax+a2−2ab−bx+b2.18.(23-24八年级上·湖北孝感·期末)阅读材料:若m−2mn+2n2−8n+16=0,求m,n的值.解:∵m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0,∵(m−n)2≥0,(n−4)2≥0∴{m−n=0n−4=0,∴n=4,m=4.请解答下面的问题:(1)已知x2+2xy+2y2−10y+25=0,求xy2的值;(2)已知△ABC的三边a,b,c的长都是互不相等的正整数,且满足a2+b2−4a−14b+53=0,求△ABC的最大边c的长;【答案】(1)−125(2)c=8【分析】本题主要考查完全平方公式及三角形的三边关系,熟练掌握完全平方公式及三角形的三边关系是解题的关键;(1)根据利用完全平方公式进行因式分解进行求解;(2)先利用完全平方公式及三角形的三边关系可进行求解.【详解】(1)解:∵x2+2xy+2y2−10y+25=0,∴x2+2xy+y2+y2−10y+25=0,∴(x+y)2+(y−5)2=0,∵(x+y)2≥0,(y−5)2≥0,∴x+y=0,y−5=0,∴x=−5,y=5,∴xy2=−5×52=−125;(2)解:∵a2+b2−4a−14b+53=0,∴(a−2)2+(b−7)2=0,∵(a−2)2≥0,(b−7)2≥0,∴a−2=0,b−7=0,∴a=2,b=7,∵△ABC的三边a,b,c的长都是互不相等的正整数,∴5<c<9,∴c=8.【考试题型6】平行线的性质与判定19.(23-24七年级上·河南南阳·期末)【课题学习】平行线的“等角转化”.如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.解:过点A作ED∥BC,∴∠B=,∠C=,又∵∠EAB+∠BAC+∠DAC=180°.。
七下数学每日一练:一元一次不等式组的应用练习题及答案_2020年压轴题版
七下数学每日一练:一元一次不等式组的应用练习题及答案_2020年压轴题版答案答案答案答案2020年七下数学:方程与不等式_不等式与不等式组_一元一次不等式组的应用练习题~~第1题~~(2019瑞安.七下期末) 某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A 种笔记本买20本,8本笔记本买30本,则钱还缺40元;若A 种笔记本买30本,B 种笔记本买20本,则钱恰好用完.(1) 求A ,B 两种笔记本的单价.(2) 由于实际需要,需要增加购买单价为6元的C 种笔记本若干本.若购买A ,B ,C 三种笔记本共60本,钱恰好全部用完.任意两种笔记本之间的数量相差小于15本,则C 种笔记本购买了本.(直接写出答案)考点: 二元一次方程组的应用-和差倍分问题;一元一次不等式组的特殊解;一元一次不等式组的应用;~~第2题~~(2019博白.七下期末) 某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.(1) 求每辆A 型车和B 型车的售价各为多少万元.(2) 甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,且A 型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?考点: 二元一次方程组的实际应用-鸡兔同笼问题;一元一次不等式组的应用;~~第3题~~(2019东海.七下期末) 某公司有A 、B 两种型号的客车共20辆,它们的载客量、每天的租金如表所示.已知在20辆客车都坐满的情况下,共载客720人.A 型号客车B 型号客车载客量(人/辆)4530租金(元/辆)600450(1) 求A 、B 两种型号的客车各有多少辆?(2) 某中学计划租用A 、B 两种型号的客车共8辆,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600元.①求最多能租用多少辆A 型号客车?②若七年级的师生共有305人,请写出所有可能的租车方案,并确定最省钱的租车方案.考点: 二元一次方程组的实际应用-鸡兔同笼问题;一元一次不等式组的应用;~~第4题~~(2019兴化.七下期末) 有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S .(1) 试探究该正方形的面积S 与S 的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2) 再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S .①试比较S ,S 的大小;②当m 为正整数时,若某个图形的面积介于S ,S 之间(不包括S ,S )且面积为整数,这样的整数值有且只有16个,求m 的值.考点: 整式的混合运算;一元一次不等式组的应用;~~第5题~~112121212答案(2019昭平.七下期中) 某体育用品商场采购员到厂家批发购进篮球和排球共100只,付款总额不得超过11800元,已知两种球厂家的批发价和商场的零售价如表,设商场采购员到厂家购买x 只篮球,试解答下列的问题:品名厂家批发价(元/只)商场零售价(元/只)篮球130160排球100120(1) 该采购员最多可购进篮球多少只?(2) 若商场把100只球全部售出,为使商场的利润不低于2580元,采购员有哪几种采购方案,哪种方案商场盈利最多?考点: 一元一次不等式的应用;一元一次不等式组的应用;2020年七下数学:方程与不等式_不等式与不等式组_一元一次不等式组的应用练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
第二章 一元一次不等式与一元一次不等式组B卷压轴题考点训练(原卷版)
第二章 一元一次不等式与一元一次不等式组B 卷压轴题考点训练1.如图,在Rt ABC △中,90304ACB B AC D Ð=°Ð=°=,,,为BC 上一动点,EF 垂直平分AD 分别交AC 于E 、交AB 于F ,则BF 的最大值为_______.2.如图,在平面直角坐标系中,若直线13y x a =+,直线25y bx =-+相交于点()1,2A ,则关于x 的不等式()35b x a +£-的解集是________.3.若关于x 的一元一次不等式组2013212x a x x ->ìïí+-<ïî无解,则a 的取值范围______.4.若关于x 的不等式组23123342x x a x -ì-<ïíï-<-î有且仅有3个整数解,a 的取值范围是_____.5.已知关于x ,y 的二元一次方程组325x y a x y a -=+ìí+=î的解满足x y >,且关于x 的不等式组212216x a x +<ìí-³î无解,那么所有符合条件的整数a 的个数为_______.6.如图,直线y x m =-+与()40y nx n n =+¹的交点的横坐标为2-.下列结论:①0m <,0n >;②直线4y nx n =+一定经过点()4,0-;③m 与n 满足22m n =-;④当2x >-时,4x m nx n -+>+.其中正确的有________.(只填序号)7.关于x 的一元一次方程235()13x k x k -=-+的解是正数,则k 的取值范围是_____.8.若关于x 和y 的二元一次方程组24232x y x y m -=ìí-=-+î,满足>0x y -,那么整数m 的最大值是______.9.若121x a x a >-ìí<+î有解,则a 的取值范围______.10.如图,在平面直角坐标系中,一次函数1y kx b =+()0k ¹的图象与x 轴交于点()5,0A ,与一次函数2223y x =+的图象交于点()3,B n .(1)求一次函数1y kx b =+()0k ¹的解析式;(2)C 为x 轴上点A 右侧一个动点,过点C 作y 轴的平行线,与一次函数1y kx b =+()0k ¹的图象交于点D ,与一次函数2223y x =+的图象交于点E .当3CE CD =时,求DE 的长;(3)直线y kx k =-经过定点()1,0,当直线与线段AB (含端点)有交点时k 的正整数值是 .11.某企业举办职工足球比赛,准备购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多60元,三套队服与五个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过60套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若购买100套队服和()10y y >个足球,请用含y 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?12.我校八年级组织“义卖活动”,某班计划从批发店购进甲、乙两种盲盒,已知甲盲盒每件进价比乙盲盒少5元,若购进甲盲盒30件,乙盲盒20件,则费用为600元.方案评价表方案等级评价标准评分合格方案仅满足购进费用不超额1分良好方案盲盒全部售出所得利润最大,且购进费用不超额3分优秀方案盲盒全部售出所得利润最大,且购进费用相对最少4分(1)求甲、乙两种盲盒的每件进价分别是多少元?(2)该班计划购进盲盒总费用不超过2200元,且甲、乙盲盒每件售价分别为18元和25元.①若准备购进甲、乙两种盲盒共200件,且全部售出,则甲盲盒为多少件时,所获得总利润最大?最大利润为多少元?②因批发店库存有限(如下表),商家推荐进价为12元的丙盲盒可供选择.经讨论,该班决定购进三种盲盒,其中库存的甲盲盒全部购进,并将丙盲盒的每件售价定为22元.请你结合方案评价表给出一种乙、丙盲盒购进数量方案.盲盒类型甲乙丙批发店的库存量(件)1007892进货量(件)100______________________13.如图,在平面直角坐标系中,直线34y x m =-+ 分别与 x 轴、y 轴交于点 B 、A ,其中B 点坐标为(12,0).直线38y x =与直线AB 相交于点C .(1)求点A 的坐标.(2)求△BOC 的面积.(3)点D 为直线 AB 上的一个动点,过点D 作 x 轴的垂线,与直线 OC 交于点 E ,设点D 的横坐标为t ,线段DE 的长度为d .①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段 AC 上运动,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的 取值范围 .14.在平面直角坐标系中,点(,1),(,3)A a B b |1|0a b +-=.(1)求a 、b 的值;(2)若点(3,)P n 满足三角形ABP 的面积等于3,求n 的值;(3)点(,0)M m 在x 轴上,记三角形ABM 的面积为S ,若15S <<,请直接写出m 的取值范围.。
一元一次不等式组必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
专题05 一元一次不等式组必刷常考题选择题必练1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y 2.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1B.>C.﹣a<﹣b D.ac<bc4.不等式2x<10的解集在数轴上表示正确的是()A.B.C.D.5.不等式组的解集在数轴上表示为()A.B.C.D.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折7.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣18.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.9.不等式组的最小整数解为()A.﹣1B.0C.1D.210.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.711.下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.12.适合不等式组的全部整数解的和是()A.﹣1B.0C.1D.2填空题必练13.不等式5x﹣3<3x+5的最大整数解是.14.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.15.不等式3x﹣2>4的解是.解答题必练16.解不等式:≤﹣1,并把解集表示在数轴上.17.解不等式组,并将它的解集在数轴上表示出来.18.解一元一次不等式组,并把解在数轴上表示出来.19.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.20.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元,并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?21.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)专题05 一元一次不等式组必刷常考题选择题必练1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3B.>C.x+3>y+3D.﹣3x>﹣3y 【答案】D【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.2.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b【答案】C【解答】解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.故选:C.3.若a<b,则下列各式中一定成立的是()A.a﹣1<b﹣1B.>C.﹣a<﹣b D.ac<bc【答案】A【解答】解:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方向不变.A、a﹣1<b﹣1,故A选项是正确的;B、a<b,不成立,故B选项是错误的;C、﹣a>﹣b,不成立,故C选项是错误的;D、c的值不确定,故D选项是错误的.故选:A.4.不等式2x<10)A.B.C.D.【答案】D【解答】解:不等式的两边同时除以2得,x<5,在数轴上表示为:故选:D.5.不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解答】解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【答案】B【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.7.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣1【答案】D【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.8.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【答案】C【解答】解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选:C.9.不等式组的最小整数解为()A.﹣1B.0C.1D.2【答案】B【解答】解:不等式组解集为﹣1<x≤2,其中整数解为0,1,2.故最小整数解是0.故选:B.10.在一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.7【答案】C【解答】解:∵解不等式①得:x>﹣0.5,解不等式②得:x≤5,∴不等式组的解集为﹣0.5<x≤5,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C.11.下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解答】解:由图一得甲>40,图二得甲<50则40<甲<50在数轴上表示为故选:C.12.适合不等式组的全部整数解的和是()A.﹣1B.0C.1D.2【答案】B【解答】解:,∵解不等式①得:x>﹣,解不等式②得:x≤1,∴不等式组的解集为﹣<x≤1,∴不等式组的整数解为﹣1,0,1,﹣1+0+1=0,故选:B.填空题必练13.不等式5x﹣3<3x+5的最大整数解是.【答案】3【解答】解:不等式的解集是x<4,故不等式5x﹣3<3x+5的正整数解为1,2,3,则最大整数解为3.故答案为:3.14.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.【答案】10n﹣5(20﹣n)>90【解答】解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.15.不等式3x﹣2>4的解是.【答案】x>2【解答】解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.解答题必练16.解不等式:≤﹣1,并把解集表示在数轴上.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.17.解不等式组,并将它的解集在数轴上表示出来.【解答】解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:18.解一元一次不等式组,并把解在数轴上表示出来.【解答】解:由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:19.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.20.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元,并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【解答】解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.21.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)【解答】解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台,由题意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40.∵x取非负整数,∴x为38,39,40.∴有三种生产方案①A型38台,B型62台;②A型39台,B型61台;③A型40台,B型60台.答:有三种生产方案,分别是A型38台,B型62台;A型39台,B型61台;A型40台,B型60台.(2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x,∴当x=38时,W最大=5620(万元),答:生产A型38台,B型62台时,获得最大利润.(3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x当0<m<10,则x=38时,W最大,即生产A型38台,B型62台;当m=10时,m﹣10=0则三种生产方案获得利润相等;当m>10,则x=40时,W最大,即生产A型40台,B型60台.答:当0<m<10时,生产A型38台,B型62台获利最大;当m=10时,3种方案获利一样;当m>10时,生产A型40台,B型60台获利最大.。
压轴题:一元一次不等式及不等式组综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)
压轴题02:一元一次不等式及不等式组综合专练20题(解析版)一、单选题1.已知关于x 的不等式组100x x a ->⎧⎨-≤⎩,有以下说法: ①如果它的解集是1<x ≤4,那么a =4;①当a =1时,它无解;①如果它的整数解只有2,3,4,那么4≤a <5;①如果它有解,那么a ≥2.其中说法正确的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】分别求出每个不等式的解集,再根据各结论中a 的取值情况逐一判断即可.【详解】解:由x ﹣1>0得x >1,由x ﹣a ≤0得x ≤a ,①如果它的解集是1<x ≤4,那么a =4,此结论正确;①当a =1时,它无解,此结论正确;①如果它的整数解只有2,3,4,那么4≤a <5,此结论正确;①如果它有解,那么a >1,此结论错误;故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为() A .2B .3C .12D .16【答案】D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】 解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D .【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x ]≤x <[x ]+1式子的应用,这个式子在取整中经常用到.3.定义,图象与x 轴有两个交点的函数y =24()24()x x m x x m -+≥⎧⎨+<⎩叫做关于直线x =m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B 例如:如图:直线l :x =1,关于直线l 的对称函数y =24(1)24(1)x x x x -+≥⎧⎨+<⎩与该直线l 交于点C ,当直线y =x 与关于直线x =m 的对称函数有两个交点时,则m 的取值范围是( )A .0≤m ≤43B .-2<m ≤43C .-2<m ≤2D .-4<m <0【答案】B【分析】 根据定义x 轴上存在,A B 即可求得22m -<<,根据题意联立,24,y x y x =⎧⎨=+⎩,24,y x y x =⎧⎨=-+⎩即可求得m 的范围,结合定义所求范围即可求解 【详解】①一次函数图象与x 轴最多只有一个交点,且关于m 的对称函数()24,24()x x m y x x m ⎧-+≥=⎨+<⎩,与x 轴有两个交点, ①组成该对称函数的两个一次函数图象的部分图象都与x 轴有交点.①240x ±+=解得2x =或2-①22m -<<.①直线y =x 与关于直线x =m 的对称函数有两个交点,①直线y =x 分别与直线24()y x x m =-+≥和24()y x x m =+<各有一个交点.对于直线y =x 与直线24()y x x m =+<,联立可得,24,y x y x =⎧⎨=+⎩解得4,4x y =-⎧⎨=-⎩, ①直线y =x 与直线24()y x x m =+<必有一交点(4,4)--.对于直线y =x 与直线24()y x x m =-+≥,联立可得,24,y x y x =⎧⎨=-+⎩解得4,343x y ⎧=⎪⎪⎨⎪=⎪⎩, ①22m -<<, ①43x =必须在x m ≥的范围之内才能保证直线y =x 与直线24()y x x m =-+≥有交点. ①43m ≤. ①423m -<≤. ①m 的取值范围是423m -<≤. 故选B【点睛】本题考查了新定义,两直线交点问题,一次函数的性质,掌握一次函数的性质,数形结合是解题的关键.4.如图,长方形ABKL ,延CD 第一次翻折,第二次延ED 翻折,第三次延CD 翻折,这样继续下去,当第五次翻折时,点A 和点B 都落在①CDE =α内部(不包含边界),则α的取值值范围是( )A .3645α︒<≤B .3036α︒<≤C .3645α︒≤<D .3036α︒<<【答案】D【分析】 利用翻折前后角度总和不变,由折叠的性质列代数式求解即可;【详解】解:第一次翻折后2a +①BDE =180°,第二次翻折后3a +①BDC =180°,第三次翻折后4a +①BDE =180°,第四次翻折后5a +①BDC =180°,若能进行第五次翻折,则①BDC ≥0,即180°-5a ≥0,a ≤36°,若不能进行第六次翻折,则①BDC ≤a ,即180°-5a ≤a ,a ≥30°,当a =36°时,点B 落在CD 上,当a =30°时,点B 落在ED 上,①30°<a <36°,故选:D ;【点睛】本题考查了图形的规律,折叠的性质,一元一次不等式的应用;掌握折叠前后角度的变化规律是解题关键.5.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩ 只有5个整数解,则a 的取值范围是( ) A .1162a -<<-B .1162a -≤<-C .1162a -<≤-D .1162a -≤≤- 【答案】C【分析】先解x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩,然后根据整数解的个数确定a 的不等式组,解出取值范围即可. 【详解】 解:不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩, 解得:2032x x a <⎧⎨>-⎩, 不等式组只有5个整数解,即解只能是15x =,16,17,18,19,a ∴的取值范围是:32143215a a -≥⎧⎨-<⎩, 解得:1162a -<≤-. 故选:C .【点睛】 本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解的个数确定关于a 的不等式组.6.若实数a 使得关于x 的不等式组52232x a x x x +≤-⎧⎪⎨--<⎪⎩有且只有2个整数解,且使得关于x 的一次函数()15y a x a =+-+不过第四象限,则符合条件的所有整数a 的和为( )A .7B .9C .12D .14【答案】C【分析】先解不等式组,根据不等式组的解只有2个整数解,列出关于a 的不等式,求出此时a 的取值范围;再根据一次函数的图像不过第四象限,列出关于a 的不等式组,再次求出a 的取值范围,两项综合求出a 最终的取值范围,则问题得解.【详解】 52232x a x x x +≤-⎧⎪⎨--<⎪⎩①② 解不等式①得:24a x +≥, 解不等式①得:4<x ,不等式有解,则解为:244a x +≤<, ①不等式组有两个整数解,则这两个整数解为3,2, ①2124a +≤<,解得26a ≤<; ①一次函数()15y a x a =+-+不过第四象限,①则有1050a a +⎧⎨-+≥⎩>,解得15a -≤<; 综上:25a ≤<①a 的整数值有:3,4,5,则其和为:3+4+5=12,故选:C .【点睛】本题考查了解不等式组和一次函数的图像的性质,根据不等式组只有两个整数解和函数不过第四象限等条件求出a 的取值范围是解答本题的关键.7.对于实数,a b ,定义符号{},min a b 其意义为:当a b ≥时,{},min a b b =;当a b <时,{},min a b a =.例如:21{},1min -=-,若关于x 的函数2{}1,3y min x x =--+,则该函数的最大值是( )A .1B .43C .53D .2【答案】C【分析】根据定义先列不等式:213x x --+和213x x --+,确定其{21y min x =-,3}x -+对应的函数,画图象可知其最大值.【详解】解:由题意得:213y x y x =-⎧⎨=-+⎩,解得:4353x y ⎧=⎪⎪⎨⎪=⎪⎩, 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}3x x -+=-+,由图象可知:此时该函数的最大值为53; 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}21x x -+=-, 由图象可知:此时该函数的最大值为53; 综上所述,{21y min x =-,3}x -+的最大值是当43x =所对应的y 的值, 如图所示,当43x =时,53y =,故选:C【点睛】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.8.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组【答案】D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤.所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.二、填空题9.重庆云阳巴阳镇精准化发展枇杷产业切实带动低收入农户增收,成为一大“亮点”——“万亩枇杷,醉美巴阳”成为了重庆云阳的一大名片.今年5月又是一个丰收季,全镇枇杷种植面积达1万余亩,种植了“普通”、“白肉”、“大五星”三个品种的枇杷,其中6000亩用于村民集体采摘,其余部分用于游客自助采摘.这6000亩中种植“白肉”枇杷的面积是“普通”枇杷面积的2倍,“大五星”枇杷面积不超过“白肉”枇杷面积的1.2倍,种植“白肉”的面积不超过2300亩,现在正值采摘季节,若干村民进行采摘,每人每天可以采摘“普通”枇杷1.8亩,或“白肉”枇杷1.2亩,或“大五星”枇杷2亩,这6000亩枇杷预计20天采摘完,则需要村民_______人参与采摘.【答案】191人【分析】设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,先求解x 的范围,再用含m 的代数式表示x ,再解不等式组即可得到答案.【详解】解:设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,根据题意得:600032 1.222300x x x -≤⨯⎧⎨≤⎩ 解得:100001150,9x ≤≤同时可得:()1.81.2222060003am x bm xm a b x ⎧=⎪=⎨⎪--=-⎩55,,93am x bm x ∴== 101040224060003,93m ma mb m x x x ∴--=--=- 整理得:36054000,13m x -=∴ 10000360540001150,913m -≤≤ 1300003605400014950,9m ∴≤-≤ 616000360689509m ∴≤≤, 1019190191,8136m ∴≤≤ m 为正整数,∴ 191.m =故答案为:191.【点睛】本题考查不等式组的实际应用,解题的关键是仔细阅读找出题中的等量关系与不等关系列方程与不等式组.10.某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.【答案】购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖【分析】设购买x 块彩色地砖,购买单色地砖y 块,进而由题意得到2x <y <3x ,再根据总费用为1500元,且x 、y 均为正整数,将y 用x 的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x 块彩色地砖,购买单色地砖y 块,则2x <y <3x ,25x +15y =1500, ①1500255100(1)153x y x , 又已知有:23xy x ,①510033510023x x x x ⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x , 又x 为正整数,且30021.414,30027.311,①x =22,23,24,25,26,27;由(1)式中,x y ,均为正整数,①x 必须是3的倍数,①24x =或27x =,当24x =时,单色砖的块数为15002425=6015; 当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖.【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况.11.春暖花开,又到了踏青赏花的好季节,某植物园决定在今年4月份购进一批花苗:绣球花苗、蔷薇花苗、铁线莲花苗和月季花苗.已知每株绣球花苗的价格是每株蔷薇花苗价格的12,每株月季花苗的价格是每株铁线莲花苗价格的3倍.另外,购进的绣球花苗数量是铁线莲花苗数量的2倍,蔷薇花苗的数量是月季花苗数量的3倍,且铁线莲花苗和蔷薇花苗的总数量不超过600株.已知一株绣球花苗和一株铁线莲花苗的价格之和为30元,最后,购进绣球花苗和蔷薇花苗的总费用比铁线莲花苗和月季花苗的总费用多14400元,则今年4月用于购进铁线莲花苗和月季花苗的总费用的最大值为______元.【答案】7200.【分析】根据题意可设蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,根据已知关系列出不等关系3600a b +,表示购进铁线莲花苗和月季花苗的总费用,利用不等关系求解.【详解】解:设每株蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,由题意得,1302x y +=①,设购进铁线莲花苗数量为a ,月季花苗数量为b ,则绣球花苗为2a ,蔷薇花苗为3b , 由题意可知,3600a b +,1231440032x a x b a y b y ⨯+⨯-=⋅+⨯, 整理得(3)()14400a b x y +-=,3600a b +, 24x y ∴-①,由①得602x y =-代入①得,60224y y --,解得12y ,用于购进铁线莲花苗和月季花苗的总费用为,3(3)ay by a b y +=+,3600a b +,12y ,∴用于购进铁线莲花苗和月季花苗的总费用的最大值为600127200⨯=(元),故答案为:7200. 【点睛】本题以购买的最大费用为背景考查了一元一次不等式的应用,关键根据数量关系表示未知量,然后根据不等关系求解.12.小李和小张大学毕业后准备合伙开一家工作室创业.他们在某写字楼租了一间空高为3米的房间作办公地点(如图),准备装修后开始办公.小李和小张分别提出两套装修方案(如表格).其中,每平方米木地板的装修费用与每平方米木质吊顶的装修费用之和等于每平方米复合材料墙面的装修费用;每平方米地砖的装修费用与每平方米乳胶漆的装修费用之和等于每平方米木质墙面的装修费用,以上各项装修单价均为整数.每平方米木地板、木质墙面、木质吊顶的装修费用之和不少于600元;每平方米复合材料墙面比木质墙面的装修费用多,且差价不大于90元,不少于80元.经测算,小李方案的总装修费用比小张方案的总装修费用多1260元.若x ,y 均为整数,且满足y<x<2y ,则小张的方案装修总费用最少为________元.【答案】234041401260y y +- 【分析】设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元,则复合材料墙面()a b +元,木质墙面m n 元,根据题意列出不等式组,得到340345a b m n +≥⎧⎨+≥⎩,根据“小李方案的总装修费用比小张方案的总装修费用多1260元”列式即可求解. 【详解】解:设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元, 则复合材料墙面()a b +元,木质墙面m n 元,根据题意可得6008090a b m n a b m n +++≥⎧⎨≤+--≤⎩,解得340345a b m n +≥⎧⎨+≥⎩,小李的总花费()()()()()2336xya xyb m n y x xy a b m n x y ++++=++++, 小张的总花费()()()()()2336xym xyn a b y x xy m n a b x y ++++=++++, ①()()()()()()661260xy a b m n x y xy m n a b x y ++++-+-++=, ①2y x y <<,①()()()61260xy a b m n x y ++++-()23406345126034041401260y y y y y y ≥⋅⨯+⨯+-=+-, 故答案为:234041401260y y +-. 【点睛】本题考查不等式组的实际应用,根据题意列出不等式是解题的关键.13.如图,设BAC θ∠=(090θ︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点1A开始,用等长的小棒依次向右摆放,其中12A A为第一根小棒,且11223341AA A A A A A A====⋅⋅⋅=,若只能摆放4根小棒,则θ的范围为________.【答案】18°≤θ<22.5°.【分析】根据等边对等角可得①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,再根据三角形的一个外角等于与它不相邻的两个内角的和可得θ1=2θ,θ2=3θ,θ3=4θ,求出第三根小木棒构成的三角形,然后根据三角形的内角和定理和外角性质列出不等式组求解即可.【详解】解:如图,①小木棒长度都相等,①①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,由三角形外角性质得,θ1=2θ,θ2=3θ,θ3=4θ;①只能摆放4根小木棒,①490 590θθ︒︒⎧<⎨≥⎩,解得18°≤θ<22.5°.故答案为:18°≤θ<22.5°.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,也考查了一元一次不等式组的应用,列出不等式组是解题的关键.14.若不等式231x x x a-+++-≥对一切数x都成立,则a的取值范围是________.【答案】5a ≤ 【分析】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值,再分3x <-、31x -≤<、12x ≤<和2x ≥四种情况,分别化简绝对值求出最小值即可得.【详解】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值, 由题意,分以下四种情况: (1)当3x <-时,2312313x x x x x x x -+++-=---+-=-,此时39x ->; (2)当31x -≤<时,2312316x x x x x x x -+++-=-+++-=-,此时569x <-≤; (3)当12x ≤<时,2312314x x x x x x x -+++-=-+++-=+,此时546x ≤+<; (4)当2x ≥时,2312313x x x x x x x -+++-=-+++-=,此时36x ≥;综上,231x x x -+++-的最小值为5, 则5a ≤, 故答案为:5a ≤. 【点睛】本题考查了化简绝对值、一元一次不等式组等知识点,将问题转化为求231x x x -+++-的最小值是解题关键.15.已知非负实数x y 、、z 满足123234x y z ---==,记23M x y z =++.则M 的最大值减去最小值的差为________. 【答案】283. 【分析】 设123234x y z k ---===,将x y 、、z 用k 表示出来,由x y 、、z 均为非负实数得关于k 的不等式组,求出k 取值范围,再将23M x y z =++转化为k 的代数式,由k 的范围即可确定M 的最大值和最小值,从而即可求差. 【详解】 设123234x y z k ---===, ①21x k =+,23y k =-,43z k =+, ①0x ≥,0y ≥,0z ≥,①210230430k k k +≥⎧⎪-≥⎨⎪+≥⎩, 解不等式组得1223k -≤≤,①23M x y z =++,①()()()21238142343M k k k k =+++=+-+, ①58108143k ≤+≤,即58103M ≤≤, M 的最大值为583,最小值为10, M 的最大值减去最小值的差58281033=-=, 故答案为:283. 【点睛】本题主要考查了不等式的性质的应用,解题关键是设比例式值为k ,通过已知确定k 的取值范围. 三、解答题16.商店销售10台A 型和20台B 型电脑的利润为40000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式:①该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调()0100m m <<元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1)A 100元,B 150元;(2)①5015000y x =-+;①A 34台,B 66台;(3)当050m <<时,A 34台B 66台;当50m =时,A 34~70内均可;当50100m <<时,A 70台B 30台 【分析】(1)设每台A 型加湿器和B 型加湿器的销售利润分别为a 元,b 元,然后根据题意列出二元一次方程组解答即可;(2)①据题意得即可确定y 关于x 的函数关系式,利用A 型利润与B 型利润即可求出总利润y 与x 的关系,并确定x 的范围即可;①根据一次函数的增减性,解答即可;(3)根据题意列出函数数关系式,分以下三种情况①0<m<50,①m=50,① 50 <m < 100时,m-50 >0结合函数的性质,进行求解即可. 【详解】(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,根据题意得:1020400020103500a b a b +=⎧⎨+=⎩ 解得=100150a b ⎧⎨=⎩ 答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①设购进A 型电脑x 台,每台A 型电脑的销售利润为100元,A 型电脑销售利润为100x 元, 每台B 型电脑的销售利润为150元,B 型电脑销售利润为()150100x -元()100150100y x x =+-,即这100台电脑的销售总利润为:5015000y x =-+;1002x x -≤,解得1333x ≥.且x 为正整数,150********y x x ⎛⎫=-+≥ ⎪⎝⎭,其中x 为正整数,①5015000y x =-+中,k=500-<,y ∴随x 的增大而减小.x 为正整数,1333x ≥ ①当34x =时,y 取得最大值,此时10066x -=.答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大; (3)根据题意得()()100150100y m x x =++-,即()5015000y m x =-+,其中133703x ≤≤,且x 为正整数.①当050m <<时,k=500m -<,y ∴随x 的增大而减小,①当34x =时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润; ①当50m =时,k=500m -=,15000y ∴=,即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;①当50 <m < 100时,k=500m ->,y ∴随x 的增大而增大.①当70x =时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润. 【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,掌握一次函数的增减性是解答本题的关键.17.某市A ,B 两个蔬菜基地得知黄岗C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点,从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)请填写下表,用含x 的代数式填空,结果要化简:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元()0m >,其余线路的运费不变,试讨论总运费最小的调动方案.【答案】(1)()240x -,()40x -,()300x -;(2)29200w x =+;A →C :200吨,A →D : 0吨,B →C :40吨,B →D :260吨;(3)2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案为:A →C :0吨,A →D : 200吨,B →C :240吨,B →D :60吨; 【分析】(1)根据题意,从A 处调运到C 处的数量为(240-x )t ;从A 处调往D 处的数量为[200-(240-x )]t ;则从B 调运到D 处的数量为(300-x )t ;(2)根据调运总费用等于四种调运单价乘以对应的吨数的积的和,易得w 与x 的函数关系,根据调运的数量非负即可不等式组,求得x 的范围,从而可求得总费用的最小的调运方案;(3)由题意可得w 与x 的关系式,根据x 的取值范围不同而有不同的解,分情况讨论:当0<m <2时;当m =2时;当2<m <15时,根据一次函数的性质即可解决. 【详解】 (1)填表如下:故答案为:()240x -,()40x -,()300x -;(2)w 与x 之间的函数关系为:()()()202402540151830029200w x x x x x =-+-++-=+ 由题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩ ①40240x ≤≤①在29200w x =+中,20> ①w 随x 的增大而增大 ①当40x =时,总运费最小此时调运方案为:(3)由题意得()()()()2024025401518300w x x m x x =-+-+-+- 即()29200w m x =-+,其中40240x ≤≤ ①02m <<,(2)中调运方案总费用最小;2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案如下:【点睛】本题是一次函数在实际问题中的应用,具有较强的综合性与较大的难度.它考查了一次函数的性质,求一次函数的解析式,解一元一次方程组等知识,用到分类讨论思想.18.如图,在长方形ABCD 中,AB =4,AD =2.P 是BC 的中点,点Q 从点A 出发,以每秒1个单位长度的速度沿A →D →C →B →A 的方向终点A 运动,设点Q 运动的时间为x 秒. (1)点Q 在运动的路线上和点C 之间的距离为1时,x = 秒. (2)若①DPQ 的面积为S ,用含x 的代数式表示S (0≤x <7).(3)若点Q 从A 出发3秒后,点M 以每秒3个单位长度的速度沿A →B →C →D 的方向运动,M 点运动到达D 点后立即沿着原路原速返回到A 点.当M 与Q 在运动的路线上相距不超过2时,请直接写出相应x 的取值范围.【答案】(1)5或7;(2)42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)45x ≤≤或79x ≤≤或1012x ≤≤.【分析】(1)根据题意,点Q 与点C 的距离为1,设Q 运动的路程为a ,则61a -=,根据速度为1,进而求得时间x ;(2)分三种情况讨论,①点Q 在AD 边上运动;①点Q 在CD 边上运动;①点Q 在BC 边上运动;根据情形写出①DPQ 的面积即可;(3)分三种情形讨论,①M 点未到达D 点时,①M 点原路原速返回时,根据情形分相遇和追及问题写出路程差不超过2时,①当M 点回到点A ,当M 与Q 在运动的路线上相距不超过2时,列出不等式组求解即可,注意两点运动的总时间会影响取值范围,即M 点先停止运动. 【详解】 (1)4,2AB AD ==,∴246AD DC +=+=,设Q 运动的路程为a ,依题意则,61a -=, 解得5a =或7a =,速度为每秒1个单位长度,515x ∴=÷=或者717x =÷=,故答案为:5或7;(2)速度为每秒1个单位长度,Q 运动的时间为x 秒. ∴点Q 的路程为1x x ,①点Q 在AD 边上运动;2,4AD CD BC ===,∴2DQ DA AQ x =-=-,11(2)422S DQ DC x ∴=⨯=⨯-⨯42x =-(02x ≤<),①点Q 在CD 边上运动;P 是BC 的中点,112PC BC ∴==,2DQ x AD x =-=-,111(2)11222S DQ CP x x =⨯=-⨯=-(26x <≤), ①点Q 在CP 边上运动,6PQ t AD DC t =--=-,11(6)421222S PQ CD x x ∴=⨯=-⨯=-(67x <<), 综合①①①得:42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)速度为每秒1个单位长度,Q 运动的时间为x秒.∴点Q 的路程为1x x ,设M 的运动时间为t ,根据题意,Q 从A 出发3秒后,M 才出发,则3t x =-,即3x t =+,M 的路程为3t ,Q 点的路程为3t +,42410DC BC AB ++=++=,∴M 点全路程所用时间为2010233⨯÷=秒, 则Q 点的全路程所用时间为12112÷=秒,分三种情形讨论,①M 点未到达D 点时,Q 点出发3秒后,,M Q 共同完成的路程为39AD DC BC AB +++-=根据题意,当M 与Q 在运动的路线上相距不超过2时,则,9(33)2t t -++≤,即9(33)2(33)92t t t t -++≤⎧⎨++-≤⎩, 解得12t ≤≤,45x ∴≤≤,①M 点原路原速返回时,根据题意,当M 与Q 在运动的路线上相距不超过2时,则,(310)2t t --≤,即(310)2(310)2t t t t --≤⎧⎨--≤⎩,解得46t ≤≤,79x ∴≤≤.①当M 点回到点A ,根据题意,当M 与Q 在运动的路线上相距不超过2时,则1012x ≤≤; 综合①①①可得x 的取值范围为45x ≤≤或79x ≤≤或1012x ≤≤.【点睛】本题考查了动点问题,路程问题,一元一次不等式的应用,弄清动点运动的方向和路程是解题的关键. 19.在平面直角坐标系xOy 中,对于M 、N 两点给出如下定义:若点M 到x 、y 轴的距离中的最大值等于点N 到x 、y 轴的距离中的最大值,则称M 、N 两点互为“等距点”,例如:点P (2,2)与Q (-2,-1)到x 轴、y 轴的距离中的最大值都等于2,它们互为“等距点”.已知点A 的坐标为(1,3).(1)在点B (5,3)、C (﹣3,1)、D (﹣2,﹣2)中,点 与点A 互为“等距点”(2)已知直线l :4y kx k =--① 若k =1,点E 在直线l 上,且点E 与点A 互为“等距点”,求点E 的坐标;①若直线l 上存在点F ,使得点F 与点A 互为“等距点”,求k 的取值范围(直接写出结果).【答案】(1)C ;(2)①(2,3)E -或(3,2)-;① 12k ≥或14k ≤-. 【分析】(1)根据新定义“等距点”的定义即可求解; (2)①k=1可得5y x =- 设,5E m m -(), 讨论353m m =-=或 即可,①设(),4F f kf k --,根据点F与点A 互为“等距点”,分两种情况讨论即可:343f kf k ⎧=⎪⎨--≤⎪⎩和343f kf k ⎧≤⎪⎨--=⎪⎩. 【详解】解:(1)①点A (1,3)到x 、y 轴的距离中最大值为3,点C (﹣3,1)到x 、y 轴的距离中最大值为3,①与A 点是“等距点”的点是C .(2)①①直线l :4y kx k =--当k=1时,5y x =- ,①点A (1,3)到x 、y 轴的距离中最大值为3,点E 到点A 互为“等距点”,点E 到坐标轴的最大距离为3,设,5Em m -() , ①EM m =,5EN m =- ①353m m ⎧=⎪⎨-≤⎪⎩或35=3m m ⎧≤⎪⎨-⎪⎩解得:3m =或=2m当3m =时,52m -=-,点E (3,﹣ 2),当=2m 时,53m -=-,点E (2,﹣3),故点E (3,﹣ 2)或E (2,﹣3),① 点F 在直线l :4y kx k =--上,设(),4F f kf k --, ①343f kf k ⎧=⎪⎨--≤⎪⎩①②或343f kf k ⎧≤⎪⎨--=⎪⎩③④ 由①得到:3f =±,当3f =时,243k -≤,解得1722k ≤≤, 当3f =-时,443k --≤,解得7144k -≤≤-, 由①得到:43kf k --=±,当43kf k --=,即7k f k+=时,则73k k +≤, 解得72k ≥或74k ≤-, 当43kf k --=-,即1k f k+=时,则13k k +≤, 解得12k ≥或14k ≤-, 综上所述:12k ≥或14k ≤-. 【点睛】本题考查新定义的应用和点坐标到坐标轴之间的距离,涉及到一元一次不等式,解题的关键是正确理解题意,学会利用分类讨论的思想.20.在平面直角坐标系中,若P 、Q 两点的坐标分别为()11,P x y 和()22,Q x y ,则定12x x -和12y y -中较小的一个(若它们相等,则任取其中一个)为P 、Q 两点的“直角距离小分量”,记为min (,)d P Q .例如:(2,3),(0,2)P Q -,因为12122,0,|20|2x x x x =-=-=--=;12123,2,|32|1y y y y ==-=-=,而|32||20|-<--,所以min (,)|32|1d P Q =-=.(1)请直接写出()3,2A -和()1,1B -的直角距离小分量()min ,d A B =_________;(2)点D 是坐标轴上的一点,它与点()3,1C -的直角距离小分量()min ,2d C D =,求出点D 的坐标; (3)若点(1,22)M m m +-满足以下条件:a )点M 在第一象限;b )点M 与点()5,0N 的直角距离小分量()min ,2d M N <c )45MON ∠>︒,O 为坐标原点.请写出满足条件的整点(横纵坐标都为整数的点)M 的坐标_______.【答案】(1)3;(2)(0,1)D 或(0,3)D -;(3)(5,6)M 或(6,8)【分析】(1)根据新概念求得即可;(2)分两种情况,根据“直角距离小分量”的定义得出即可;(3)根据题意得出10220m m +>⎧⎨->⎩,解出m 的取值范围,再由45MON ∠>︒可推导出2211OM m K m -=>+,解出m 的取值范围,根据横纵坐标都为整数的点取m 的值即可.【详解】解:(1)(3,2)A -,(1,1)B -,|31|4∴+=>|21|3--=,()min ,3d A B ∴=;故答案为3;(2)点D 是坐标轴上的一点,若D 在x 轴上,设(a,0)D ,由于|01|12+=<与题意矛盾,故点D 是在y 轴上的一点,|1|2b ∴+=,解得:1b =或3-,(0,1)D ∴或(0,3)D -;(3)由题意得:10220m m +>⎧⎨->⎩, 解得1m , |15||4|,|220|2|1|m m m m +-=---=-,∴[]222(4)2(1)312m m m ---=-+, 当12m <<时,()min ,2|1|2d M N m =-<,解得:02m <<,当2m ≥时,()min ,|4|2d M N m =-<,解得:26m <<,m ∴的取值范围是:02m <<或26m <<,45MON ∠>︒恰好为OM l 的倾斜角,1OM K ∴>,2211OM m K m -=>+, 解得:1m <-或3m >综上:m 的取值范围是:36m <<,横纵坐标都为整数,4m ∴=和5,(5,6)M ∴或(6,8),故答案为:(5,6)M 或(6,8).【点睛】本题考查了坐标与图形的性质,解一元一次不等式组,解题的关键是根据新概念列出不等式组.。
七年级数学试卷一元一次不等式易错压轴解答题练习题100
七年级数学试卷一元一次不等式易错压轴解答题练习题100一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.3.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.4.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案. 5.某小区准备新建60 个停车位,以解决小区停车难的问题。
(2021年整理)七年级数学经典压轴题:一元一次不等式组
七年级数学经典压轴题:一元一次不等式组
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学经典压轴题:一元一次不等式组)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学经典压轴题:一元一次不等式组的全部内容。
第12讲:一元一次不等式组。
专题13一元一次不等式(组)的应用压轴题二种模型全(原卷版)
专题13 一元一次不等式(组)的应用压轴题二种模型全攻略【考点导航】目录【典型例题】 (1)【类型一一元一次不等式(组)的应用方案问题】 (1)【类型二一元一次不等式(组)的应用销售、利润问题】 (2)【过关检测】 (4)【典型例题】【类型一一元一次不等式(组)的应用方案问题】例题:(2023春·山东德州·七年级校考阶段练习)为举办汉字听写大赛,某校计划购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型【变式训练】1.(2023春·山东威海·七年级统考期末)某超市计划同时购进一批甲、乙两种商品,若购进甲商品10件和乙商品8件,共需要资金880元;若购进甲商品2件和乙商品5件,共需要资金380元.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,又要保证月污水处理量不低于2040吨,你认为该公司有哪几种购买方案.【类型二一元一次不等式(组)的应用销售、利润问题】例题:(2023春·四川眉山·七年级坝达初级中学校考期中)为迎接暑假旅游高峰的到来,某旅游纪念品商店决定购进A、B两种纪念品,若购进A种纪念品7件,B种纪念品4件,需要760元;若购进A种纪念品5件,B种纪念品8件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,这100件纪念品的资金不少于7100元,但不超过7200元,那么该商店共有几种进货方案?(3)若销售A种纪念品每件可获利润30元,B种纪念品每件可获利润20元,用(2)中的进货方案,哪一种方案可获利最大?最大利润是多少元?【变式训练】1.(2023春·海南省直辖县级单位·七年级校考期中)某市部分地区遭受了罕见的旱灾,某单位给某乡中小学捐献一批饮用水和蔬菜共310件,其中饮用水比蔬菜多90件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学,已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费500元,乙种货车每辆需付运费450元,运输部门应选择哪种方案可使运费最少?最少运费是多少元?2.(2023春·云南大理·七年级统考期末)利用方程(组)或不等式(组)解决问题:“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读.已知购买3本《论语》和2本《孟子》共需要170元,购买5本《论语》和3本《孟子》共需要275元.(1)求购买《论语》和《孟子》这两种书的单价各是多少元?(2)学校为了丰富学生的课余生活,举行“书香阅读”活动,根据需要,学校决定再次购进两种书共50本,正逢书店“优惠促销”活动,《孟子》单价优惠4元,《论语》的单价打8折.如果此次学校购买书的总费用不超过1500元,且购买《论语》不少于38本,则有几种购买方案?为了节约资金,学校应选择哪种方案?为什么?【过关检测】一、解答题1.(2023春·江西九江·八年级校考期中)为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元.(2)经测算,在两种公交车均购买的前提下,该公司购买公交车的总费用不得超过1150万元,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?2.(2023春·河北保定·八年级校考期中)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲乙两种型号的设备可供选购,经调查:购买4台甲型设备比购买4台乙型设备多花8万元,购买2台甲型设备比购买3台乙型设备少花4万元;1台甲型设备可以满足8万用户需求,1台乙型设备可以满足6万用户需求(1)求甲、乙两种型号设备每台的价格分别为多少万元;(2)若该公司共有76万户,该公司经预算决定购买节省能源的新设备的资金不超过100万元,你认为该公司有几种购买方案,哪种方案最省钱.3.(2023春·安徽滁州·七年级校考期中)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求m,n的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克(x为正整数),求有哪几种购买方案.(3)在(2)的条件下,超市何时获得的利润最大?4.(2023春·安徽合肥·七年级校考期中)科幻电影《流浪地球》的成功标志着中国电影工业化迈向了新的台阶.某企业眼光独到,准备生产一批乐高模型投放市场,计划生产“笨笨”、“MOSS”两种产品共100件,需购买价格为30元/千克的A种材料和价格为20元/千克的B种材料.通过调研,获得以下信息:信息1:生产一件“笨笨”需A种材料4千克,B种材料1千克;信息2:生产一件“MOSS”需A种材料3千克,B种材料4千克.根据以上信息,解决下列问题:(1)现工厂用于购买A、B两种材料的资金不能超过15000元,且生产“MOSS”不少于30件,请问有哪几种符合条件的生产方案?(2)在(1)的条件下,若生产一件“笨笨”需加工费60元,生产一件“MOSS”需加工费80元,应选择哪种生产方案,才能使生产这批产品的成本最低?5.(2023春·河南漯河·七年级统考期末)“食博会”期间某零食店计划购进A,B两种网红零食共100包,其中A种零食的进价为每包8元,B种零食的进价为每包5元.已知在出售时,3包A种零食和2包B种零食的价格一共为65元,2包A种零食和3包B种零食的价格一共为60元.(1)A,B两种零食每包的售价分别是多少元?(2)该零食店为了限制进货投入,计划A种零食的进货不超过52包,且销售完后总利润不低于600元,则进货方案有多少种?(3)在(2)的条件下,哪种进货方案可获最大利润?最大利润是多少元?(1)若工厂计划获得利润12万元,问甲、乙两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获得利润多于15万元,问工厂有几种生产方案?获得的最多利润是多少万元?8.(2023春·甘肃定西·七年级校考阶段练习)益群文具店准备购进甲,乙两种笔,若购进甲种笔100支,乙种笔50支,需要1000元;若购进甲种笔50支,乙种笔30支,需要550元.(1)求购进甲,乙两种笔每支各需多少元?学校计划此次劳动实践活动的租金总费用不超过2320元.请解决下列问题:(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?11.(2023春·山东德州·七年级统考期末)某校组建了一个滑雪队,现队长需要购买一些滑雪板,经了解,现有A、B两种滑雪板.若购进A种滑雪板10副,B种滑雪板5副,需要2000元;若购进A种滑雪板5副,B种滑雪板3副,需要1100元.(1)求购进A、B两种滑雪板的单价;(2)若该滑雪队决定拿出1万元全部用来购进这两种滑雪板,要求购进A种滑雪板的数量不少于B种滑雪板数量的6倍,且购进B种滑雪板数量不少于8副,那么该校共有几种购买方案?12.(2023春·贵州毕节·八年级统考期末)某“爱心义卖”活动中,购进了甲、乙两种文具,每个甲种文具的进货价比每个乙种文具的进货价高10元,花费90元购进的乙种文具的数量和花费150元购进的甲种文具的数量相同.(1)求甲、乙两种文具每个的进货价;(2)若购进甲、乙两种文具共100件,将两种文具的进价均提高20%进行销售,要求进货价不足2080元,销售额不低于2460元,有哪几种进货方案?。
一元一次不等式的应用压轴题精选2
一元一次不等式应用题压轴题精选一.解答题(共25小题)1.“元旦”期间,某学校由4位教师和若干位学生组成的旅游团,到某风景区旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按7折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,游团体票按原价的8折优惠.这两家旅行社的全票价均为每人300元.(1)若有10位学生参加该旅游团,问选择哪家旅行社更省钱?(2)设参加该旅游团的学生为x人,问人数在什么范围内时,选择乙旅行社更省钱?3.某城市的一种出租车起步价为10元(即行驶5千米以内都需付款10元车费),达到或超过5千米后,每增加1千米加价1.2元(不足1千米按1千米计算),现某人乘这种出租车有甲地到乙地,支付车费17.2元.求甲、乙两地的路程.4.在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?5.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?6.商场购进菜种商品100件,每件按进价加价30元售出全部商品的65%,然后将售价下降10%,降价后每件仍可以获利18元,又售出全部商品的25%7.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李准备了8000元作为预定下表中比赛项目门票的资金.比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若小李把8000元资金全部投入预定了男篮门票和乒乓球门票共10张,请求出小李可预定男篮门票和乒乓球门票各多少张?(2)若小李想预定三种门票共10张,其中足球门票是男篮门票的2倍,请问他的想法能实现吗?若能实现,请求出共有几种购票方案;若不能实现,请说明理由.8.八年级(4)要对上次期中考试中获得优异成绩的学生进行奖励,到新百大卖场购买学习用品.该商场有一种钢笔和笔记本单价分别为25元和5元,该商场为了促销定了两种销售方案,供顾客选择:甲方案:买一支钢笔送一本笔记本;乙方案:按购买金额打九折付款.该班购买这种钢笔20支,笔记本x(x≤10)本,如何选择方案购买省钱呢?10.某城市的一种型号的出租车起步价量是7元(即行驶路程在3千米内都付车资7元),超过3千米后,则每增加0.1千米加价0.2元(不足0.1千米按0.1千米计算).现在小明乘这种型号出租车从A地到B地后,共付车费15.80元,问A、B两地的距离最多是多少千米?11.某园林的门票规定如下:40人以下每人10元,40人以上享受团体优惠,其中40~80人九折优惠,80人以上八折优惠,初一甲、乙两班共101人去该园林春游,且甲班人数多于乙班人数,但小于总数的,若两班都以班为单位购票,则共付948元.①若两班联合起来作为一个团体购票,则可省多少钱?②两班各有多少学生?12.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问(1)到几点时,停车场内第一次出现无车辆?(2)到几点时,该公交公司已不能按6分钟间隔准时发车?并求出第一辆未能准时开出的车至少延误的时间.(3)若该公交公司要使车辆从上午6时至晚上8时都能按等间距开出,其他条件不变,则发车的间距至少为几分钟(精确到1分)?(4)现该公交公司计划增添部分车辆,使得从上午6时至晚上8时都能按6分钟间距发车,其他条件不变,则该公司至少要增添几辆车?14.明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法.(计件奖金=月销售量×每件所得奖金)同时获得如下信息:营业员小萍小华月销售量(件)150 200月总收入(元)1050 1200假设销售每件服装奖励a元,营业员月基本工资为b元.(1)求a、b的值;(2)若营业员小萍某月总收入不低于1300元,那么小萍当月至少要卖出服装多少件?15.工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10 10 35030 20 850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟;(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.16.在有16支球队参赛的足球甲级联赛中,每两支球队之间一个赛季要进行2场比赛,每支球队一个赛季要踢满30场球赛.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分.赛季结束,积分排第1的获得冠军,…积分排第15和第16名的球队降级(下赛季参加乙级联赛).某赛季第27轮比赛结束时,部分球队的积分排名如下表.各队末赛的3场比赛中,A、B、C、D四队的比赛全部在这四个队之间进行.球队积分排名甲队42 1乙队40 2………A队16 13B队16 13C队16 13D队16 13(1)第27轮比赛结束时,乙队负了7场,求乙队此时胜、平各多少场?(2)第27轮比赛结束时,甲队的负场数比乙队多,则甲队的胜、平、负场数各是多少?(3)若最后3场比赛A队得5分,B队一场未负得3分,则A队是否降级?为什么?17.一家服装经营店对员工实行“月总收入=基本工资+销售服装所获奖金”的方法付给员工报酬.现获知甲、乙两名员工所得报酬的信息如下:员工甲乙月销售件数(件)200 150月总收入(元)1400 1250若员工月基本工资为b元,销售每件服装奖励a元,月销售件数为x件,月总收入为y元.(1)列方程(组),求a,b的值;(2)写出y与x的函数关系式;(不用写出自变量x的取值范围)(3)有一位员工说他这个月的总收入是1600元,他说的对吗?若对,请求出他这个月销售服装的件数;若不对,请说明理由.(4)若要使一员工的月总收入不低于1800元,该员工当月至少要卖服装多少件?18.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A 商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元?20.某海产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量的范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.①开发商计划每年能有28万元的租金收入,你认为这一目标能实现吗?若能,应该如何安排A、B两类店面数量?若不能,说明理由.②为使店面的月租费最高,最高月租金是多少?21.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季比赛共需14场,现已比赛8场,输了一场,得17分,请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛的分析,这支球队打满14场比赛,得分不低于29分,就可达到预期的目的,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期的目标?22.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元单价每月用水量(吨)不超过6吨2元/吨4元/吨超过6吨,但不超过10吨的部分超过10吨部分8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?24.某中学初一(1)班计划用勤工俭学收入的66元钱,同时购买分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加校“艺术节”活动的同学,已知购买乙种纪念品的件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半.若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买的甲、乙、丙三种纪念品各多少件?25.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?。
专题02 一元一次不等式和一元一次不等式组【压轴题专项训练】解析版
专题02 一元一次不等式和一元一次不等式组【压轴题专项训练】1.比较a b +和a b -的大小.【难度】★★★【解析】当b b -=即0=b 时,b a b a -=+;当b b ->即0>b 时,b a b a ->+;当b b -<即0<b 时,b a b a -<+.【总结】考察不等式性质的用法,注意分类讨论.2.求不等式组20x x a >⎧⎨≥⎩的解集.【难度】★★★【解析】因为02≥a ,所以当0=a 时,不等式组可化为:⎩⎨⎧≥>00x x ,则其解集为0>x ,当0≠a 时,02>a ,则不等式组的解集为2a x ≥.【总结】考察不等式组的解法,注意分类讨论.3.已知2a >,2b >,试比较a b +与ab 的大小.【难度】★★★【答案】b a ab +>.【解析】因为()b a ab +-()()()()()1111111111---=----=-+--=-++-=b a b b a b a ab b a ab ,且2a >,2b >,所以()()111>--b a ,所以()()0111>---b a ,即()0>+-b a ab ,所以b a ab +>.【总结】考察有理数比较大小,注意利用因式分解的思路去解题.4.已知不等式()()52186117x x -+<-+的最小整数解是方程24x ax -=的解,求a 的值.【难度】★★★【答案】4=a .【解析】不等式去括号可得:176618105+-<+-x x ,移项可得:3<-x ,解得:3->x ,则不等式的最小整数解为2-=x ,所以-2是方程24x ax -=的解,则424=+-a ,解得:4=a .【总结】考察不等式的解法和方程解的定义,综合性较强,认真分析.5.解不等式:11315111x x x x ++>+-++.【难度】★★★【答案】1<x 且1-≠x .【解析】两边同时减去11+x 可得:1513->+x x ,移项整理可得:22->-x ,解得:1<x , 而01≠+x ,所以1-≠x ,所以不等式的解集为1<x 且1-≠x .【总结】考察不等式的解法.注意要考虑分母不能为0.6.求使方程组24563x y m x y m +=+⎧⎨+=+⎩的解x 、y 都是正数的m 的取值范围. 【难度】★★★【答案】572m <<.【解析】将第一个方程乘以4与第二个方程相减可得:52-=m y ,代入第一个方程可得:m x -=7,因为x 、y 都是正数,所以⎩⎨⎧>->-05207m m ,解得:725<<m .【总结】考察方程组和不等式组的解法,注意对题意的正确理解.7.若不等式组2224x ax a -≥⎧⎨+<⎩无解,求a 的取值范围.【难度】★★★【答案】2≤a .【解析】不等式①可得:22+≥a x ;不等式②可得:24-<a x ,因为不等式组无解,所以2224+≤-a a ,解得:2≤a .【总结】考察不等式组的解法以及对不等式组无解的理解.8.不等式组21x a b x a b +>+⎧⎨-<-⎩的解集是32x -<<,求()2017a b +的值.【难度】★★★【答案】-1.【解析】不等式①可得:2-+>b a x ;不等式②可得:1+-<b a x ,因为不等式组的解集是32x -<<,所以⎩⎨⎧=+--=-+2132b a b a ,解得:⎩⎨⎧-==1b a ,所以()()2017201711a b +=-=-.【总结】考察不等式组的解法及对不等式组的解集的理解和运用.9.当37a ≤≤,59b ≤≤时,下列各不等式是否成立?为什么?(1)816a b ≤+≤; (2)62a b -≤-≤;(3)1563ab ≤≤; (4)537ba ≤≤.【难度】★★★【答案】都成立.理由见解析.【解析】(1)因为73≤≤a ,所以b b a b +≤+≤+73,因为95≤≤b ,所以1238≤+≤b ,16712≤+≤b ,所以816a b ≤+≤;(2)因为73≤≤a ,所以b b a b -≤-≤-73,因为95≤≤b ,所以59-≤-≤-b ,所以236-≤-≤-b ,272≤-≤-b ,所以62a b -≤-≤;(3)因为73≤≤a ,0>b ,所以b ab b 73≤≤,因为95≤≤b ,所以27315≤≤b ,63735≤≤b ,所以1563ab ≤≤;(4)因为59b ≤≤,0>a ,所以a a b a 95≤≤,因为37a ≤≤,所以11173a ≤≤,所以55573a ≤≤,9937a ≤≤,所以537b a ≤≤.【总结】考察不等式的性质的综合运用.10.解关于x 的不等式()()11ax x a a >++-.【难度】★★★【解析】由题意可得:(1)(1)(1)a x a a ->+-当10a ->时,解得:1x a >+;当10a -<时,解得:1x a <+.【总结】考查解含字母系数的不等式,注意分类讨论.11.已知关于x 、y 的方程组2323ax by x y -=⎧⎨-=-⎩和3424y x ax by -=⎧⎨+=-⎩有相同的解,求a 、b 的值.【难度】★★★【答案】12a b =⎧⎨=-⎩.【解析】由题意方程组2334x y y x -=-⎧⎨-=⎩的解即为题中两个方程组的解,解得:11x y =-⎧⎨=⎩, 把代入原方程组可得:2324a b a b --=⎧⎨-+=-⎩,解得:12a b =⎧⎨=-⎩. 【总结】本题考查二元一次方程组的解法及其应用.12.有理数x 、y 、z 满足()()22210x y y z x z --+--++≤,求x y z ++的值.【难度】★★★【答案】12x y z++=-.【解析】由题意可知:2010x yy zx z--=⎧⎪--=⎨⎪+=⎩①②③,观察可发现将3式相加即可得:32x=,由③得32z=-,代入②式得:12y=-,所以12x y z++=-.【总结】本题考查三元一次方程组的解法,细心观察找寻规律是简化题目的关键.13.某童装加工企业今年五月份,工人每人平均加工童装300套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资900元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于1260元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于2000 元,问小张在六月份应至少加工多少套童装?【难度】★★★【答案】(1)2元;(2)220套.【解析】(1)设企业每套奖励x元,则90060%3001260x+⋅≥,解得:2x≥;(2)设小张在六月份加工y套,则90052000y+≥,解得:220y≥,故工人每加工1套童装企业至少应奖励2元;小张在六月份应至少加工220套童装.【总结】考查不等式在实际问题中的简单应用,注意认真分析题目中的条件.。
一元一次不等式组压轴题
实用标准文案一元一次不等式组压轴题1.如图,有三幢公寓楼分别建在点A、点B、点C 处,AB、AC、BC 是连接三幢公寓楼的三条道路,要修建一超市P,按照设计要求,超市要在△ABC的内部,且到A、C的距离必须相等,到两条道路AC、AB的距离也必须相等,请利用尺规作图确定超市P的位置.(不要求写出作法、证明,但要保留作图痕迹).2.如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE 在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明。
3.如图①,已知△ABC中,AB=AC,点P是BC上的一点,PN⊥AC于点N,PM⊥AB于点M,CG ⊥AB于点G,则CG=PM+PN.(1)如图②,若点P在BC的延长线上,则PM、PN、CG三者是否还有上述关系,若有,请说明理由,若没有,猜想三者之间又有怎样的关系,(2)如图③,AC是正方形ABCD的对角线,AE=AB,点P是BE上任一点,PN⊥AB于点N,PM ⊥AC于点M,猜想PM、PN、AC有什么关系;(直接写出结论).4.解不等式组,并把不等式的解集在数轴上表示出来.(1),(2)..写出该不等式组的最小整数解.(3)5.为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?6.在“老年节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加.旅行前,旅行社承诺每车保证有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,甲种客车载客量为40人/辆,乙种客车载客量为30人/辆.(1)请帮助旅行社设计租车方案;(2)若甲种客车租金为350元/辆,乙种客车租金为280元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?(3)旅行社在充分考虑团内老人的年龄结构特点后,为更好的照顾游客,决定同时租45座和30座的大小两种客车.大客车上至少配两名随团医生,小客车上至少配一名随团医生,为此旅行社又请了4名医生.出发时,旅行社先安排游客坐满大客车,再依次坐满小客车,最后一辆小客车即使坐不满也至少要有20座上座率,请直接写出旅行社的租车方案?7.凯里市某企业计划2010年生产一种新产品,下面是企业有关科室提供的信息:人力科:2010年生产新产品的一线工人不多于600人.每人每年工时按2200小时计划.销售科:观测2010年该产品平均每件需80小时,每件需要装4个某种主要部件.供应科:2009年底库存某种主要部件8000个,另外在2010年内能采购到这种主要部件40000个.根据上述信息,2010年生产量至少是多少件?为减少积压可至多调出多少工人用于开发其它新产品?8.小王家是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均(2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入﹣支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出)9.某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.10.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B 地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E 两县的方案有几种?请你写出具体的运送方案;2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?11.冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克,乙饮料每瓶需糖6克,柠檬酸10克,现有糖500克,柠檬酸400克.(1)请计算有几种配制方案能满足冷饮店的要求;(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表,请你根据这些统计数据确定12.下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)该服装厂怎样生产获得利润最大?(3)在(1)的条件下,40套服装全部售出后,服装厂又生产6套服装捐赠给某社区低保户,这样服装厂仅获利润25元钱.请直接写出服装厂是按哪种方案生产的.13.某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.14.某地为促进特种水产养殖业的发展,决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个1亩大小的水池里分别养殖甲鱼和黄鳝,因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,相关信息如下表所示:(收益=毛利润﹣成本+政府(2)应怎样安排养殖,可获得最大收益?(3)据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润将减少m万元.问该农户又该如何安排养殖,才能获得最大收益?15.如图是B、C两市到A市的公路示意图,小明和小王提供如下信息:小明:普通公路EA与高速公路DA的路程相等;小王:A、B两市的路程(B⇒D⇒A)为240千米,A、C两市的路程(C⇒E⇒A)为290千米,小明汽车在普通公路BD上行驶的平均速度是30千米/时,在高速公路DA上行驶的平均速度是90千米/时;小王汽车在高速公路CE上行驶的平均速度是100千米/时,在普通公路EA上行驶的平均速度是40千米/时;小明汽车从B市到A市不超过5时;小王:汽车扶C市到A市也不超过5时.若设高速公路AD的路程为x千米.16.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,/张;印刷费与印数的关系见下表.元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)17.某果品公司急需将一批不易存放的水果从A市运到B市销售,现有三家运输公司可供选(1)若乙、丙两家公司的包装、装卸及运输的费用总和恰是甲公司的2倍,求A,B两市间的距离;(精确到个位)(2)如果A,B两市的距离为s(km),且这批水果在包装、装卸以及运输过程中的损耗为300元/小时,那么,要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?一.选择题(共10小题)713A.(a﹣b)(a+b+c)B.(a﹣b)(a+b﹣c)C.(a+b)(a﹣b﹣c)D.(a+b)(a﹣b+c)2320102A.被8整除B.被m整除C.被(m﹣1)整除D.被(2m﹣1)整除2223①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个11.多项式x2+mx+5因式分解得(x+5)(x+n),则m= ,n= .12.已知x2﹣x﹣1=0,则﹣x3+2x2+2005的值为.13.分解因式:am+an+bm+bn= .14.分解因式:m3﹣m= .15.已知x2﹣ax+7在有理数范围内能分解成两个因式的积,则正整数a的值是.16.已知:x2﹣x﹣1=0,则﹣x3+2x2+2002的值为.17.分解因式:2m2﹣2= .三.解答题(共2小题)18.在实数范围内分解因式:x2﹣5. 19.分解因式:x2﹣y2+ax+ay.。
中考数学 一元一次不等式易错压轴解答题(含答案)
中考数学一元一次不等式易错压轴解答题(含答案)一、一元一次不等式易错压轴解答题1.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?2.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.3.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.4.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.5.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:总利润单件利润销售量商品价格A B进价元件12001000售价元件13501200B两种商品各多少件?(2)商场第2次以原进价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原售价销售,而B商品按原售价打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?6.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式应用题压轴题精选一.解答题(共25小题)1.“元旦”期间,某学校由4位教师和若干位学生组成的旅游团,到某风景区旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按7折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,游团体票按原价的8折优惠.这两家旅行社的全票价均为每人300元.(1)若有10位学生参加该旅游团,问选择哪家旅行社更省钱?(2)设参加该旅游团的学生为x人,问人数在什么范围内时,选择乙旅行社更省钱?3.某城市的一种出租车起步价为10元(即行驶5千米以内都需付款10元车费),达到或超过5千米后,每增加1千米加价1.2元(不足1千米按1千米计算),现某人乘这种出租车有甲地到乙地,支付车费17.2元.求甲、乙两地的路程.4.在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?5.某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?6.商场购进菜种商品100件,每件按进价加价30元售出全部商品的65%,然后将售价下降10%,降价后每件仍可以获利18元,又售出全部商品的25%7.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,球迷小李准备了8000元作为预定下表中比赛项目门票的资金.比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若小李把8000元资金全部投入预定了男篮门票和乒乓球门票共10张,请求出小李可预定男篮门票和乒乓球门票各多少张?(2)若小李想预定三种门票共10张,其中足球门票是男篮门票的2倍,请问他的想法能实现吗?若能实现,请求出共有几种购票方案;若不能实现,请说明理由.8.八年级(4)要对上次期中考试中获得优异成绩的学生进行奖励,到新百大卖场购买学习用品.该商场有一种钢笔和笔记本单价分别为25元和5元,该商场为了促销定了两种销售方案,供顾客选择:甲方案:买一支钢笔送一本笔记本;乙方案:按购买金额打九折付款.该班购买这种钢笔20支,笔记本x(x≤10)本,如何选择方案购买省钱呢?10.某城市的一种型号的出租车起步价量是7元(即行驶路程在3千米内都付车资7元),超过3千米后,则每增加0.1千米加价0.2元(不足0.1千米按0.1千米计算).现在小明乘这种型号出租车从A地到B地后,共付车费15.80元,问A、B两地的距离最多是多少千米?11.某园林的门票规定如下:40人以下每人10元,40人以上享受团体优惠,其中40~80人九折优惠,80人以上八折优惠,初一甲、乙两班共101人去该园林春游,且甲班人数多于乙班人数,但小于总数的,若两班都以班为单位购票,则共付948元.①若两班联合起来作为一个团体购票,则可省多少钱?②两班各有多少学生?12.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问(1)到几点时,停车场内第一次出现无车辆?(2)到几点时,该公交公司已不能按6分钟间隔准时发车?并求出第一辆未能准时开出的车至少延误的时间.(3)若该公交公司要使车辆从上午6时至晚上8时都能按等间距开出,其他条件不变,则发车的间距至少为几分钟(精确到1分)?(4)现该公交公司计划增添部分车辆,使得从上午6时至晚上8时都能按6分钟间距发车,其他条件不变,则该公司至少要增添几辆车?14.明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法.(计件奖金=月销售量×每件所得奖金)同时获得如下信息:营业员小萍小华月销售量(件)150 200月总收入(元)1050 1200假设销售每件服装奖励a元,营业员月基本工资为b元.(1)求a、b的值;(2)若营业员小萍某月总收入不低于1300元,那么小萍当月至少要卖出服装多少件?15.工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:生产甲产品件数(件)生产乙产品件数(件)所用总时间(分钟)10 10 35030 20 850(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟;(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.16.在有16支球队参赛的足球甲级联赛中,每两支球队之间一个赛季要进行2场比赛,每支球队一个赛季要踢满30场球赛.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分.赛季结束,积分排第1的获得冠军,…积分排第15和第16名的球队降级(下赛季参加乙级联赛).某赛季第27轮比赛结束时,部分球队的积分排名如下表.各队末赛的3场比赛中,A、B、C、D四队的比赛全部在这四个队之间进行.球队积分排名甲队42 1乙队40 2………A队16 13B队16 13C队16 13D队16 13(1)第27轮比赛结束时,乙队负了7场,求乙队此时胜、平各多少场?(2)第27轮比赛结束时,甲队的负场数比乙队多,则甲队的胜、平、负场数各是多少?(3)若最后3场比赛A队得5分,B队一场未负得3分,则A队是否降级?为什么?17.一家服装经营店对员工实行“月总收入=基本工资+销售服装所获奖金”的方法付给员工报酬.现获知甲、乙两名员工所得报酬的信息如下:员工甲乙月销售件数(件)200 150月总收入(元)1400 1250若员工月基本工资为b元,销售每件服装奖励a元,月销售件数为x件,月总收入为y元.(1)列方程(组),求a,b的值;(2)写出y与x的函数关系式;(不用写出自变量x的取值范围)(3)有一位员工说他这个月的总收入是1600元,他说的对吗?若对,请求出他这个月销售服装的件数;若不对,请说明理由.(4)若要使一员工的月总收入不低于1800元,该员工当月至少要卖服装多少件?18.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A 商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元?20.某海产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量的范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.①开发商计划每年能有28万元的租金收入,你认为这一目标能实现吗?若能,应该如何安排A、B两类店面数量?若不能,说明理由.②为使店面的月租费最高,最高月租金是多少?21.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季比赛共需14场,现已比赛8场,输了一场,得17分,请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛的分析,这支球队打满14场比赛,得分不低于29分,就可达到预期的目的,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期的目标?22.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元单价每月用水量(吨)不超过6吨2元/吨4元/吨超过6吨,但不超过10吨的部分超过10吨部分8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?24.某中学初一(1)班计划用勤工俭学收入的66元钱,同时购买分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加校“艺术节”活动的同学,已知购买乙种纪念品的件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半.若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买的甲、乙、丙三种纪念品各多少件?25.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?。