直角坐标系教学设计
《空间直角坐标系》教学设计 (4)
《空间直角坐标系》教学设计目的要求:理解空间直角坐标系、掌握两点间的距离公式重 点:两点间的距离公式难 点:空间直角坐标系的概念教学方法:讲练结合教学时数:2课时教学进程:一、空间直角坐标系在空间内作三条相互垂直且相交的数轴Oz Oy Ox ,,,这三条数轴的长度单位相同.它们的交点O 称为坐标原点. Oz Oy Ox ,,称为x 轴、y 轴和 z 轴.一般地,取从后向前,从左向右,从下向上的方向作为x 轴,y 轴, z 轴的正方向(图6.1). Oz Oy Ox ,,统称为坐标轴.由两个坐标轴所确定的平面,称为坐标平面,简称坐标面. x 轴,y 轴, z 轴可以确定zOx yOz xOy ,,三个坐标面.这三个坐标面可以把空间分成八个部分,每个部分称为一个卦限.其中xOy 坐标面之上,yOz 坐标面之前,xOz 坐标面之右的卦限称为第一卦限.按逆时针方向依次标记xOy 坐标面上的其他三个卦限为第二、第三、第四卦限.在xOy 坐标面下面的四个卦限中,位于第一卦限下面的卦限称为第五卦限,按逆时针方向依次确定其他三个卦限为第六、第七、第八卦限.(图2)图1表示的空间直角坐标系也可以用右手来确定.用右手握住z 轴,当右手的四个手指从x 轴正向以 90的角度转向y 轴的正向时,大拇指的指向就是 z 轴的正向.图1 图2二、空间一点的坐标已知M 为空间一点.过点M 作三个平面分别垂直于x 轴,y 轴和z 轴,它们与x 轴、y 轴、z 轴的交 点分别为P、Q 、R (图3),这三点在x 轴、y 轴、z 轴上的坐标分别为z y x ,,.于是空间的一点M 就唯一确定了一个有序数组z y x ,,.这组数z y x ,,就叫做点M 的坐标,并依次称z y x ,,为点M 的横坐标,纵坐标和竖坐标.坐标为z y x ,,的点M 通常记为),,(z y x M .图3反过来,有一个序数组z y x ,,,我们在x 轴上取坐标为x 的点P ,在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P 、Q 与R 分别作x 轴、y 轴与z 轴的垂直平面.这三个垂直平面的交点M 即为以有序数组z y x ,,为坐标的点(图3).我们通过这样的方法在空间直角坐标系内建立了空间的点M 和有序数组z y x ,,之间的一一对应关系.三、两点间的距离公式设),,(),,,(22221211z y x M z y x M 为空间内的两个点,由图4可知21,M M 两点间的距离为 2221212M M M N NM =+(12M NM ∆是直角三角形),其中222111(M N M P PN M PN =+∆是直角三角形), 而,1212y y Q Q PN -==1212PM P P x x ==-,.122z z NM -=,所以21M M 之间的距离为21221221221)()()(z z y y M M -+-+-=χχ.例1 求之间的距离)3,2,1(),0,1,2(21-P -P .解 22221)03())1(2()2)1((-+--+--=P P 图4 .27=小结本讲内容: 强调空间直角坐标系、两点间的距离公式作业: P184 1(1);(2)。
平面直角坐标教案5篇
平面直角坐标教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如工作总结、工作计划、作文大全、心得体会、申请书、演讲稿、教案大全、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as work summaries, work plans, essays, experiences, application forms, speeches, lesson plans, and other sample articles. If you want to learn about different data formats and writing methods, please pay attention!平面直角坐标教案5篇一个教案使教师更好地在教学中应对学生的学习差异和特殊需求,老师在编写教案时需要充分考虑学生的学习需求和兴趣点,以下是本店铺精心为您推荐的平面直角坐标教案5篇,供大家参考。
《平面直角坐标系》教学设计
《平面直角坐标系》教学设计教学目标根据新课标要求和学生现有知识水平,从三个方面提出本节课的教学目标:1、理解平面直角坐标系的有关概念,并学会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。
2、通过对平面直角坐标系的概念理解,让学生感受到一种量随另一种量变化的现象,体会数形结合思想的作用。
3、通过平面直角坐标系点与坐标之间关系的探究过程及解决简单的实际问题,培养学生的好奇心,创新精神,通过学生参与数学活动增强团队精神,培养学生合作意识。
教学过程活动一、创设情境,引出新知(全体活动)1、出示西夏区卫星图片,图中标示出十八中、十四中、北民大、宁大北校区的位置。
2、问题:你能表示出这种位置关系吗?3、问题:如果引入方格线,现在你能表示图中十八中、十四中的位置吗?4、问题:如果在此基础上,以十八中为原点作两条互相垂直的数轴,分别取向右,向上为正方向,一个方格的边长看做一个单位长度,那么你能表示出十六中、二民院、宁大北校区的位置吗?活动二、探索新知,形成概念(全体活动、小组活动)1、出示平面直角坐标系发明人数学家笛卡尔资料。
2、通过教师引导、操作、逐步演示的方式,师生共同板演画图学习平面直角坐标系及其相关概念。
3、教师引导,利用多媒体演示确定平面内点的位置的方法。
4、在建立好平面直角坐标系的题图中,那么你能表示十六中的位置吗?其余的各地点坐标如何表示?小组交流,并请一位同学为大家叙述E、G、F坐标得到的过程。
5、问题:图中各地点的坐标是否永远不变?明晰:当坐标轴的位置发生变动时,各点的坐标相应地变化。
即坐标随坐标系的变化而变化。
活动三、操作演练、形成技能(小组活动,全体活动)1、提出问题:①、写出图中的多边形ABCD各顶点的坐标。
②E(-2,3),F(-2,-2)G(3,-2)H(3,3)你能在图中描出以上各点吗?③B、E、H、C的坐标之间有什么关系,其所在的线段的位置有什么特征?图中还有具备这种关系的点吗?④E、F的坐标之间有什么关系,线段EF的位置有什么特征?⑤你得到了什么结论?2、小组讨论。
教学设计平面直角坐标系
教学设计平面直角坐标系一、教学目标:1.了解平面直角坐标系的基本概念与要素。
2.掌握如何在平面直角坐标系中表示点的位置。
3.理解和应用平面直角坐标系进行坐标计算和几何图形的描述。
二、教学准备:1.教学工具:黑板、彩色粉笔、投影仪。
2.教学材料:教材、课件、练习册。
三、教学内容和步骤:步骤1:引入通过提问激发学生对平面直角坐标系的认识和理解,例如:“你们曾在什么情况下接触过坐标系?在哪些场景下会用到坐标系?”引导学生思考坐标系的实际应用。
步骤2:概念解释通过投影仪或黑板,展示平面直角坐标系的图像并解释各要素的含义和作用,“横坐标和纵坐标的数值分别代表了点在水平和竖直方向上的位置,坐标原点(0,0)是坐标系的起点,所有点的位置都可以通过横纵坐标配对表示。
”引导学生掌握坐标系的基本概念。
步骤3:坐标表示通过一些简单的例子,让学生掌握如何在平面直角坐标系中表示点的位置,例如让学生找出指定点的坐标。
步骤4:坐标计算让学生学习如何通过坐标计算两点之间的距离,引导学生思考如何在坐标系上表达和计算线段的长度。
步骤5:几何图形描述通过教材或自行设计相关例题,让学生学习如何在平面直角坐标系中描述和绘制简单的几何图形,如直线、曲线、矩形、正方形等。
步骤6:实际应用展示一些实际应用问题,引导学生运用平面直角坐标系解决问题,如航空控制、地理定位等。
四、教学方法:1.课堂讲授与板书相结合,通过教师引导学生掌握知识点。
2.让学生通过练习和实际问题解决来巩固所学知识,培养学生应用知识解决问题的能力。
五、教学评价:1.在课堂中设置自主训练环节,让学生运用所学知识解决简单问题。
2.在课后布置作业,测试学生对平面直角坐标系的理解和运用能力。
3.对学生的作业进行批改与评价,及时给予学生反馈。
六、拓展延伸:教学以示例为主的方法能帮助学生更好地掌握平面直角坐标系的基本概念和应用。
教师可以鼓励学生自行设计例题,并与同学分享探讨,拓展学生的思维能力和应用能力。
初中数学初二数学上册《平面直角坐标系》教案、教学设计
c.如何利用坐标系解决实际问题?
2.各小组汇报讨论成果,教师进行点评总结坐标系的实际应用和坐标性质的作用。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
a.填空题:给出一些点的坐标,让学生填写对应的点。
b.选择题:判断坐标的性质,如平移、对称等。
4.小组合作,探讨坐标系的平移、对称性质在解决几何问题中的应用。要求每组选取一个典型问题进行详细解答,并在课堂上进行分享。这个作业有助于培养学生的团队协作能力和表达能力。
5.针对课堂学习内容,撰写学习心得体会,总结自己在平面直角坐标系知识方面的收获和不足。要求字数不少于300字,让学生在反思中不断提高。
4.分层次设计练习题,针对不同水平的学生,提高他们在坐标系知识方面的掌握程度。同时,注重题目的实际应用背景,培养学生的数学建模能力。
5.教学过程中,注重启发式教学,引导学生主动发现问题、解决问题,提高学生的自主探究能力。
6.定期进行课堂小结,帮助学生总结所学知识,形成知识体系。同时,关注学生的学习反馈,调整教学策略,提高教学效果。
2.完成教材课后练习题,包括填空题、选择题和计算题。这些题目涵盖了本节课的重点知识,有助于学生巩固坐标的表示方法和性质,提高运算能力。
3.设计一道实际问题,要求学生运用坐标系知识进行解答。例如:在学校的平面图上,标出教学楼、操场和食堂的位置,并计算它们之间的距离。这个作业旨在培养学生将实际问题转化为数学问题的能力,提高数学建模能力。
难点:将抽象的坐标系与实际情境相结合,运用数学知识解决现实问题。
(二)教学设想
1.采用情境导入法,以生活中的实际问题为例,引导学生认识到坐标系在解决实际问题时的重要性,激发学生的学习兴趣。
1.3.1 空间直角坐标系教学设计-2023学年高二上学期数学人教A版(2019)选择性必修第一册
1.3.1 空间直角坐标系一、教学目标1、了解掌握空间直角坐标系;2、通过类比的方式快速掌握空间直角坐标系及其应用.二、教学重点、难点重点:空间直角坐标系的理解与掌握. 难点:空间直角坐标系的熟练应用.三、学法与教学用具1、学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标.2、教学用具:多媒体设备等四、教学过程(一)创设情景,揭示课题平面向量与平面直角坐标系的关系OA xi y j =+向量a 的坐标表示为(,)a x y =已知1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--布置学生阅读课本1617P P -,思考空间向量与平面向量的类比关系,观察两种向量的关联与区别.(二)阅读精要,研讨新知【类比转化】通过空间向量与平面向量的类比,快速掌握空间向量在空间直角坐标系中空间向量与空间直角坐标系空间直角坐标系Oxyz ,其中{,,}i j k 为单位正交基底,O 为原点,坐标轴为x 轴、y 轴、z 轴,坐 标平面为Oxy 平面,Oyz 平面,Ozx 平面,且把空间分成八个部分.本书建立的皆为右手直角坐标系.OA xi y j zk =++点(,,)A x y z 中的x 叫做横坐标,y 叫做纵坐标,z 叫做竖坐标.a xi y j zk =++向量a 的坐标表示为(,,)a x y z =【例题研讨】阅读领悟课本18例1(用时约为1分钟,教师作出准确的评析.) 例1如图 1.3-6, 在长方体OABC D A B C ''''-中,3,4,2OA OC OD '=== 以111{,,}342i j k 为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出,,,D C A B '''四点的坐标;(2)写出向量,,,A B B B A C AC ''''''的坐标.解:(1)因为002OD i j k '=++,所以(0,0,2)D ', 因为040OC i j k =++,所以(0,4,0)C ,点A '在x 轴,y 轴,z 轴上的射影分别为,,A O D ' 且在坐标轴上的坐标分别为3,0,2 所以(3,0,2)A '点B '在x 轴,y 轴,z 轴上的射影分别为,,A C D ' 且在坐标轴上的坐标分别为3,4,2 所以(3,4,2)B '.(2)040(0,4,0)A B OC i j k ''==++=,002(0,0,2)B B OD i j k '=-=+-=-340(3,4,0)A C A D D C i j k ''''''=+=-++=-342(3,4,2)AC AO OC CC i j k ''=++=-++=-. 【小组互动】完成课本18P 练习1、2、3、4,同桌交换检查,老师答疑.【练习答案】(三)探索与发现、思考与感悟1.在空间直角坐标系中,点(2,1,4)P -关于点()2,1,4M --的对称点的坐标是( ) A .(0,0,0) B .214()--,, C .6312()--,, D .2312()-,, 解:设所求对称点为,(),P x y z ',则点M 为线段PP '的中点, 类比直角坐标系中的中点坐标公式可得222112442x yz-+⎧=⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩,解得6,3,12x y z ==-=-,故选C2.已知棱长为3的正四面体A BCD -,O 为A 在底面BCD 上的射影,建立如图所示的空间直角坐标系,点B 的坐标是_________.解:由已知BCD ∆为边长为3的正三角形,则BC 33所以01333233360332B B y x =-==-=-, 所以点B 的坐标为33(0)2-,. 答案:33(0)2--, 3.(多选)在空间直角坐标系中,已知点(,,)P x y z ,那么下列说法正确的是( ) A .点P 关于x 轴对称的点的坐标是1(,,)P x y z -;B .点P 关于yOz 平面对称的点的坐标是2,(,)P x y z --;C .点P 关于xOy 平面对称点的坐标是3(,,)P x y z -;D .点P 关于原点对称点的坐标是4(,,)P x y z ---.解:对于A ,(,,)P x y z 关于x 轴对称的点的坐标是()1,,P x y z --,故A 错误; 对于B ,(,,)P x y z 关于yOz 平面对称的点的坐标是()2,,P x y z -,故B 错误; 对于C ,(,,)P x y z 关于xOy 平面对称的点的坐标是()3,,P x y z -,故C 正确; 对于D ,(,,)P x y z 关于原点对称点的坐标是()4,,P x y z ---,故D 正确. 故选CD(四)归纳小结,回顾重点空间向量与空间直角坐标系空间直角坐标系Oxyz,其中{,,}i j k 为单位正交基底,O 为原点,坐标轴为x 轴、y 轴、z 轴,坐 标平面为Oxy 平面,Oyz 平面,Ozx 平面,且把空间分成八个部分.本书建立的皆为右手直角坐标系.OA xi y j zk =++点(,,)A x y z 中的x 叫做横坐标,y 叫做纵坐标,z 叫做竖坐标.a xi y j zk =++向量a 的坐标表示为(,,)a x y z =(五)作业布置,精炼双基1.完成课本22P 习题1.3 1、2、32.预习1.4 空间向量的应用五、教学反思:(课后补充,教学相长)。
数学空间直角坐标系教学设计
(2)为什么?
不能。住楼上的不能在平面直角坐标系里正确反映。
由现实中的例子将平面直角坐标系推广。
为了准确表示自己的住处。我们需要如何变化坐标系才可以准确表示我们的住处?
在坐标系中加入一个竖着的轴。
引出空间直角坐标系。
1.、现用我们熟悉的单位正方体做模型来建立。(PPT页3)
高一数学
空间直角坐标系
教学知识点:1,空间直角坐标系的建立。
2,空间中任意点的概念,画法。
3,中点,对称点的求法。
教学重难点:空间直角坐标系的建立。
教学流程:
↓
↓
↓
↓
配套:(空间直角坐标系.ppt)
教学过程:
老师
学生
教学意图
引入:现在大家都住在学校附近,以学校及其周边的地面建立平面直角坐标系。大家的住处就能显示在上面了。(PPT页2)
课堂教学总结:
本节课学习了空间直角坐标系的概念及其相关内容,重在使学生熟悉空间直角坐标系,并能灵活运用它来帮助解决实际问题。
重视知识与实际的联系。通过例题讲解,诱导学生自主分析归纳出教学知识,活泼课堂气氛。
重视引导学生,在老师的带领下让学生自然轻松地学会空间直角坐标系及其相关内容。为后面的空间两点间距离公式做准备。
思考,书写。
初步运用空间直角坐标系。
3、例,(PPT页5)已知点M(1,2,3),在空间直角坐标系中画出它的位置。
(介绍空间直角坐标系中点的作法。)
学习,作图。
让学生了解空间中任意点的画法。
练习:已知点N(-2,2,-1),在空间直角坐标系中画出它的位置。
作图。
让学生熟悉空间直角坐标系中任意点的作法。
《空间直角坐标系》教学设计 (3)
《空间直角坐标系》教学设计一、教学目标:1、知识技能目标:(1)能说出空间直角坐标系的构成,特征。
(2)会自己画出空间直角坐标系。
(3)能够在空间直角坐标系下表示点。
2、过程与方法:尝试自己建立空间直角坐标系,在这一过程中体会空间直角坐标系的特点。
3、情感目标:培养学生严谨的学习态度以及勇于探索的学习精神。
说明:教学目标是在进行了学习者的学习需求分析基础上制定的,分析了学习者的现有状态、想要达到的理想状态、以及当前存在的问题,针对这些制定出学习目标。
教学目标分为认知领域、动作技能领域和情感态度领域三维目标。
在制定具体教学目标时,使用行为动词进行表述,这样才可以使教学目标更具有可操作性。
二、教学任务分析1、学生的起点能力:学生已经掌握平面直角坐标系的知识,又学习了立体几何内容,具备了一定的空间想象能力。
2、学习类型与先决条件:本课属于智力技能中的规则学习,先决条件是规则中的有关要领要先行掌握。
课时安排:1课时说明:任务分析是教学目标设计的一个重要组成部分,它是对学生完成任务所允许的条件进行分析。
因此在进行教学目标设计时,需要见其作为目标设计的一部分。
教学重点和难点重点:空间直角坐标系的建立过程难点:空间任意点的坐标如何表示教学方法:探究式教学手段:实物模型,多媒体教学任务:课前准备:学生根据自己的预习制作空间直角坐标系模型由实际问题引出空间直角坐标系,探索空间直角坐标系的建立方法讨论分析空间任意点的坐标表示说明:教学任务的制定采用了“信息加工分析法”将学习过程看作是信息流的流动过程,所以这种方法强调任务分析过程中的连续性。
三、教学过程说明:根据布鲁纳发现学习的教学理论,学习过程分成以下几步:创设问题情境,使学习者在情境中产生矛盾,提出要解决的问题;学习者利用所提供的材料,对问题提出假设,并检验假设,不同观点可以争论;对争论作出总结,得出结论。
这种发现学习的教学顺序,实际上就是从具体到抽象的教学顺序,它有利于激发学习者的智慧潜能,有利于培养学习者的内在动机,学会发现的技巧。
1.3.1空间直角坐标系(教学教学设计)-高二数学同步备课系列(人教A版2019选择性必修第一册)
- 提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
- 讲授法:通过详细讲解,帮助学生理解空间直角坐标系的基本概念和性质。
- 实践活动法:设计小组讨论,让学生在实际操作中加深对坐标系的理解。
- 合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
在能力方面,学生已经具备了一定的逻辑推理能力和数学抽象能力。他们能够通过例题解析和实际问题解决,运用逻辑推理方法,掌握空间直角坐标系的运算规则和解题方法。然而,空间想象能力是学生在学习空间直角坐标系时面临的一大挑战。空间直角坐标系是一个三维的概念,学生需要具备良好的空间想象能力,才能更好地理解和运用空间直角坐标系。
r = √(x^2 + y^2 + z^2)
其中,r表示点P到原点O的距离。
4. 坐标点的坐标应用
①坐标应用的定义:坐标应用是指在空间直角坐标系中,利用坐标点的坐标值进行实际应用的过程。
作用与目的:
- 帮助学生深入理解空间直角坐标系的基本概念和性质,掌握其在数学中的应用。
- 通过实践活动,培养学生的动手能力和解决问题的能力。
- 通过合作学习,培养学生的团队合作意识和沟通能力。
3. 课后拓展应用
教师活动:
- 布置作业:根据空间直角坐标系的性质和应用,布置适量的课后作业,巩固学习效果。
教学实施过程
1. 课前自主探索
教师活动:
- 发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
- 设计预习问题:围绕空间直角坐标系的概念和性质,设计一系列具有启发性和探究性的问题,引导学生自主思考。
“平面直角坐标系”教学设计与反思
描述 出首都北京 的位置 的?( 通过经纬度) 学没有站起来 ,他们应该在平面坐标系 中 而是站在研究者的角度 深入其境 ,不是简
由上面的引例 ,使我们联想到 ,为 了
的方 向的数 和一个纵 的方 向的数来共 同确
2 .请这一部分 同学说 出 自己的坐标 ,
确定一个点在平 面内的位置 ,需要一个横 全班 同学思考他们 的坐标有什 么特点 ?
3 ,请 同学们 仔细 想想 ,这 些没 站起 学 生 的思 维 活 动 很 少 干 预 ,教学 过 程 呈 现
一
定 ,这样我们就可 以通过建立一个相似于 来 的 同学 中 ,有一个 同学 的位置 非 常特
经 纬线 的直角坐标 系 ,用两个数来确定这 殊 ,这人是谁 ?他 的坐标有什么特点? 个点 的位置 . 图 1 如 :
表格
第二象 限 2一 第一象月
l
I l l l 、
种 比较 流畅的特 征. 节课 体现 了学生 整
与 学 生 、学 生 与 教 师 之 间 以 “ 话 ” 讨 对 、“
根 据 活动 一 、二 、三 ,请 完 成下 列 论 ”的学习方法 ,以互 助、合作 、独立思
坐标 ,第 3排 同学所在排为纵坐标 ,并规 识 的过程而不单纯注重学生对知识 内容 的 书本上学数 学到在生活 中感悟数学 ,体现 定 向前为正 ,向右为正. 各 自用一 对有 认识 ,因为 “ 请 过程”不仅能引导学 生更好 ( 学课 程标准》 所 倡导 的教 与学 的本 质 馓
序 实 数 对 表 示 出 自己在 班 级 中的 位 置 . 地理解知识 ,还能够引导学生在活动中思 意 义.
课 后 练 习与 评 价 P ; 6
序实数对一一对应.
平面直角坐标系教学设计
《平面直角坐标系》教学设计一、教学目标:(一)【知识目标】1、了解平面直角坐标系的产生过程;2、认识平面直角坐标系及其相关概念;3、探索象限内点的特征与坐标轴上点的特征。
(二)【技能目标】1、会正确画出平面直角坐标系;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;3、在给定的条件下,能够根据象限内点的特征与坐标轴上点的特征,结合特殊点,利用方程、不等式等已有的知识解决一些简单的数学问题;4、初步培养学生把现实问题抽象成数学模型的能力。
(三)【情感目标】1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。
3、让学生得到尝试、成功的情感体验,感受数学之美。
二、教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点。
2、教学难点:探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用。
三、教学过程:(一)创设问题情境引例:我们的教室共有56个座位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来玩个“点将”游戏,你们是“将”,由我来点,点到的同学说出自己的座位号几排几列)。
同时演示“点将”游戏,游戏规则:(1)老师报到学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。
奖励:同学们的掌声。
再提问你如何来确定自己的座位?先让学生自己思考,也可以进行小范围的讨论,学生可以归纳出:要确定一个学生的座位必须有两个数,一个是排数,一个是列数。
那么再问2排3列与3排2列是否是同一个座位?由此你认为表示座位与两个数的顺序有关吗?结合课件演示,让学生进行讨论与思考,可以发现:一个“将”的座位应该由一对有序的数组构成的。
(二)构建数学模型由上面的例子中我们可以发现,我们学生的座位是由一对有序的数组构成的,那么就我们已有的数学知识而言,我们能否将其也用数学知识来解决呢?教师在这个时间可以先提问一个数是如何来确定它的位置的,学生马上可以想到有关数轴的知识。
八年级数学下册《平面直角坐标系》教案、教学设计
4.课后反思:
-要求学生课后认真总结本节课的学习内容,反思自己在学习过程中遇到的困难和问题,并提出解决方案。
-教师在下次课前检查学生的反思情况,了解他们的学习进度,为下一步教学提供参考。
5.预习任务:
-布置下一节课的预习任务,让学生提前了解下一章节的知识点,为课堂学习做好准备。
-采用多元化的评价方式,如课堂提问、作业、小组讨论、小测验等,全面了解学生的学习情况。
-及时给予学生反馈,鼓励他们积极思考、勇于提问,帮助他们克服学习难点。
-关注学生的个体差异,针对不同层次的学生给予个性化的辅导和指导。
4.教学反思:
-在教学过程中,教师要时刻关注学生的学习状态,根据实际情况调整教学策略。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平面直角坐标系的基本概念、各象限内点的坐标特征、距离的计算公式、线性方程的图像表示。
2.难点:坐标点的准确判断、距离计算公式的灵活运用、线性方程图像的绘制及分析。
(二)教学设想
1.教学方法:
-采用情境导入法,标系的概念。
2.距离计算公式
-讲解两点之间的距离计算公式,并通过具体例子进行演示。
-引导学生掌握距离公式的应用,解决实际问题。
3.线性方程图像表示
-介绍线性方程的图像表示方法,如斜率、截距等。
-通过绘制图像,让学生直观地了解线性方程与坐标轴、坐标点的位置关系。
(三)学生小组讨论
1.教学活动设计
-将学生分成小组,针对本节课学习的知识点,设计具有挑战性的问题,让学生进行讨论。
-运用问题驱动的教学方法,设计具有挑战性的问题,引导学生主动探究,培养其解决问题的能力。
认识直角坐标教案小班科学
认识直角坐标教案小班科学一、教学目标。
1. 能够理解直角坐标系的基本概念和用途。
2. 能够在直角坐标系中准确地表示和阅读坐标点。
3. 能够利用直角坐标系进行简单的图形绘制和分析。
二、教学重点。
1. 直角坐标系的基本概念和用途。
2. 坐标点的表示和阅读。
3. 利用直角坐标系进行图形绘制和分析。
三、教学难点。
1. 坐标点的表示和阅读。
2. 利用直角坐标系进行图形绘制和分析。
四、教学准备。
1. 教师准备,直角坐标系的相关知识和教学方法。
2. 学生准备,学生需要准备好纸笔和直尺等绘图工具。
五、教学过程。
1. 导入新课,通过简单的实例引入直角坐标系的概念,让学生了解直角坐标系的基本作用和用途。
2. 讲解直角坐标系的基本概念,教师向学生介绍直角坐标系的概念,包括横纵坐标轴、原点、坐标轴的正方向等。
3. 示范坐标点的表示和阅读,教师通过示范,让学生了解如何在直角坐标系中表示和阅读坐标点。
4. 练习坐标点的表示和阅读,让学生进行简单的练习,巩固坐标点的表示和阅读方法。
5. 讲解直角坐标系的图形绘制和分析方法,教师向学生介绍如何利用直角坐标系进行简单的图形绘制和分析。
6. 示范图形绘制和分析,教师通过示范,让学生了解如何利用直角坐标系进行图形的绘制和分析。
7. 练习图形绘制和分析,让学生进行简单的练习,巩固利用直角坐标系进行图形绘制和分析的方法。
8. 总结本节课的内容,教师对本节课的内容进行简单的总结,让学生对直角坐标系的基本概念和方法有一个清晰的认识。
六、教学反思。
通过本节课的教学,学生能够初步了解直角坐标系的基本概念和用途,能够在直角坐标系中准确地表示和阅读坐标点,能够利用直角坐标系进行简单的图形绘制和分析。
但是在教学中也发现了一些问题,比如部分学生对坐标点的表示和阅读方法理解不够清晰,需要在后续的教学中加强相关的训练和巩固。
同时,教师在示范和讲解过程中需要更加注重学生的实际操作和参与,让学生更加深入地理解和掌握直角坐标系的相关知识和方法。
《空间直角坐标系》示范课教学设计【高中数学】
环节一空间直角坐标系【引入新课】思考:在平面向量中,我们通过平面直角坐标系建立了向量的坐标与点的坐标的一一对应关系,从而把平面向量的运算化归为数的运算.类似地,为了把空间向量的运算化归为数的运算,能否利用空间向量基本定理和空间的单位正交基底,建立空间直角坐标系,进而建立空间向量的坐标与空间点的坐标的一一对应呢?【探究新知】为了研究这个问题,我们需要弄清楚:问题1:类比平面直角坐标系,你能猜想如何构建空间直角坐标系吗?追问1:平面直角坐标系包含哪些要素?类比到空间直角坐标系应该有哪些要素?它们需要满足什么条件?答案:追问2:利用单位正交基底概念,我们可以如下这样理解平面直角坐标系. 类比到空间,你能否给出空间直角坐标系的定义呢?答案:空间直角坐标系定义:在空间选定一点O和一个单位正交基底{i, j, }k. 以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴. 这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面,它们把空间分成八个部分.追问3:空间直角坐标系如何画呢?答案:先回想平面直角坐标系Oxy 的画法:在平面内画两条与单位正交基底向量i ,j 方向相同的数轴x 轴和y 轴,它们互相垂直、原点重合.与画平面直角坐标系相比,画空间直角坐标系只是多画一个与x 轴、y 轴都垂直的z 轴而已,所以我们不妨借鉴在立体几何中学习的斜二测画法,在画空间直角坐标系Oxyz 时,让x 轴与y 轴所成的角为135︒(或45︒),即135xOy ︒∠=(或45︒),画z 轴与y 轴垂直,即90yOz ︒∠=.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.问题2: 在平面直角坐标系中,每一个点和向量都可以用一对有序实数(即它的坐标)表示,对空间直角坐标系中的每一个点和向量,是否也有类似的表示呢?追问1:空间中任意一点A 与哪个向量的坐标相同?答案:在平面直角坐标系中,点A 的位置由向量OA 唯一确定,类比到空间直角坐标系中,我们可知点A 的坐标与从原点出发的OA 坐标相同. 由此,确定空间直角坐标系中点的坐标,可以从确定与之对应的,以原点为起点,该点为终点的向量的坐标入手.追问2:在空间直角坐标系中如何定义OA 的坐标呢? 答案:平面直角坐标系内空间直角坐标系内取与x 轴、y 轴方向相同的两个单位向量,i ,j 为基底,由平面向量基本定理,有且只有一对实数x ,y 使得取与x 轴、y 轴、z 轴方向相同的两个单位向量,i ,j ,k 为基底,由空间向量基本定理,存在唯一的有序实数组使得OA x y =+i j k +z ,我们把有序实数组x y =+a i j .我们把有序数对(),x y 叫做a 的坐标,记作(),x y =a .(),,x y z 叫做OA 的坐标,记作(),,OA x y z =.所以,在单位正交基底{i ,j ,}k 下与向量OA 对应的有序实数组(x ,y ,)z ,叫做点A 在空间直角坐标系中的坐标,记做A (x ,y ,)z ,其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.追问3:那么对于给定的向量a 又该如何定义它的坐标呢? 答案:因为空间向量是自由的,我们在空间直角坐标系Oxyz 中可以作OA =a . 由空间向量基本定理,存在唯一的有序实数组(x ,y ,)z ,使x y z =++a i j k ,有序实数组(x ,y ,)z 叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记为(x =a ,y ,)z这样,在空间直角坐标系中,空间中的点和向量都可以用三个有序实数表示. 问题3: 在空间直角坐标系Oxyz 中,对空间任意一点A ,或任意一个向量OA ,你能借助几何直观确定它们的坐标(),,x y z 吗?答案:过点A 分别作垂直于x 轴、y 轴和z 轴的平面,依次交x 轴、y 轴和z 轴于点B ,C 和D . 可以证明OA 在x 轴、y 轴、z 轴上的投影向量分别为OB ,OC ,OD ,由向量加法的意义可知,OE OB OC +=,OA OE EA OE OD ++==,即OA OB OC OD ++=. 设点B C D ,和在x 轴、y 轴和z 轴上的坐标分别是x ,y 和z ,那么OA x y z =++i j k ,即点A 或者向量OA 的坐标就是(x ,y ,)z .k yzxoi A (x ,y ,z )a思路小结:目前,我们有哪些方法可以用于确定空间中一个点A 或任意一个向量a 的坐标呢?【知识应用】例1 如图,在长方体OABC D A B C ''''-中,3OA =,4OC =,2OD '=,以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出D ',C ,A ',B '四点的坐标; (2)写出向量A B '',BB ',A C '',AC '的坐标.追问1:题目条件中的13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为什么是单位正交基底?答案:由图可知,OA 在x 轴上,且3OA =,所以1=13OA .同理,OC 在y 轴上,OD '在z 轴上,由4OC =,2OD '=知,1=14OC ,1=12OD ',所以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭是单位正交基底,等同于我们前面用到的{i ,j ,}k .追问2:求空间点的坐标我们有哪些基本解题思路?答案:有两种选择,一种是转化为求与该点对应的,从原点出发,指向该点的空间向量的坐标. 而后依据空间向量基本定理,把空间向量用单位正交基底分解,从而求出坐标;另一种是应用几何直观,找出空间点在x 轴、y 轴、z 轴上的射影,进而得到坐标.思路小结:由几何直观可知,确定空间中一个点的坐标,我们需要先找出该点在各个坐标轴上的射影,再根据空间向量基本定理,得到点的坐标. 所以可以总结步骤如下:(1)过空间点分别作x 轴、y 轴和z 轴的垂面;点A 的坐标给定的向量a 的坐标OA 的坐标应用空间向量基本定理确定坐标根据几何直观确定OA 在各坐标轴上的投影向量,从而求得坐标(2)确定空间点在坐标轴上的射影的坐标; (3)得到空间点的坐标. 解:(1)()()()()0,0,2,0,4,0,3,0,2,3,4,2D C A B '''.(2)()0400,4,0,A B OC ''=++=i j k=()0020,0,2,B B OD ''-=+-=-=i j k()3403,4,0,A C A D D C OA+OC =''''''=+=-=-++-i j k()3423,4,2AC AC CC OA OC CC OA OC OD =''''=+=-++=-++=-++-i j k .问题4:回顾本节课的学习过程,我们是如何得到空间点和空间向量的坐标的? 答案:(1)类比平面直角坐标系,构建了空间直角坐标系.(2)根据空间向量基本定理,在单位正交基底下,得到空间直角坐标系中的每一个点和向量都存在唯一的有序实数组(x ,y ,)z 与之对应,从而引出空间点和空间向量的坐标表示.问题5:如何求空间点或向量的坐标呢?答案:(1)根据空间向量基本定理,将点或向量用单位正交基底{i ,j ,}k 来表示,它们的系数就是点或向量的坐标.(2)由几何直观,过点作垂直于x 轴、y 轴和z 轴的平面,依次确定点对应的向量在各个轴上的投影向量,根据投影向量的坐标得到点或向量的坐标.第二课时 空间向量运算的坐标表示环节一:引入新课本章前半部分的主要内容: 我国著名数学家吴文俊先生曾指出:“数学是研究现实世界中数量关系和空间形式的科学.简单地说,就是研究数和形的科学.”中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”.在前面的学习中,我们已经掌握了空间直角坐标系的概念,进一步通过正交分解的方法将空间向量用唯一的有序实组表示出来,引入坐标后可使向量中形的运算转化成数的运算.今天我们就循着数学家的足迹,大胆类比、猜想,把向量坐标运算从平面拓展到空间,完成一次从二维到三维,从形到数的跨越.环节二:探究新知为了研究这个问题,我们需要弄清楚:问题1: 有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?追问1: 平面向量的运算都有哪些?如何对平面向量进行坐标运算? 答案:加法,减法,数乘,数量积.追问2: 你能否类比平面向量运算的坐标表示给出空间向量运算坐标表示的猜想? 答案:设空间向量 123123(,,),(,,),a a a b b b ==a b 猜()112233,,,a b a b a b +=+++a b()112233,,,a b a b a b -=a b ---()123,,,a a a =a 112233.a b a b a b ⋅=++a b追问3:你能否对空间向量运算的坐标表示进行证明呢?答案: 结合空间向量坐标的定义,我们以数量积运算的坐标表示为例进行证明: 第一步:由空间向量基本定理,设{},,i j k 为空间的一个单位正交基底,由向量a 的坐标为123(,,)a a a ,则可将向量a 唯一分解为123a a a =++a i j k , 同理可将向量b 表示为123b b b =++b i j k . 第二步: ()()123123a a a b b b ⋅=++⋅++a b i j k i j k111213212223313233a b a b a b a b a b a b a b a b a b =⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅i i i j i k j i j j j k k i k j k k利用向量数量积的分配律以及======⋅⋅⋅1,⋅⋅⋅0,i i j j k k i j j k k i 得112233.a b a b a b ⋅=++a b其他运算的坐标表示可以类似证明,请同学们课下自主完成.由上述结论可知,空间向量运算的坐标表示与平面向量运算的坐标表示是完全一致的. 类似地,我们还可以得到:一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.即:设 123123(,,),(,,),A a a a B b b b 则向量()112233,,AB b a b a b a =---.问题2: 在学习平面向量运算的过程中,我们了解到向量可以帮助我们解决平面几何中的特殊位置关系与几何度量等问题,这些重要的性质和结论在空间向量中仍然成立吗?追问1: 如何用平面向量的坐标运算刻画平面向量的平行和垂直? 答案:设 1212(,),(,),a a b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ属于全体实数,用坐标表示为1212(,)(,),a a b b = 得到方程组1122,,a b a b =⎧⎨=⎩ 消去λ,得到平面向量平行充要条件的坐标表示:a 1b 2−a 2b 1=0.类比平面向量平行的坐标表示,我们可以得到:设空间向量123123(,,),(,,),a a a b b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ 属于全体实数.可以用坐标表示为123123(,,)(,,)a a a b b b =,得到方程组()112233,,.a b a b a b =⎧⎪=∈⎨⎪=⎩R ,这就是空间向量平行的充要条件的坐标表示.追问2: 这个充要条件能否表示为312123a a ab b b ==? 答案: 显然,空间向量平行的充要条件不等价于312123a a ab b b ==,因为≠0b 的含义是b 的坐标分量123,,b b b 至少有一个不为零,而非每一个坐标分量都不为零.例如,当b 与坐标平面Oxy 平行时,30b =此时33a b 无意义.因此只有在b 与三个坐标平面均不平行,即123,,b b b 均不为零时才能有312123a a ab b b ==⇔∥a b .特殊地,当=0b 时,(0,0,0)=b .此时b 与任意向量都平行.追问3: 除了上述对空间向量位置关系的研究,类比平面向量运算的应用,能否总结出空间向量的度量关系,如空间向量长度和夹角的坐标表示?答案: 设 123123(,,),(,,),a a a b b b ==a b222123a a a =⋅=++a a a . 112233222222123123cos ,a b a b a b a a a b b b ++⋅==++++a ba b a b.设1111()P x ,y ,z , 2222()Px ,y ,z ,则()()()2221212212121=PP PP x x +y y +z z ---=追问4:得到上面的猜想后,同学们能利用空间向量运算的坐标表示证明空间两点间的距离公式吗?答案:首先,建立空间直角坐标系Oxyz ,设1P , 2P 是空间中任意两点,则向量()1221212121.PP OP OP x x ,y y ,z z ---=-= 于是121212PP PP PP ⋅=,带入坐标,()()()22212212121PP x x +y y +z z ---=.所以()()()2221212212121=PP PP x x +y y +z z ---=.这就是空间两点间的距离公式.因此,空间向量123(,,)a a a =a 的模可以理解为点123(,,)a a a 到原点的距离,这是空间两点间距离公式的特殊化.环节三:知识应用例1 如图,在空间直角坐标系Oxyz 中,正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB , 11D B 的中点.(1)求证1EF DA ⊥;(2)求AE 与1CD 所成角的余弦值.追问1: 两条直线的垂直关系可以用向量刻画吗?答案:要证明1EF DA ⊥,只需证明1EF DA ⊥,在前面的学习中,我们已经得到了两个向量垂直的充要条件为数量积为零,即10.EF DA =通过本节课学习的内容,可以将空间向量垂直的充要条件用坐标形式表达,因此在应用向量法求解本题时,我们需要利用题目中的空间直角坐标系,从而建立立体图形与空间向量的联系.追问2: 向量EF 的坐标怎么求?答案: 因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1).EF =-=--分析:因为空间向量的数量积和夹角有关,此我们经常以空间向量的数量积为工具,解决立体几何中与夹角相关的问题,把空间两条直线所成角问题转化为两条直线对应向量的夹角问题.追问3: 两条直线夹角与两向量夹角有区别吗?答案:这二者是有区别的,它们的取值范围不同.具体来说, 两条直线夹角的范围是0,2π⎡⎤⎢⎥⎣⎦,而向量夹角的范围是[]0,π.当AE 与1CD 所成的角为锐角或直角时,直线AE 与1CD 所成的角和向量的夹角相等. 当AE 与1CD 所成的角为钝角时,直线AE 与1CD 所成的角为向量夹角的补角.解:(1)因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1)EF =-=--. 得到向量EF 的坐标后,同理,又因为点()()12,0,2,0,0,0A D ,所以()12,0,2DA =. 所以()()11,1,12,0,22020.EF DA =--=-++= 所以1EF DA ⊥,即1EF DA ⊥. (2)因为()()()()12,0,0,0,2,0,2,2,1,0,0,2A C E D ,所以()()()2,2,12,0,00,2,1AE =-=,()()()10,0,20,2,00,2,2CD =-=-, 15,=22AE DF =.所以()10022122AE CD =⨯+⨯-+⨯=-.所以111cos ,AE CD AE CD AE CD ===所以, AE 与1CD 所成角为向量AE ,向量1CD 夹角的补角.所以, AE 与1CD 方法提炼:在空间直角坐标系中,先写出相关点、相关向量的坐标,把几何问题代数化,然后再利用向量的坐标运算解决位置关系与几何度量等问题,其中要关注空间两条直线所成角与对应向量夹角的取值范围是不同的.需要注意的是,有些问题往往需要我们观察几何体的结构特征,找寻三条两两垂直的线段,先建立空间直角坐标系,再应用向量运算解决几何问题.问题3:回顾本节课对于空间向量坐标运算的探究过程,你都学到了什么?答案:1. 类比平面向量研究空间向量运算的坐标表示 (1)空间向量运算的坐标表示空间向量加法减法的坐标运算只需将其相应的坐标相加或相减; 空间向量数乘的坐标运算等于用这个实数λ乘原来向量的相应坐标; 空间向量数量积的坐标运算是其对应坐标乘积的和. (2)空间向量运算坐标表示的应用我们得到了空间向量平行和垂直这两种特殊位置关系的坐标表示同时,我们证明了空间向量长度和夹角的公式,这些公式可以帮助我们解决立体几何中的度量问题2.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决. 因此,我们说空间向量与立体几何有着天然的联系.空间向量为我们解决立体几何问题提供了新的工具.一般地,利用空间向量解决立体几何问题,有如下的“三步曲”,步骤一:建立恰当的空间直角坐标系,求出相关点、相关向量的坐标;步骤二:进行空间向量的运算,研究空间图形之间的平行、垂直等位置关系以及距离、夹角等度量问题;步骤三:求出答案后,翻译成相应的几何结论,得到相应立体几何问题的解决.课时检测1. (3,2,5),(1,5,1),--a =b =求: (1)+a b ; (2)6a ; (3)ab .2. (2,1,3),(4,2,),x --a =b =且⊥a b .求x 的值.3. 如图,在棱长为1的正方体1111ABCD A B C D -中,M 为1BC 的中点, 1E ,1F 分别在棱11A B ,11C D 上,111114B E A B =,111114D F C D =. (1)求AM 的长.(2)求1BE 与1DF 所成角的余弦值.答案:1. (1) ()2,7,4+-a b =;(2)()618,12,30-a =;(3)2a b =;2. 因为a ⊥b ,所以a ·b =0,即-8-2+3x =0,解得x =103;3. (1)AM =(2) 1517.。
七年级数学下册14.3直角坐标系中的图形教学设计
七年级数学下册14.3直角坐标系中的图形教学设计一. 教材分析《七年级数学下册14.3直角坐标系中的图形》这一节主要让学生了解直角坐标系中图形的性质,学会在坐标系中描绘和分析图形。
教材通过具体的实例,引导学生感受坐标系中图形的变化,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在之前的学习中已经掌握了坐标系的基本概念,对点的坐标有所了解,但对于如何在坐标系中分析和描绘图形,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生掌握图形在坐标系中的性质和变化。
三. 教学目标1.让学生了解直角坐标系中图形的性质,学会在坐标系中描绘和分析图形。
2.培养学生的空间想象能力和逻辑思维能力。
3.通过对图形的分析,让学生感受数学与生活的联系,提高学生的学习兴趣。
四. 教学重难点1.教学重点:让学生了解直角坐标系中图形的性质,学会在坐标系中描绘和分析图形。
2.教学难点:如何引导学生理解和掌握图形在坐标系中的变化规律。
五. 教学方法1.采用问题驱动法,引导学生主动探索和分析图形在坐标系中的性质和变化。
2.利用数形结合法,让学生直观地感受图形的变化,提高学生的空间想象能力。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学PPT,包括图形的变化实例和相关的习题。
2.准备黑板和粉笔,用于板书和讲解。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如一个点的坐标变化,引导学生回顾坐标系的基本概念。
然后提出问题:“在坐标系中,图形的性质和变化有什么规律?”引发学生的思考。
2.呈现(10分钟)利用PPT展示一些图形在坐标系中的变化实例,如直线、曲线等。
引导学生观察和分析图形的变化规律,并让学生尝试用自己的语言描述这些规律。
3.操练(10分钟)让学生分组讨论,每组选择一个图形,分析其在坐标系中的性质和变化规律。
然后各组汇报自己的成果,其他组进行评价和补充。
《平面直角坐标系》 教学设计
《平面直角坐标系》教学设计一、教学目标1、知识与技能目标理解平面直角坐标系的有关概念,能画出平面直角坐标系。
在给定的平面直角坐标系中,能由点的位置写出坐标,由坐标描出点的位置。
2、过程与方法目标经历平面直角坐标系的建立过程,体会数学中的数形结合思想。
通过观察、操作、交流等活动,提高学生的数学思维能力和合作交流能力。
3、情感态度与价值观目标让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。
培养学生勇于探索、敢于创新的精神。
二、教学重难点1、教学重点平面直角坐标系的概念。
点的坐标的确定与表示。
2、教学难点理解坐标平面内的点与有序实数对的一一对应关系。
三、教学方法讲授法、演示法、讨论法、练习法四、教学过程1、情境导入展示一张电影院的座位图,提问学生如何准确地找到自己的座位。
引导学生思考需要通过行数和列数来确定位置。
接着,展示一张地图,提问如何确定一个地点的位置。
从而引出本节课的主题——平面直角坐标系。
2、讲授新课(1)平面直角坐标系的概念教师在黑板上画出两条互相垂直的数轴,水平的数轴称为 x 轴(或横轴),取向右为正方向;竖直的数轴称为 y 轴(或纵轴),取向上为正方向。
两轴的交点 O 称为原点。
这样就建立了一个平面直角坐标系。
(2)点的坐标教师在平面直角坐标系中任意选取一个点 P,过点 P 分别向 x 轴和y 轴作垂线,垂足分别为 M 和 N。
点 M 在 x 轴上对应的数为 a,点 N在 y 轴上对应的数为 b,则有序实数对(a,b)叫做点 P 的坐标。
(3)象限两坐标轴把平面分成四个部分,每个部分称为象限。
坐标轴上的点不属于任何象限。
第一象限:x > 0,y > 0;第二象限:x < 0,y > 0;第三象限:x < 0,y < 0;第四象限:x > 0,y < 0。
3、巩固练习(1)教师在平面直角坐标系中给出一些点,让学生写出它们的坐标。
(2)给出一些坐标,让学生在平面直角坐标系中描出相应的点。
《平面直角坐标系》教学设计示例
平面直角坐标系教学设计示例教学目标:1、使学生进一步熟悉由坐标确定点和由点求坐标的方法.理解平面内的点与有序实数对之间的一一对应关系.2、会用象限和坐标轴说明直角坐标系内点的位置,并会根据点的位置,确定点的横坐标、纵坐标的符号.3、掌握确定已知点关于坐标轴(或原点)的对称点的方法.培养学生观察,归纳总结的能力.4、培养学生发现问题,主动探索的能力.在与同伴的合作交流中,培养学生的责任心.5、渗透数形结合的思想,培养学生思维的严谨性和深刻性.教学重点:1、掌握象限或坐标轴上的点的坐标的特点.2、会求已知点关于坐标轴或原点的对称点的坐标.教学难点:理解平面内的点与有序实数对之间的一一对应关系.教学用具:直尺、计算机教学方法:合作学习,讨论,探究教学过程:1、提出问题,主动探索上节课我们学习了平面直角坐标系的概念,并介绍了象限与坐标轴.初步体会到平面内的点与有序实数对是一一对应的.今天我们需要开始新的探索,发现数学知识.下面看例1例1、指出下列各点所在象限或坐标轴;你能发现什么规律吗?解:描点画图后,可以从图中观察出,A点在第二象限;B点在第三象限;C点在第四象限;D点在第一象限;E点在x轴上;F点在y轴上.做完这道题后,你发现能直接从点的坐标判断出点所在象限或坐标轴吗?通过学生的分组讨论后,可总结如下:象限与坐标轴的定义都是以图形的形式直观给出的.通过本例题,又总结出了相应的代数规律.渗透了数与形的结合.并培养了学生由特殊到一般的抽象思维能力.练习: 习题13.1的第三题例2、在直角坐标系中,标出下列各对点的位置,并发现其中的规律.(1)(3,5),(2,5)(2)(1,2),(1,-3)(3)(4,4),(6,6)(4)通过观察可以总结出:平行于x轴的直线上的点,其纵坐标相同,横坐标为任意实数;平行于y轴的直线上的点,其横坐标相同,纵坐标为任意实数.另外一、三象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标相同;二、四象限内,两坐标轴夹角平分线上的点,其横坐标与纵坐标互为相反数.建议:如果学生在观察时有困难,可以适当增加题量,丰富观察的对象,逐步得出最后的结论.这些规律也是有其必然的,如两点的纵坐标相同,则这两点在x 轴的同侧,且到x轴的距离相等,由平面几何的知识,可推出这两点的连线平行于x轴.其它的性质也有其存在的道理.通过对规律的总结,渗透数形结合思想,并让学生体会数学知识的形成过程.而点的坐标不同,它在平面上的位置也不相同.即平面上的点与有序实数对是一一对应的.从图中可以看出.例3、在直角坐标系中,描出下列各点⑴(2,1),(-2,1)⑵(-3,4),(-3,-4)⑶(5,-4),(-5,-4)你能发现上述各对点的位置有何特点吗?它们的坐标有何异同?你能总结出一般的规律吗?并说明其中的道理吗?解:(从图中观察出的点的位置)特点两点坐标间关系(1)两点关于y轴对称横坐标为相反数,纵坐标相同(2)两点关于x轴对称横坐标相同,纵坐标为相反数(3)两点关于原点对称横坐标互为相反数,纵坐标互为相反数这道题能引发我们得出什么样的结论呢?(答案不固定,本教案只给出参考答案).我们可以这样说:对于直角坐标平面上的任意两点,如果它们的横坐标相反,纵坐标相同,则它们关于y轴对称;如果它们横坐标相同,纵坐标相反,则它们关于x轴对称;如果题目的横、纵坐标都相反,则它们关于原点对称,反之亦然.以上的规律可以解决很多问题,比如,已知点(-10,3).求这个点关于x轴、y轴,及原点的对称点的坐标.答:(-10,-3);(10,3);(10,-3).你想过这其中的道理吗?如两点关于y轴对称.根据轴对称的定义,这两点的连线垂直于y 轴,且到y轴的距离相等.所以这两点的连线就平行于x轴,它们的纵坐标相同,对称点在y轴的两点.到y轴的距离相等.即这两点的横坐标相反.类似地,可以组织学生进行其它两种情况的讨论.这个规律只要求学生能理解,并不要求严格地证明.通过学生的主动探索,复习了对称的概念,体验了数形的结合.亲身经历了数学知识的形成过程.也增强了学生的自信心,激发了他们互动探索的精神.小结:本节我们讨论了三道例题,这三道题都是大家共同讨论,通过观察归纳总结探索出的规律,这也是数学知识产生的一种过程.而且每道题的解决都离不开数形结合的思想.而且也能逐步体会出平面内的点与有序实数对之间的一一对应关系.这一部分知识为今后的学习打下了基础,希望大家能真正地理解并能熟练应用.作业:习题13.1B组的1-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系》教学设计
一、指导思想与理论
在这节课的设计中,我立足于问题情境的创设,将原本枯燥的平面直角坐标系赋予一定的现实意义,在实际问题中学习知识,力求避免空洞的说教;立足于知识的发现和发展,让学生能在一种自然而然的情境中理解建立平面直角坐标系的必要性,应用平面直角坐标系去分析和解决问题;立足于知识和情感的教育,在知识教学的同时,结合数学家的故事及时地对学生进行理想教育,又在本课结束前对学生进行人生观的教育。
同时在设计时,我还力求体现学生探究能力的培养,通过一个个问题的设计,一步一步地引导学生进行探究及自主地进行学习,并及时地加以总结和反馈,尝试从多角度去体现新课程的教学理念。
二、教材分析
本节课是在学习了有序数对的基础上进行的,是平面直角坐标系的起始课,是数轴的发展。
平面直角坐标系是进一步学习函数及其它坐标系必备的基础知识。
它是图形与数量之间的桥梁,是解决数学问题的一个重要工具,利用它可以使许多数学问题变得直观而简明,并实现了几何问题与代数问题的互化。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。
另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。
掌握本节内容对以后学习和生活有着积极的意义。
平面直角坐标系涉及的知识面较宽,具有很强的理论意义和实际意义,是前一节位置的确定的具体应用。
因此,本节的教学与前面所学知识具有密切的联系,在后面的教材编排中,建立平面直角坐标系后,平面上的任意一点都可以用一对有序实数(即坐标)来表示。
所以点的坐标是数形结合的桥梁,为解决几何代数问题提供了便利。
三、学情分析
由于本节是初一内容,是联系代数、几何的桥梁,对学生情况我从以下几方面分析:
1、知识掌握上,初一学生年龄小,思维正处于由具体形象思维向抽象思维转变的阶段,学生接受力强,正是学习的好时机。
2、心理上,学生爱听小故事,我抓住这一点,介绍法国数学家笛卡尔以及他对数学发展的贡献,对学生进行数学文化的熏陶。
3、生理上,初一学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中我运用身边的实例,引发学生的兴趣,使他们的注意力集中在课堂上;给他们创造条件和机会,让每一个学生都参与到课堂教学中来,感受成功的快乐。
四、教学目标
【知识目标】
1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定的直角坐标系中,根据点的坐标描出点的位置,由点的位置写出它的坐标。
【能力目标】
1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。
2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,培养学生的探索意识和能力。
【情感目标】
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
五、教学重点和难点
教学重点:
1、理解平面直角坐标系的有关知识。
2、在给定的平面直角坐标系中,会根据点的坐标描出点的位置,根据点的位置写出它的坐标。
3、由点的坐标观察,说明坐标轴上点的坐标有什么特点。
教学难点:
1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。
2、坐标轴上点的坐标有什么特点的总结。
六、教学方法
探究式教学法。
从学省的生活经验和已有的认知水平出发,提出问题,让学生通过合作交流解决问题掌握新知。
七、教学准备
多媒体课件
八、教学设计
教学环节师生活动媒体演示
(一)创设情境,引入新知
引例:我们等教室共有56个作位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来做个“点将”游戏,游戏规则是:(1)老师点学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。
奖励:同学们的掌声。
提问:你如何来确定自己的座位?
结论:同学们的座位必须由两个数才能确定下来。
实际上生活中有很多时候需要用一对数字确定平面内一点位置。
师补充:如电影票,中国象棋上的棋子位置,自己所在的班级位置等。
引入新课——平面直角坐标系
(二)讲解概念,合作探究
1、平面直角坐标系的概念
像同学们的座位号一样,为了研究平面内的点的表示,先在平面内建一直角坐标系。
教师利用多媒体演示画直角坐标系的过程。
学生描述平面直角坐标系特征和画法,纳总结直角坐标系的概念
通过以上画图过程学生可以发现画直角坐标系的关键是画两条互相垂直的、原点重合的、具有相同单位长度的数轴。
概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
①水平方向的数轴称为x轴或横轴。
竖直方向的数轴称为y轴或纵轴。
②公共原点称为坐标原点。
2、动手操作,合作探究
(1)、学生动手自己画一个平面直角坐标系。
(画完后互查)
教师巡视,指导学生画出平面直角坐标系。
(2)、①你能否在平面内找到表示(2,3)的点吗?
②你是如何找的?
③反过来,你能用数表示出平面内的任一点吗?试一试
在学生回答交流的基础上总结:在直角坐标系中由一对有序实数(a,b)可以确定一个点p的位置。
过x轴上表示实数a的点画x轴垂线,过y轴上表示实数b的点画y轴的垂线,这两条垂线的交点即为点p。
过点Q分别画x轴和y轴的垂线,如果垂足对应的实数分别是m、n,则点就可以用有序
实数对(m,n)来表示。
点的坐标:在直角坐标系中一对有序实数可以确定一个点的位置:反之任意一点的位置都可以用一对有序实数表示。
这样的有序实数叫做点的坐标。
①横坐标写在纵坐标前。
②点的坐标通常与表示该点的大写字母在一起。
(3)各象限内点的特征
平面内有四个点A、B、C、D、E、F,回答下列问题:
①请写出A、B、C、D、E、F的坐标
②请同学们观察一下,各区域内点的坐标的符号有什么不同?这说明它们的符号特点是?
③两条坐标轴上的点又有什么特征?
教师适当点拨、总结、归纳:2条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别记为第一、二、三、四象限。
第一象限的点的坐标为(+、+)
第二象限的点的坐标为(-、+)
第三象限的点的坐标为(-、-)
第四象限的点的坐标为(+、-)
坐标轴上的点不在任何一个象限内。
教师引导学生分组讨论,合作探究,学生积极思考,学生小组讨论
(三)、巩固练习,熟能生巧
(1)指出下列图中点A、B、C、D、E、F的坐标
(2)标出表示下列坐标的点(3,5)、(3,-5)、(-4,-2)、(-4,2)、(4,5)、(-4,-5)。
学生说出,教师完善
(四)、拓展应用,深化认知
根据以下条件画一幅示意图,标出某一公园的各个景点.
菊花园:从中心广场向北走150米,再向东走150米;
湖心亭:从中心广场向西走150米,再向北走100米;
松风亭:从中心广场向西走100米,再向南走50米;
育德泉:从中心广场向北走200米.
学生练习
两道题目从不同侧面体现数形结合,进一步强化数形结合思想。
培养学生读图的能力和思维的广阔性。
(五)、总结新知,布置作业
1、通过本节课的学习,你有哪些收获?
2、利用多媒体介绍笛卡儿的故事。
(通过介绍科学家的事迹激发学生钻研数学兴趣。
)
3、
①必做题:习题第1、2、3题
②选做题:探究平面内点(2,3)关于x轴、y轴、原点对称的点分别是什么?
学生归纳,教师补充
回忆本节课知识,培养复习的学习习惯
作业分层要求,既面向全体,又给部分学生提供发挥的空间,满足他们的求知欲,使不同的学生得到不同的发展。
(六)板书设计(需要一直留在黑板上主板书)
平面直角坐标系
1、平面直角坐标系概念
2、由点写坐标、由坐标找点、点的坐标概念、:
3、横(X)轴、纵(Y)轴、坐标原点各象限内点的坐标特征:
4、象限:一、二、三、四,象限及坐标轴上点的坐标特征:
5、直角坐标系中的点和有序实数对之间的关系,P(X,Y)平面上的点与有序实数对一一对应
(七)、教学反思
1.兴趣的引起包括以下心理程序:问题——兴奋性节点——情绪节点——成功感——持续刺激——兴趣产生。
因此例子的选择应具备持续性和递进性。
在实际教学中,电影院的座位、气温图、到图书馆找书和学生的课程表等只是适用于兴趣的引起,而对于讲述实际例题则兴奋性很低。
因此除了贴近生活外更加要升华生活,尤其是学生不熟悉的领域,更加能够引起他们的兴趣,如战略导弹是如何进行定位的呢?
2.教师在组织学生开展探究性学习和问题式学习的时候,教师要扮演好引导者和指导者的角色,注意引导学生将各自的猜想、假设、结论进行交流,比较个人或各小组的探究思维过程,从中获得成功的经验和失败的教训。
3.教师在重视学生的表达与交流的同时,也应该注重鼓励性评价和肯定性评价的作用,尽量少使用否定性评价。
4.教师设计的问题应该具有启发性和方向性,力求课堂围绕问题让所有学生动起来,变被动性学为主动性学习,变要我学为我要学,充分发挥学生的主体作用。