建筑力学李前程习题解答
建筑力学李前程教材第四章习题解
P 4 3
A 2m (a)
B YB
q4-7】如图所示,已知P,求支座A的反力和杆BC受的力。 【解】BC为二力杆,BC杆受的力为轴力SBC。 由∑mA=0 得 SBClsin30o-Pl/2=0 P SBC=P l/2 l/2 X C 30 A 由∑Xi=0 得 Y o XA+SBCcos30 =0 B XA=-0.866P S 由∑Yi=0 得 YA+SBCsin30o-P=0 YA=0.5P
o
A
A
B
A
A
B
【4-6】已知:(a)m=2.5kN.m,P=5kN;(b)q=1kN/m, P=3kN。求刚架的支座A和B的约束反力。 m 【解】(a)受力分析图如右图 2.5m 由∑Xi=0 得 XA-P×3/5=0 XA=3P/5=3kN ;由∑mB=0 得 X Y m-YA×2+3P/5 ×2.5=0 , YA=5kN 由∑Yi=0 得 YA+YB-4P/5=0 , YB=-1kN (↓) (b)受力分析图如右图 由∑Xi=0 得 XA+P=0 , XA=-P=3kN 2m P 由∑mB=0 得 4q×2-P×3-YA×4=0 3m YA=-0.25kN X Y 由∑Yi=0 得 YA+YB-4q=0 , YB=4.25kN
A o A BC
[4-8]如图,已知P=2kN , q=500N/m。求支座A和B反力。 【解】由∑Xi=0 得 XB=P q 由∑mB=0 得 B P YA ×2-4q ×2=0 Y 2m YA=4q A 由∑Yi=0 得 2m 2m YB+YA-4q=0 Y YB=0
B A
XB
【4-15】已知q=10kN/m , m=40kN.m,求支座A反力。 【解】由于结构上没有水平方向的主动外力, q 故A铰支座水平方向的反力为零。 A B C 由图(a)可知,由三个竖向未知反力, 2m 2m 2m 平行力系只有两个方程,不能求解, Y Y (a) 那么,先看CD杆,见图(b), q C 由∑mC=0 得 D Y 2m 2m YD ×4-2q ×1-m=0 Y (b) YD=15kN; 再看整个结构,由∑mB=0 得 YD ×6-m-4q ×2-YA ×2=0 YA=-15kN(↓)
《建筑力学》李前程第十二章力法
第二节 力法的典型方程 12-2-2 力法的典型方程
1 0 2 0 3 0
1 11X1 12 X 2 13 X 3 1F 0 2 21 X1 22 X 2 23 X 3 2F 0 3 31 X1 32 X 2 33 X 3 3F 0
M i ds EI
式中:M i 是单位力 Xi = 1 单独作用下的弯矩值。
不在主对角线上的系数 ij 称为副系数,它的物理意义是:
当单位力 Xj = 1 单独作。
副系数与外荷载无关,不随荷载而改变,也是基本体系所固有的常数。
副系数 ij
21X1 22 X 2 2n X n 2F 0
n1 X1 n2 X 2 nn X n nF 0
称为力法的典型方程
典型方程中位于主对角线上的系数 ii 称为主系数。 它的物理意义是:
当单位力 Xi = 1 单独作用时,力Xi 作用点沿 Xi 方向产生的位移。 主系数与外荷载无关,不随荷载而改变,是基本体系所固有的常数。
这组方程的物理意义是: 基本结构在多余力和荷载的作用下,在去掉多余联系处的位移与 原结构中相应的位移相等。
20
第二节 力法的典型方程
12-2-2 力法的典型方程
对于 n 次超静定结构,力法的基本未知量是 n 个多余未知力 X1 , X2 , … , Xn , 力法的基本方程为:
11X1 12 X 2 1n X n 1F 0
在基本结构上施加相应的多余力后,它便于与原超静定结构等同。
3.应用变形条件求解多余力。
例题:
A
B
C
A
B
变形条件: C 截面处挠度等于零。 C 0
《建筑力学》_李前程__第十二章_力法概论
1 0 2 0 3 0
式中: Δ1 是点 B 沿 X1 方向的位移;Δ2 是点 B 沿 X2 方向的位移; Δ3 是点 B 沿 X3 方向的位移。
用Δ1 F 、Δ2 F 和Δ3 F 分别表示荷载单独作用时,点 B 沿 X1 、X2 和 X3 方向的位移。 用 11 、21 和 31 分别表示力 X1 = 1 单独作用时 , 点 B 沿 X1 、X2 和 X3 方向的位移。 用 12 、22 和 32 分别表示力 X2 = 1 单独作用时 , 点 B 沿 X1 、X2 和 X3 方向的位移。 用 13 、23 和 33 分别表示力 X3 = 1 单独作用时 , 点 B 沿 X1 、X2 和 X3 方向的位移。
26
第二节 力法的典型方程
12-2-2 力法的典型方程
对于 n 次超静定结构,力法的基本未知量是 n 个多余未知力 X1 , X2 , … , Xn , 力法的基本方程为:
11X1 12 X 2 1n X n 1F 0
21X1 22 X 2 2n X n 2F 0
n1 X1 n2 X 2 nn X n nF 0
25
第二节 力法的典型方程 12-2-2 力法的典型方程
1 11X1 12 X 2 13 X 3 1F 0 2 21 X1 22 X 2 23 X 3 2F 0
力法的基本方程
3 31 X1 32 X 2 33 X 3 3F 0
这组方程的物理意义是: 基本结构在多余力和荷载的作用下,在去掉多余联系处的位移与 原结构中相应的位移相等。
yC M 图 Bx
B
A MP xd x
是
MP
图对Y轴的面积矩,可写成:
A xc
其中: A --是 M P 图的面积
建筑力学李前程教材第十一章习题解
Pl 2Pl M P图
Pl
2l
l
P=1 2l M图 l l
【11-15】求刚架横梁中点C的竖向位移,各杆长同为l,EI相同。 【解】先求支座反力 C P 由∑X=0:XA=P 由∑M=0:YA=YB=P 作荷载作用下刚架的弯矩图, A X =P B 在刚架C点施加一单位荷载, 作单位荷载作用下刚架的弯矩图, Y =P Y =P 应用图乘法得:
A A B
C
A B 2
1 C M( x )M( x )dx EI 11q 4 1 1 2 1 2 q / 8 2 / 6 q / 8 / 2 3 / 8 EI 2 3 384EI
(b) 】(a)求支座反力 YA=P/2 , YB=3P/2 作荷载作用下的M图。 在外伸梁C点加一单位荷载,作 作单位荷载作用下的M图,用M图 的面积乘以单位荷载的M图的竖坐 标,得
1 1 P EI 2 4 2
P=1 Pl
Pl
P 3 16EI
M P图
M图
【11-16】求悬臂折杆自由端的竖向位移,各杆长同为l,EI相同。 【解】可不求支座反力, 直接作荷载作用下悬臂折杆 P 悬臂折杆的弯矩图, 在自由端施加一单位荷载, 2Pl Pl 作单位荷载作用下的弯矩图, 应用图乘法得:
P A B
Hale Waihona Puke C l/2 YB=3P/2
l YA=P/2
Pl/2 M图
l/3 l/3 M图 l/2 P=1
1 C M( x )M( x )dx EI P 3 1 1 1 11 P / 3 P / 2 / 3 EI 2 2 22 8EI
建筑力学李前程教材第六章习题解
Q图(kN)
N图(kN)
取节点B验算:∑mi=20kN.m-20kN.m=0 ∑Yi=45kN-45kN=0 ∑Xi=20kN-20kN=0 节点平衡, ∴ 计算正确
(f)先求支座反力,由∑Xi=0 得 XA=P=5kN 由∑mA=0 得 YB=(3q ×1.5+P ×2)/3=55/3kN 由∑Yi=0 得 YA=3q-55/3=35/3kN,做内力图。
YA
YB
【6-5】作下列各梁的剪力图和弯矩图。 M =8kN.m 【解】(a)先求支座反力, A 由∑mB=0 得 YA×l+M1-M2=0 Y YA=(M1-M2)/4=1kN 1kN 由∑Yi=0 得 YA+YB=0 , YB=-1kN (↓) 于是,QA=1kN,QB=1kN , 8 kN.m MA=8kN.m , MB=12kN.m 分别连直线,的Q图和M图,见右上图。
q=4kN/m A 3m YA 16 Q图(kN) 4
P=8kN B 3m YB
C
4
16
Pl/4=12 ql2/8 =18 M图(kN.m) 30
(e)先求支座反力, 由∑mD=0 得 YA×4-P×3-2q×1=0 YA=(3P+2q)/4=3.5kN 由∑Yi=0 得 YA+YD-P-2q=0 YD=P+2q-YA=6.5kN QA=YA=3.5kN , QB左=YA=3.5kN , QB右=YA-P=1.5kN ,QC= YA-P=1.5kN , QD=-YD=-6.5kN, MA=MD=0 , MB=YA×1=3.5kN.m , MC=YA ×2-P ×1=5kN.m
C D qb2/6 qb/2
取节点C验算: ∑mi=40+40-80 =0 ∑Yi=80-40-40 =0
《建筑力学》课程学习指导资料
《建筑力学》课程学习指导资料本课程学习指导资料根据该课程教学大纲的要求,参照现行采用教材《建筑力学》(李前程安学敏李彤主编,高等教育出版社,2004年)以及课程学习光盘,并结合远程网络业余教育的教学特点和教学规律进行编写。
第一部分课程的学习目的及总体要求一、课程的学习目的建筑力学是将理论力学中的静力学、材料力学、结构力学等课程中的主要内容,依据知识自身的内在连续性和相关性,重新组织形成的建筑力学知识体系。
研究土木工程结构中的杆件和杆系的受力分析、强度、刚度及稳定性问题。
它是力学结合工程应用的桥梁,同时为后续相关课程提供分析和计算的基础。
二、课程的总体要求通过该课程的学习,学生应掌握以下内容1.掌握静力学的基本概念及构件受力分析的方法;2.了解平面力系的简化,能较熟练地应用平面力系的平衡方程;3.能正确地计算在平面荷载作用下的杆件的内力,并作出内力图;4.掌握杆件在基本变形时的强度和刚度计算;5.了解压杆失稳的概念,能够进行临界压力计算;6.熟练掌握几何不变体系的简单组成规则及其应用;7.熟练掌握静定结构指定位移计算的积分法,叠加法和单位载荷法;8.弄懂力法原理,能熟练地应用力法计算超静定结构;9.弄懂位移法原理,能应用位移法计算连续梁和刚架。
第二部分课程学习的基本要求及重点难点内容分析第一章绪论1、本章学习要求(1) 应熟悉的内容建筑力学的任务,内容和教学计划安排;建筑力学教材和参考书;任课老师的联系方式(email)(2) 应掌握的内容结构与构件的概念;构件的分类:杆,板和壳,块体;刚体、变形固体及其基本假设;弹性变形和塑性变形(构件在外力作用下发生变形,如果外力去掉后能够恢复原状,变形完全消失,这种变形就是弹性变形;如果外力去掉后不能够恢复原状,有残余变形存在,这种变形就是塑性变形);载荷的分类:集中力和分布力。
真实的力都是分布力,集中力是一种简化形式。
(3) 应熟练掌握的内容材料力学的三大任务:强度,刚度,稳定性;杆件变形的4种基本形式:拉伸,扭转,剪切和弯曲。
建筑力学李前程教材第六章习题解
(x)
FA x
q
x
x 2
14.5x
qx2 2
(2m x 6m)
DB段
Fs (x) FB 3.5 (0 x 2m)
M (x) FBx (0 x 2m)
FA q 3kN m m=3kN.m FB
Ax x
2m
4m
B D
x 2m
8.5kN
Fs图
+ -
6kN
FB
a l
F,
FA
b l
F
(2) 将梁分为AC、CB 两段,
C
分析AC、CB 两段的内力图形状。
两段上不受外力作用,则有: 剪力图为水平线;弯矩图为斜直线。
(3) 计算各段内力极值
AC 段
FsA
FA
b l
F,
MA 0
FsC左 =FsCL
b FA = l F,
M CL
FA a
ab F l
建筑力学
(六) 主讲单位: 力学教研室
1
第六章 静定结构的内力计算
第一节 杆件的内力·截面法 第二节 内力方程·内力图 第三节 用叠加法作剪力图和弯矩图 第四节 静定平面刚架 第五节 静定多跨梁 第六节 三拱桥 第七节 静定平面桁架 第八节 各种结构形式及悬索的受力特点
2
第六章 静定结构的内力计算
1) 同一位置处左右侧截面上的内力分量必须具有相同的正负号。
2) 轴力以拉(效果)为正,压(效果)为负。
FN FN
FN FN
截面
符号为正
截面
符号为负
最新建筑力学-李前程第3章习题课教学讲义ppt课件
问题。如果不尽快帮助一些学生摆脱厌学情绪,不仅会影响教育的发展,
同时也会造就出一大批有心理偏差的接班人和建设者。因此,对中小学
生的厌学原因进行分析,从而找到解决这一问题的对策,是每一名教育
工作者都应深入思考的问题。
论文摘 要
中小学生厌学的风气在社会上日渐强盛,厌学已经成为
中小学生学习问题中最为普遍,也是最具危害性的问题。这
面激发学生的学习兴趣,调动学生的学习主动性,全面提升
教师的素质,发挥教师的情感作用,建立良好的师生关系,
改善家庭的教育方式等方面解决目前中小学学生的厌学现象。
主要内容
一、导致中小学生厌学的主要原因
二、解决中小学生厌学问题的对策
一、导致中小学生厌学的主要原因
(一)不成熟的心理生理特点,不正确的学 习动机,是导致中小学生产生厌学心理的主 观原因
教育改革的首要问题就是秉弃旧的教育观念,树立 正确的教育观念。作为学校的领导者,必须要有正 确的教育观和学生观,把原有的“应试教育”观念 真正地转向提高素质教育的轨道上来。如果学校对 学生实施了真正意义上的素质教育,那么学生就会 彻底地从繁重的学习任务中解脱出来。学校全面实 施素质教育,重视学生素质和特长的培养,不但可 以消除中小学生由一味追求高分数而导致的厌学心 理,同时还可以提高学生在未来社会中的竞争能力。
(二)来自外界环境的诸多因素是导致中小学生产生 厌学心理的客观原因
1、不良社会文化的影响,是导致中小学生产生厌 学心理的原因之一
2、传统的教育观念是导致中小学生产生厌学心理 的本质原因
3、教师的教育方式与自身的师德是影响中小学生 产生厌学心理的重要原因
4、家长的严要求高期望是造成中小学生厌学的一 大“动力”
们常常对老师、家长提出的学习要求故意抵触对立,好象只有不学习才
建筑力学课后习题答案,建筑力学课后习题答案李前程
建筑力学课后习题答案,建筑力学课后习题答案李前程《建筑力学》习题集一、单项选择题在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。
1.三力平衡定理是指()A.共面不平行的三个力若平衡必汇交于一点B.共面三力若平衡,必汇交于一点C.三力汇交于一点,则这三个力必互相平衡D.三力若平衡,必汇交于一点2.光滑面对物体的约束反力,作用点在接触面上,其方向沿接触面的公法线,并且有()A.指向受力物体,为拉力B.指向受力物体,为压力C.背离物体,为压力D.背离物体,为拉力3.两根拉杆的材料、横截面积和受力均相同,而一杆的长度为另一杆长度的两倍。
试比较它们的轴力、横截面上的正应力、轴向正应变和轴向变形。
正确的是()A.两杆的轴力、正应力、正应变和轴向变形都相同B.两杆的轴力、正应力相同,而长杆的正应变和轴向变形较短杆的大C.两杆的轴力、正应力和正应变都相同,而长杆的轴向变形较短杆的大D.两杆的轴力相同,而长杆的正应力、正应变和轴向变形都较短杆的大4.圆轴扭转时,若已知轴的直径为d,所受扭矩为T,试问轴内的最大剪应力τma x和最大正应力σmax各为()A.τmax=16T/(πd),σmax=0B.τmax=32T/(πd),σmax=0C.τmax=16T/(πd),σmax=32T/(πd)D.τmax=16T/(πd),σmax=16T/(πd)5.梁受力如图示,则其最大弯曲正应力公式:σmax=Mymax/Iz中,ymax为()333333A.dB.(D-d)/2C.DD.D/26.工程中一般是以哪个指标来区分塑性材料和脆性材料的()A.弹性模量B.强度极限C.比例极限D.延伸率7.一悬臂梁及其所在坐标系如图所示。
其自由端的()A.挠度为正,转角为负C.挠度和转角都为正B.挠度为负,转角为正D.挠度和转角都为负8.梁的横截面是由一个圆形中央去除一个正方形而形成的,梁承受竖直方向上的载荷而产生平面弯曲。
建筑力学习题及答案
一、填空题(本大题共11小题,每空1分,共20分)1、对于作用在刚体上的力,力的三要素是大小、方向、作用点。
2、力对矩心的矩,是力使物体绕矩心转动效应的度量。
3、杆件变形的基本形式共有轴向拉伸(压缩)变形、弯曲、剪切和扭转四种。
4、轴力是指沿着杆件轴线的内力。
5、轴向拉伸(压缩)的正应力大小和轴力的大小成正比,规定受拉为正,受压为负。
6、两端固定的压杆,其长度系数是一端固定、一端自由的压杆的 4 倍。
7、细长压杆其他条件不变,只将长度增加一倍,则压杆的临界应力为原来的0.25 倍。
8、在力法方程中,主系数δii恒大于零。
9、力矩分配法的三个基本要素为转动刚度、分配系数和传递系数。
10、梁的变形和抗弯截面系数成反比。
11、结构位移产生的原因有荷载作用、温度作用、支座沉降等。
二、选择题(本大题共15小题,每题2分,共30分)1.固定端约束通常有(C)个约束反力。
(A)一(B)二(C)三(D)四2.如右图所示结构为(A)。
C.几何不变体系,无多余约束D.几何不变体系,有一个多余约束3.若刚体在二个力作用下处于平衡,则此二个力必(A)。
A.大小相等,方向相反,作用在同一直线。
B.大小相等,作用在同一直线。
C.方向相反,作用在同一直线。
D.大小相等。
4.力偶可以在它的作用平面内(D),而不改变它对物体的作用。
A.任意移动B.既不能移动也不能转动C.任意转动D.任意移动和转动5.一个点和一个刚片用( C )的链杆相连,组成几何不变体系。
A .两根共线的链杆B .两根不共线的链杆C .三根不共线的链杆D .三根共线的链杆 6.静定结构的几何组成特征是( D )。
A .体系几何可变B .体系几何瞬变C .体系几何不变D .体系几何不变且无多余约束 7.图示各梁中︱M ︱max 为最小者是图( D )。
A B CD8.简支梁受力如图示,则下述正确的是( B )。
A. F QC (左)=F QC (右),M C (左)=M C (右) B.F QC (左)=F QC (右)-F ,M C (左)=M C (右)C. F QC (左)=F QC (右)+F ,M C (左)=M C (右)D. F QC (左)=F QC (右)-F ,M C (左)≠M C (右)9.工程设计中,规定了容许应力作为设计依据:[]nσσ=。
《建筑力学》李前程第九章梁的应力解析
两个概念
第二节 梁的正应力
中性层:梁内一层纤维既不伸长也不缩短, 因而纤维不受拉应力和压应力,此层纤维称中性层。
中性轴:中性层与横截面的交线。 中性层
中性轴
15
第二节 梁的正应力 二、 正应力公式推导 推导公式时,要综合考虑 几何 ,物理 和 静力学 三方面 。 取 一 纯弯曲 梁段来研究 。
所以,在梁的横截面上一般既有 正应力,又有 切应力。
10
第二节 梁的正应力
纯弯曲 ——若梁在某段内各横截面上的弯矩为常量 ,剪力为零,则该段梁 的弯曲就称为纯弯曲。
非纯弯曲——各截面不仅有弯矩,还有剪力的作用,产生弯曲变形的同时, 伴随有剪切变形。这种变形形式称为非纯弯曲。
aF
A C
Fa
M
Be
D C
M
e
D
梁的CD 段——纯弯曲。 梁的AC、DB 段——非纯弯曲。
11
第二节 梁的正应力 梁的CD 段——纯弯曲。
12
第二节 梁的正应力
1、研究内容
1、正应力的分布情况 2、正应力计算公式
2、分析思路:(变形固体的力学分析方法)
1、变形的几何关系 2、力与变形的物理关系 3、静力平衡条件
13
第二节 梁的正应力
M z
y ( )max
26
第三节 常用截面梁的惯性矩、平行移轴公式
y 一、 简单截面的惯性矩计算
1.矩形截面对 y , z 轴的惯性矩
dy
已知:矩形截面b× h, C 点为形心
dA y
h
求:Iy, Iz
C
z
解:取平行于z 轴和 y 轴的微元面积
dAbdy
Izh 2h 2y2dAh 2h 2y2bdyb 1h 23
建筑力学(习题答案)
建筑力学复习题一、判断题(每题1分,共150分,将相应的空格内,对的打“√”,错的打’“×”)第一章静力学基本概念及结构受力分析1、结构是建筑物中起支承和传递荷载而起骨架作用的部分。
(√)2、静止状态就是平衡状态。
(√)3、平衡是指物体处于静止状态。
(×)4、刚体就是在任何外力作用下,其大小和形状绝对不改变的物体.(√)5、力是一个物体对另一个物体的作用。
(×)6、力对物体的作用效果是使物体移动.(×)7、力对物体的作用效果是使物体的运动状态发生改变.(×)8、力对物体的作用效果取决于力的人小。
(×)9、力的三要素中任何一个因素发生了改变,力的作用效果都会随之改变。
(√)10、既有大小,又有方向的物理量称为矢量.(√)11、刚体平衡的必要与充分条件是作用于刚体上两个力大小相等,方向相反。
(×)12、平衡力系就是合力等于零的力系.(√)13、力可以沿其作用线任意移动而不改变对物体的作用效果.(√)14、力可以在物体上任意移动而作用效果不变.(×)15、合力一定大于分力.(×)16、合力是分力的等效力系.(√)17、当两分力的夹角为钝角时,其合力一定小于分力。
(√)18、力的合成只有唯一的结果。
(√)19、力的分解有无穷多种结果。
(√)20、作用力与反作用力是一对平衡力。
(×)21、作用在同一物体上的三个汇交力必然使物体处于平衡。
(×)22、在刚体上作用的三个相互平衡力必然汇交于一点。
(√)23、力在坐标轴上的投影也是矢量。
(×)24、当力平行于坐标轴时其投影等于零。
(×)25、当力的作用线垂直于投影轴时,则力在该轴上的投影等于零。
(√)26、两个力在同一轴的投影相等,则这两个力相等.(×)27、合力在任意轴上的投影,等于各分力在该轴上投影的代数和。
(√)28、力可使刚体绕某点转动,对其转动效果的度量称弯矩。