2018年黑龙江省齐齐哈尔市中考数学试卷(含详细解析)

合集下载

2018年黑龙江齐齐哈尔市中考数学试卷(含解析)

2018年黑龙江齐齐哈尔市中考数学试卷(含解析)

2018年黑龙江省齐齐哈尔市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题(每小题3分,满分30分)2. (2018黑龙江省齐齐哈尔市,题号2,分值3)下列计算正确的是( )A. 236a a a =gB.224()a a =C.842a a a ÷=D.33()ab ab = 【答案】B 【解析】选项A ,根据同底数幂的乘法可知,23235a a a a +==g,此选项错误;选项B ,根据幂的乘方可知,22224()a a a ⨯==,故此选项正确;选项C,根据同底数幂的除法可知,84844a a a a -÷==,故此选项错误;选项D ,根据积的乘方可知,333()ab a b =,故此选项错误.故选B. 【知识点】同底数幂的乘法,幂的乘方,同底数幂的除法,积的乘方.3. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为 ( )A. 8.2xlO 13B. 8.2xl012C. 118.210⨯ D. 8.2xlO9 【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO 13 .【知识点】科学记数法.4. (2018黑龙江省齐齐哈尔市,题号4,分值3)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A. 10°B. 15°C. 18°D. 30°【答案】B【解析】由图可知,∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∠EDF 是△BCD 的外角,∴∠ABC=∠BCD=30°,∠EDF=∠DBC+∠BCD ,解得∠DBC=15°.故选B.【知识点】平行线的性质,三角板各角的度数,互为补角的性质,三角形内角和定理,三角形外角的性质.5. (2018黑龙江省齐齐哈尔市,题号5,分值3)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某1. (2018黑龙江省齐齐哈尔市,题号1,分值3)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个【答案】C【解析】由轴对称图形的定义可知,图形0,1,8有对称轴所以是轴对称图形,由中心对称图形的定义可知,4个图形均有对称中心,均是中心对称图形,∴既是轴对称图形,又是中心对称图形是图形0,1,8,即有3个,故选C .【知识点】轴对称图形的性质,中心对称图形的性质.天气温T 如何随时间t 的变化而变化.下列从图象中得到的信息正确的是( )A. 0点时气温达到最低B.最低气温是零下4℃C. 0点到14点之间气温持续上升D.最高气温是8℃ 【答案】D【解析】选项A ,由图象可知,最低点在4点时出现,故此选项错误;选项B ,由图象可知,最低点表示的是4点时,气温是-3℃,故此选项错误;选项C ,由图象可知,0点到14点气温的变化是先降温到-3℃再升温,故此选项错误;选项D ,由图可知,图象的最高点在14点时出现,此时气温是8℃,故此选项正确. 故选D.【知识点】折现统计图的应用.6. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎.小明在平价米店记录了一周中不同包装(10 kg, 20 kg, 50 kg)的大米的销售量(单位:袋)如下:10 kg 装100袋;2kg 装 220袋;50 kg 装80袋.如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这呰数据(袋数)中的 ( )A.众数B.平均数C.中位数D.方差【答案】A【解析】此题考查的是数据分析的能力,在每千克大米的进价和销售价都相同的情况下,作为米店老板最应该关注的是哪种包装的大米销售量最高,即众数.平均数表示销售的平均情况,不能凸显应该多进哪种包装的大米.中位数只能表示销售情况的中间量,不能帮米店老板分析多进哪种包装的大米.方差表示数据的离散程度,在此问题中不适用.故答案选A.【知识点】数据的集中趋势,数据的离散程度.7. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不.正确..的是 ( ) A. 若葡萄的价格是3元/千克,则3a 表示买a 千克葡萄的金额B. 若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a 表示桌面受 到的压强,则3a 表示小木块对桌面的压力D.若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数【答案】D【解析】选项A ,根据“单价×数量=总价”可知3a 表示买a 千克葡萄的金额,此选项不符合题意;选项B ,由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;选项C ,由压强=压力接触面积得压力=压强×接触面积,可知3a 表示小木块对桌面的压力,此选项不符合题意;选项D ,由题可知,这个两位数用字母表示为10×3+a=30+a ,此选项符合题意.故选D.【知识点】用字母表示数的实际应用.8. (2018黑龙江省齐齐哈尔市,题号8,分值3)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A, 1种 B. 2种 C. 3种 D. 4种【答案】C【解析】由题可知,设参加活动的男生有a 人,参加活动的女生有b 人,可得5a+4b=56,解得4(14)5b b a -==56-45,∵a ,b 均为非负整数,∴b 只能被5整除,即为4,9,14.∴小张可以安排学生参加活动的方案共有3种.故选C.【知识点】二元一次方程的应用,能被5整除的数的特点.9.(2018黑龙江省齐齐哈尔市,题号9,分值3)下列成语中,表示不可能事件的是 ( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【答案】A【解析】不可能事件表示在生活中不可能出现的情况,即概率为0的事件,选项B 、C 、D 在生活中都能出现,只有选项A 在生活中不可能出现。

实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。

齐齐哈尔2018中考学业水平测试数学试题(一)

齐齐哈尔2018中考学业水平测试数学试题(一)

2018年齐齐哈尔市中考学业水平测试数学仿真模拟试卷(一)一、选择题(本题共16个小题,共42分)1、在实数﹣,0.21,,,,0.20202中,无理数的个数为()A.1 B.2 C.3 D.42、下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x23、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF 的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°4、一组样本容量为5的数据中,其中a1=2.5,a2=3.5,a3=4,a4与a5的和为5,当a4、a5依次取多少时,这组样本方差有最小值()A.1.5,3.5 B.1,4 C.2.5,2.5 D.2,35、如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°6、如图,四边形ABCD和A'B'C'D'是以点O为位似中心的位似图形,若OA:OA'=2:3,则四边形ABCD与A'B'C'D'的面积比是()A.4:9 B.2:5 C.2:3 D.:7、为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.8、画正三角形ABC(如图)水平放置的直观图△A′B′C′,正确的是()A.B. C.D.9、如图,函数y=(x <0)的图象与直线y=x +m 相交于点A 和点B .过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,P 为线段AB 上的一点,连接PE 、PF .若△PAE 和△PBF 的面积相等,且x P =﹣,x A ﹣x B =﹣3,则k 的值是( )A .﹣5B .C .﹣2D .﹣110、已知如图,等腰三角形ABC 的直角边长为a ,正方形MNPQ 的边为b (a <b ),C 、M 、A 、N 在同一条直线上,开始时点A 与点M 重合,让△ABC 向右移动,最后点C 与点N 重合.设三角形与正方形的重合面积为y ,点A 移动的距离为x ,则y 关于x 的大致图象是( )A .B .C .D .二、填空题(本大题共7小题,每小题3分,共21分.把答案写在答题卡中的横线上.)11.计算:﹣= .12.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 cm .13.关于x 的一元二次方程mx 2+(m ﹣2)x +m ﹣2=0有两个不相等的实数根,则m 的取值范围是 .14.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.第15题图第16题图第17题图15.在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,,则AC的长是.16.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是.17.正整数按如图所示的规律排列,则第29行第30列的数字为.三、解答题(本大题共7小题,共69分)18、(本题满分10分)(1)计算:.(2)因式分解:x5-4x19、(本题满分5分)解方程:3(x+1)(x-1)=4(1-x)-320、(本题满分8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.21.(本题满分10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.22、(本题满分10分)已知A 、B 两地相距630千米,在A 、B 之间有汽车站C 站,如图1所示。

专题概率 2018年中考数学试题分项版解析汇编(解析版)

专题概率 2018年中考数学试题分项版解析汇编(解析版)

专题6.3 概率一、单选题1.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【来源】2018年海南省中考数学试卷【答案】A【解析】【分析】此题涉及的知识点是概率,根据概率公式=,利用比例性质得到n的值.【详解】根据题意得: =,所以n=6.故选A.【点睛】本题重点考查学生对于概率公式的理解,熟练掌握这一规律是解题的关键.2.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【来源】四川省南充市2018届中考数学试卷【答案】A【解析】【分析】利用调查的方式,概率的意义以及实际生活常识分析得出即可.【详解】A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点睛】此题主要考查了调查的方式,随机事件的定义和概率的意义,正确把握相关定义是解题关键.3.下列成语中,表示不可能事件的是( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【来源】2018年黑龙江省齐齐哈尔市中考数学试卷【答案】A【解析】【分析】不可能事件,就是一定不会发生的事件,必然事件是一定会发生的事件.【详解】缘木求鱼,是不可能事件,符合题意;杀鸡取卵,是必然事件,不符合题意;探囊取物,是必然事件,不符合题意;日月经天,江河行地,是必然事件,不符合题意.故答案为:A.【点睛】本题考查的知识点是可能事件与不可能事件的判断,解题关键是熟记可能时间和不可能事件的定义.4.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【来源】【市级联考】湖南省衡阳市2019届中考数学试卷【答案】A【解析】【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B.连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C.大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选A.【点睛】本题考查了概率的意义,解题的关键是弄清随机事件和必然事件的概念的区别.5.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【来源】2018年广东省广州市中考数学试卷【答案】C【解析】【分析】用画树状图法求出所有情况,再计算概率.【详解】如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C【点睛】本题考核知识点:概率. 解题关键点:用画树状图法得到所有情况.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【来源】2018年内蒙古包头市中考数学试题【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.7.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.B.C.D.【来源】2010年高级中等学校招生全国统一考试数学卷(河北)【答案】B【解析】共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.8.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是()A.B.C.D.【答案】D【解析】:由李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,可得一共有9种等可能的结果,又由数学试卷2张,根据概率公式即可求得答案.9.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【来源】福建省2018年中考数学试题(b卷)【答案】D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选D.【点睛】此题主要考查了随机事件,关键是掌握随机事件定义.10.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.—组数据的方差越大,则这组数据的波动也越大【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】D【解析】【分析】根据概率的意义,事件发生可能性的大小,可得答案.【详解】A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.【点睛】本题考查了概率的意义、随机事件,利用概率的意义,事件发生可能性的大小是解题关键.11.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【来源】四川省泸州市2016年中考数学试题【答案】C【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小【详解】根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.12.“若是实数,则≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件【来源】四川省广元市2018年中考数学【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义进行解答即可.【详解】因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0,故选A.【点睛】本题主要考查了必然事件概念以及绝对值的性质,用到的知识点为:必然事件指在一定条件下一定发生的事件.13.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A.B.C.D.【来源】青海省2018年中考数学试卷【答案】D【解析】【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【详解】“陆地”部分对应的圆心角是,“陆地”部分占地球总面积的比例为:,宇宙中一块陨石落在地球上,落在陆地的概率是,故选D.【点睛】本题考查了简单的概率计算以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.二、填空题14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【来源】四川省甘孜州2018年中考数学试题【答案】20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为:20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____.【来源】2018年四川省绵阳市中考数学试卷【答案】【解析】【分析】先列举出从1,2,3,4,5的木条中任取3根的所有等可能结果,再根据三角形三边间的关系从中找到能组成三角形的结果数,利用概率公式计算可得.【详解】从1,2,3,4,5的木条中任取3根有如下10种等可能结果:3、4、5;2、4、5;2、3、5;2、3、4;1、4、5;1、3、5;1、3、4;1、2、5;1、2、4;1、2、3;其中能构成三角形的有3、4、5;2、4、5;2、3、4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是,故答案是:.【点睛】考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.【来源】2018年宁夏中考数学试卷【答案】【解析】【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【详解】∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=.故答案为:.【点睛】本题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是______.【来源】湖南省岳阳市2018年中考数学试卷【答案】.【解析】【分析】一共有5个数,其中负数有2个,根据概率公式计算即可得.【详解】在﹣2,1,4,﹣3,0这5个数字中,负数有-2、-3共2个,所以任取一个数是负数的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.18.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.【来源】湖南省永州市2018年中考数学试卷【答案】100.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=100,故估计n大约是100,故答案为:100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【来源】2018年山东省青岛市中考数学试卷【答案】这个游戏不公平.理由见解析.【解析】【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【详解】不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平.【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.20.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【来源】2018年吉林省中考数学试卷【答案】.【解析】依据题意画树状图(或列表)法分析所有可能的出现结果即可解答.【详解】解:列表得:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.故答案为:.【点睛】本题主要考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是多少,中位数是多少.(2)已知获得2018年四川省南充市的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.【来源】四川省南充市2018届中考数学试卷【答案】(1)众数为2018年四川省南充市,中位数为2018年四川省南充市;(2)恰好抽到八年级两名领操员的概率为.【分析】(1)根据众数和中位数的定义求解可得;(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)由于2018年四川省南充市出现次数最多,所以众数为2018年四川省南充市,中位数为第8个数,即中位数为2018年四川省南充市,故答案为:2018年四川省南充市、2018年四川省南充市;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,所以恰好抽到八年级两名领操员的概率为=.【点睛】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【来源】2018年江苏省常州市中考数学试卷【答案】(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【来源】广西百色市2018年中考数学试卷【答案】(1)1或2(2)(3)30种【解析】【分析】(1)根据每个月分为上旬、中旬、下旬,分别是:上旬:1日﹣10日中旬:11日﹣20日下旬:21日到月底,由此即可解决问题;(2)利用列举法即可解决问题;(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能,0,1,2,…9;由此即可解决问题;【详解】(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.故答案为:1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918;密码数能被3整除的概率.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.24.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【来源】期末检测卷2018-2019学年九年级上学期数学教材【答案】(1)(2)详见解析【解析】【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案。

2018年黑龙江齐齐哈尔市中考数学试题和答案 精品

2018年黑龙江齐齐哈尔市中考数学试题和答案 精品

2018年齐齐哈尔市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、单项选择题(每题3分,满分30分) 1.17-的绝对值是( )A .17B .17- C .7 D .7- 2.如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( )A .20米B .15米C .10米D .5米 3.下列运算正确的是( )A3= B .0(π 3.14)1-= C .1122-⎛⎫=- ⎪⎝⎭D3=±4.一组数据4,5,6,7,7,8的中位数和众数分别是( ) A .7,7 B .7,6.5 C .5.5,7 D .6.5,7 5.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23B .32C .34D .436.梯形ABCD 中,AD BC ∥,1AD =,4BC =,70C ∠=°,40B ∠=°,则AB 的长为( )A .2B .3C .4D .57.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( ) A .4种 B .3种 C .2种 D .1种8.一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空,水池中的水量3(m )v 与时间(h)t 之间的函数关系如图,则关于三个水管每小时的水流量下列判断正确的是( ) A .乙>甲 B .丙>甲 C .甲>乙 D .丙>乙OA B 第2题图第5题图h 第8题图D ABCO EF H第10题图9.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个B .3个C .2个D .1个10.在矩形ABCD中,1AB AD AF ==,平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF EC 、交于点H ,下列结论中:AF FH =①;BO BF =②;CA CH =③;④3BE ED =,正确的是( )A .②③B .③④C .①②④D .②③④二、填空题(每题3分,满分30分)11.中国齐齐哈尔SOS 儿童村座落在齐齐哈尔市区西部,建成于1992年3月,是由国际SOS 儿童村资助,以家庭形式收养、教育孤儿的社会福利事业单位,占地面积为37000平方米,这个数用科学记数法表示为___________平方米. 12.函数y =x 的取值范围是_____________. 13.在英语句子“Wish you success!”(祝你成功!)中任选一个字母,这个字母为“s ”的概率是____________. 14.反比例函数(0)my m x=≠与一次函数(0)y kx b k =+≠的图象如图所示,请写出一条正确的结论:______________.15.已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆心距是______________. 16.当x =_____________时,二次函数222y x x =+-有最小值.17.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是_____________.18.已知102103m n ==,,则3210m n+=____________.19.如图,边长为1的菱形ABCD 中,60DAB ∠=°.连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作的第n 个菱形的边长为___________.20.用直角边分别为3和4的两个直角三角形拼成凸四边形,所得的四边形的周长是____________.ADCB第17题图C 1D 1D 2C 2DAB第19题图三、解答题(满分60分) 21.(本小题满分5分)先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,请你为a 任选一个适当的数代入求值.22.(本小题满分6分)如图,在平面直角坐标系中,ABC △的顶点坐标为(23)A -,、(32)B -,、(1,1)C -. (1)若将ABC △向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的111A B C △;(2)画出111A B C △绕原点旋转180°后得到的222A B C △;(3)A B C '''△与ABC △是中心对称图形,请写出对称中心的坐标:___________; (4)顺次连结12C C C C '、、、,所得到的图形是轴对称图形吗?在直角边分别为5cm 和12cm 的直角三角形中作菱形,使菱形的一个内角恰好是三角形的一个角,其余顶点都在三角形的边上,求所作菱形的边长. 24.(本小题满分7分)为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值; A :_____________;B :_____________;(3)求该地区喜爱娱乐类节目的成年人的人数.节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画 108°邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s(千米)和小王从县城出发后所用的时间t(分)之间的函数关系如图,假设二人之间交流的时间忽略不计.(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)求小王从县城出发到返回县城所用的时间.(3)李明从A村到县城共用多少时间?如图1,在四边形ABCD 中,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,分别与BA CD 、的延长线交于点M N 、,则BME CNE ∠=∠(不需证明).(温馨提示:在图1中,连结BD ,取BD 的中点H ,连结HE HF 、,根据三角形中位线定理,证明HE HF =,从而12∠=∠,再利用平行线性质,可证得BME CNE ∠=∠.) 问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB CD =,E F 、分别是BC AD 、的中点,连结EF ,分别交DC AB 、于点M N 、,判断OMN △的形状,请直接写出结论.问题二:如图3,在ABC △中,AC AB >,D 点在AC 上,AB CD =,E F 、分别是BC AD 、的中点,连结EF 并延长,与BA 的延长线交于点G ,若60EFC ∠=°,连结GD ,判断AGD △的形状并证明.AC BD FE N M O B D H AF N M 1 2 图1 图2 图3 A B D F G某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.。

2018年黑龙江省哈尔滨市中考数学试卷(解析版)

2018年黑龙江省哈尔滨市中考数学试卷(解析版)

2018年省市中考数学试卷一、选择题〔每题3分,共计30分〕1.〔3.00分〕〔2018•〕﹣的绝对值是〔〕A.B.C.D.2.〔3.00分〕〔2018•〕以下运算一定正确的选项是〔〕A.〔m+n〕2=m2+n2B.〔mn〕3=m3n3C.〔m3〕2=m5D.m•m2=m23.〔3.00分〕〔2018•〕以下图形中既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.4.〔3.00分〕〔2018•〕六个大小一样的正方体搭成的几何体如下图,其俯视图是〔〕A.B.C.D.5.〔3.00分〕〔2018•〕如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,那么线段BP的长为〔〕A.3 B.3 C.6 D.96.〔3.00分〕〔2018•〕将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为〔〕A.y=﹣5〔x+1〕2﹣1 B.y=﹣5〔x﹣1〕2﹣1 C.y=﹣5〔x+1〕2+3 D.y=﹣5〔x﹣1〕2+37.〔3.00分〕〔2018•〕方程=的解为〔〕A.x=﹣1 B.x=0 C.x= D.x=18.〔3.00分〕〔2018•〕如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,那么线段AB的长为〔〕A.B.2 C.5 D.109.〔3.00分〕〔2018•〕反比例函数y=的图象经过点〔1,1〕,那么k的值为〔〕A.﹣1 B.0 C.1 D.210.〔3.00分〕〔2018•〕如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论一定正确的选项是〔〕A.= B.= C.= D.=二、填空题〔每题3分,共计30分〕11.〔3.00分〕〔2018•〕将数920000000科学记数法表示为.12.〔3.00分〕〔2018•〕函数y=中,自变量x的取值围是.13.〔3.00分〕〔2018•〕把多项式x3﹣25x分解因式的结果是14.〔3.00分〕〔2018•〕不等式组的解集为.15.〔3.00分〕〔2018•〕计算6﹣10的结果是.16.〔3.00分〕〔2018•〕抛物线y=2〔x+2〕2+4的顶点坐标为.17.〔3.00分〕〔2018•〕一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.〔3.00分〕〔2018•〕一个扇形的圆心角为135°,弧长为3πcm,那么此扇形的面积是cm2.19.〔3.00分〕〔2018•〕在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,假设△ABD为直角三角形,那么∠ADC的度数为.20.〔3.00分〕〔2018•〕如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC 于点M,EM交BD于点N,FN=,那么线段BC的长为.三、解答题〔其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.〔7.00分〕〔2018•〕先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.22.〔7.00分〕〔2018•〕如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.〔1〕在图中画出以线段AB为一边的矩形ABCD〔不是正方形〕,且点C和点D均在小正方形的顶点上;〔2〕在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.〔8.00分〕〔2018•〕为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类〞为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?〔必选且只选一种〕〞的问题,在全校围随机抽取局部学生进展问卷调查,将调查结果整理后绘制成如下图的不完整的统计图,请你根据图中提供的信息答复以下问题:〔1〕本次调查共抽取了多少名学生?〔2〕通过计算补全条形统计图;〔3〕假设军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.〔8.00分〕〔2018•〕:在四边形ABCD中,对角线AC、BD相交于点E,且AC ⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.〔1〕如图1,求证:AD=CD;〔2〕如图2,BH是△ABE的中线,假设AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.〔10.00分〕〔2018•〕春平中学要为学校科技活动小组提供实验器材,计划购置A型、B型两种型号的放大镜.假设购置8个A型放大镜和5个B型放大镜需用220元;假设购置4个A型放大镜和6个B型放大镜需用152元.〔1〕求每个A型放大镜和每个B型放大镜各多少元;〔2〕春平中学决定购置A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购置多少个A型放大镜?26.〔10.00分〕〔2018•〕:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.〔1〕如图1,求证:∠CBE=∠DHG;〔2〕如图2,在线段AH上取一点N〔点N不与点A、点H重合〕,连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF 时,求证:BE=HK;〔3〕如图3,在〔2〕的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,假设△BER的面积与△DHK的面积的差为,求线段BR的长.27.〔10.00分〕〔2018•〕:在平面直角坐标系中,点O为坐标原点,点A在x 轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.〔1〕如图1,求点A的坐标;〔2〕如图2,连接AC,点P为△ACD一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,假设∠AFE=30°,求AF2+EF2的值;〔3〕如图3,在〔2〕的条件下,当PE=AE时,求点P的坐标.2018年省市中考数学试卷参考答案与试题解析一、选择题〔每题3分,共计30分〕1.〔3.00分〕〔2018•〕﹣的绝对值是〔〕A.B.C.D.【解答】解:||=,应选:A.【点评】此题主要考察了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比拟简单.2.〔3.00分〕〔2018•〕以下运算一定正确的选项是〔〕A.〔m+n〕2=m2+n2B.〔mn〕3=m3n3C.〔m3〕2=m5D.m•m2=m2【解答】解:A、〔m+n〕2=m2+2mn+n2,故此选项错误;B、〔mn〕3=m3n3,正确;C、〔m3〕2=m6,故此选项错误;D、m•m2=m3,故此选项错误;应选:B.【点评】此题主要考察了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法那么是解题关键.3.〔3.00分〕〔2018•〕以下图形中既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;应选:C.【点评】此题考察了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.〔3.00分〕〔2018•〕六个大小一样的正方体搭成的几何体如下图,其俯视图是〔〕A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.应选:B.【点评】此题考察了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.〔3.00分〕〔2018•〕如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,那么线段BP的长为〔〕A.3 B.3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,那么OP=6,故BP=6﹣3=3.应选:A.【点评】此题主要考察了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.〔3.00分〕〔2018•〕将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为〔〕A.y=﹣5〔x+1〕2﹣1 B.y=﹣5〔x﹣1〕2﹣1 C.y=﹣5〔x+1〕2+3 D.y=﹣5〔x﹣1〕2+3【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5〔x+1〕2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5〔x+1〕2﹣1.应选:A.【点评】此题主要考察了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.〔3.00分〕〔2018•〕方程=的解为〔〕A.x=﹣1 B.x=0 C.x= D.x=1【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,应选:D.【点评】此题考察了解分式方程,利用了转化的思想,解分式方程注意要检验.8.〔3.00分〕〔2018•〕如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,那么线段AB的长为〔〕A.B.2 C.5 D.10【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,应选:C.【点评】此题考察了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.〔3.00分〕〔2018•〕反比例函数y=的图象经过点〔1,1〕,那么k的值为〔〕A.﹣1 B.0 C.1 D.2【解答】解:∵反比例函数y=的图象经过点〔1,1〕,∴代入得:2k﹣3=1×1,解得:k=2,应选:D.【点评】此题考察了反比例函数图象上点的坐标特征,能根据得出关于k的方程是解此题的关键.10.〔3.00分〕〔2018•〕如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论一定正确的选项是〔〕A.= B.= C.= D.=【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.应选:D.【点评】此题考察了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题〔每题3分,共计30分〕11.〔3.00分〕〔2018•〕将数920000000科学记数法表示为9.2×108.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.〔3.00分〕〔2018•〕函数y=中,自变量x的取值围是x≠4 .【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】此题考察的是函数自变量的取值围,掌握分式分母不为0是解题的关键.13.〔3.00分〕〔2018•〕把多项式x3﹣25x分解因式的结果是x〔x+5〕〔x﹣5〕【解答】解:x3﹣25x=x〔x2﹣25〕=x〔x+5〕〔x﹣5〕.故答案为:x〔x+5〕〔x﹣5〕.【点评】此题主要考察了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.〔3.00分〕〔2018•〕不等式组的解集为3≤x<4 .【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】此题考察了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.〔3.00分〕〔2018•〕计算6﹣10的结果是 4 .【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考察了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数一样的二次根式进展合并,合并方法为系数相加减,根式不变.16.〔3.00分〕〔2018•〕抛物线y=2〔x+2〕2+4的顶点坐标为〔﹣2,4〕.【解答】解:∵y=2〔x+2〕2+4,∴该抛物线的顶点坐标是〔﹣2,4〕,故答案为:〔﹣2,4〕.【点评】此题考察二次函数的性质,解答此题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.〔3.00分〕〔2018•〕一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】此题考察了概率公式:随机事件A的概率P〔A〕=事件A可能出现的结果数除以所有可能出现的结果数.18.〔3.00分〕〔2018•〕一个扇形的圆心角为135°,弧长为3πcm,那么此扇形的面积是6πcm2.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π〔cm2〕,故答案为:6π.【点评】此题考察了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.〔3.00分〕〔2018•〕在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,假设△ABD为直角三角形,那么∠ADC的度数为130°或90°.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,那么∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,那么∠ADC=90°,故答案为:130°或90°.【点评】此题考察等腰三角形的性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.〔3.00分〕〔2018•〕如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠C EF=45°,EM⊥BC 于点M,EM交BD于点N,FN=,那么线段BC的长为 4 .【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2〔舍〕,∴BC=2x=4.故答案为:4.【点评】此题考察了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题〔其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.〔7.00分〕〔2018•〕先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】此题考察分式的运算,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.22.〔7.00分〕〔2018•〕如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.〔1〕在图中画出以线段AB为一边的矩形ABCD〔不是正方形〕,且点C和点D均在小正方形的顶点上;〔2〕在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:〔1〕如下图,矩形ABCD即为所求;〔2〕如图△ABE即为所求,CE=4.【点评】此题考察作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.〔8.00分〕〔2018•〕为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类〞为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?〔必选且只选一种〕〞的问题,在全校围随机抽取局部学生进展问卷调查,将调查结果整理后绘制成如下图的不完整的统计图,请你根据图中提供的信息答复以下问题:〔1〕本次调查共抽取了多少名学生?〔2〕通过计算补全条形统计图;〔3〕假设军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:〔1〕本次调查的学生总人数为24÷20%=120人;〔2〕“书法〞类人数为120﹣〔24+40+16+8〕=32人,补全图形如下:〔3〕估计该中学最喜爱国画的学生有960×=320人.【点评】此题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映局部占总体的百分比大小.24.〔8.00分〕〔2018•〕:在四边形ABCD中,对角线AC、BD相交于点E,且AC ⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.〔1〕如图1,求证:AD=CD;〔2〕如图2,BH是△ABE的中线,假设AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:〔1〕∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;〔2〕设DE=a,那么AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,那么S△ADC =AC•DE=•〔2a+2a〕•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE〔ASA〕,∴BE=AE=2a,=AE•BE=•〔2a〕•2a=2a2,∴S△ABE=CE•BE=•〔2a〕•2a=2a2,S△ACE=HG•BE=•〔a+a〕•2a=2a2,S△BHG综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】此题主要考察全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.〔10.00分〕〔2018•〕春平中学要为学校科技活动小组提供实验器材,计划购置A型、B型两种型号的放大镜.假设购置8个A型放大镜和5个B型放大镜需用220元;假设购置4个A型放大镜和6个B型放大镜需用152元.〔1〕求每个A型放大镜和每个B型放大镜各多少元;〔2〕春平中学决定购置A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购置多少个A型放大镜?【解答】解:〔1〕设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;〔2〕设购置A型放大镜m个,根据题意可得:20a+12×〔75﹣a〕≤1180,解得:x≤35,答:最多可以购置35个A型放大镜.【点评】此题考察二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.〔10.00分〕〔2018•〕:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.〔1〕如图1,求证:∠CBE=∠DHG;〔2〕如图2,在线段AH上取一点N〔点N不与点A、点H重合〕,连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF 时,求证:BE=HK;〔3〕如图3,在〔2〕的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,假设△BER的面积与△DHK的面积的差为,求线段BR的长.【解答】〔1〕证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;〔2〕如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;〔3〕解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由〔2〕得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由〔2〕得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•〔ER﹣DK〕=BP•〔ER﹣ET〕=,∴×2a×7a=,解得:a=〔负值舍去〕,∴BP=1,PR=5,那么BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解此题的关键.27.〔10.00分〕〔2018•〕:在平面直角坐标系中,点O为坐标原点,点A在x 轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.〔1〕如图1,求点A的坐标;〔2〕如图2,连接AC,点P为△ACD一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,假设∠AFE=30°,求AF2+EF2的值;〔3〕如图3,在〔2〕的条件下,当PE=AE时,求点P的坐标.【解答】解:〔1〕如图1中,∵y=﹣x+,∴B〔,0〕,C〔0,〕,∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A〔﹣,0〕.〔2〕如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.〔3〕如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,那么AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴〔m〕2+〔2m〕2=72,解得m=或﹣〔舍弃〕,∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P〔﹣,3〕【点评】此题考察一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

2018黑龙江齐齐哈尔市中考数学试题[解析版]

2018黑龙江齐齐哈尔市中考数学试题[解析版]

2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2017的绝对值是()A.﹣2017 B.﹣ C.2017 D.2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D .8.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a 个小正方体组成,最少有b 个小正方体组成,则a+b 等于( )A .10B .11C .12D .139.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为( )A .120°B .180°C .240°D .300°10.如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c <0;③﹣3a+c >0;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣,y 1),(﹣,y 2),(﹣,y 3)是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个二、填空题(本大题共9小题,每小题3分,共27分)11.在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S 甲2=0.15,S 乙2=0.2,则成绩比较稳定的是 班.12.在函数y=+x﹣2中,自变量x的取值范围是.13.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.因式分解:4m2﹣36= .15.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k 的值等于.19.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP =4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a= ,b= ,m= ;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B 落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2017的绝对值是()A.﹣2017 B.﹣ C.2017 D.【考点】15:绝对值.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选 C.2.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.4.下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【考点】47:幂的乘方与积的乘方;44:整式的加减;4C:完全平方公式;6F:负整数指数幂.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.5.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【考点】C9:一元一次不等式的应用.【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.6.若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【考点】AA:根的判别式.【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.7.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【考点】F3:一次函数的图象;K6:三角形三边关系;KH:等腰三角形的性质.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.8.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.13【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个, 所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块, a+b=12, 故选:C .9.一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为( )A .120°B .180°C .240°D .300° 【考点】MP :圆锥的计算;I6:几何体的展开图.【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数. 【解答】解:设底面圆的半径为r ,侧面展开扇形的半径为R ,扇形的圆心角为n 度.由题意得S 底面面积=πr 2, l 底面周长=2πr, S 扇形=3S 底面面积=3πr 2, l 扇形弧长=l 底面周长=2πr.由S 扇形=l 扇形弧长×R 得3πr 2=×2πr×R , 故R=3r .由l 扇形弧长=得:2πr=解得n=120°.故选A .10.如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个B.3个C.2个D.1个【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点.【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.二、填空题(本大题共9小题,每小题3分,共27分)11.在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【考点】W7:方差;W1:算术平均数.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.12.在函数y=+x﹣2中,自变量x的取值范围是x≥﹣4且x≠0 .【考点】E4:函数自变量的取值范围.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.13.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC (答案不唯一),使其成为正方形(只填一个即可)【考点】LF:正方形的判定;LB:矩形的性质.【分析】此题是一道开放型的题目答案不唯一,也可以添加AC⊥BD等.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).14.因式分解:4m2﹣36= 4(m+3)(m﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)15.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【考点】MC:切线的性质.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.16.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm .【考点】PC:图形的剪拼.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【考点】S7:相似三角形的性质;KH:等腰三角形的性质.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC==67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.18.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k 的值等于﹣24 .【考点】G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;L8:菱形的性质;T7:解直角三角形.【分析】易证S菱形ABCO =2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S△ADO =S△DEO,同理S△BCD =S△CDE,∵S菱形ABCO =S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO =2(S△DEO+S△CDE)=2S△CDO=40,∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,∵S菱形ABCO=AO•CF=20x2,解得:x=,∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C 得:k=﹣24, 故答案为﹣24.19.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2017A 2018,则点A 2017的坐标为 (0,()2016)或(0,21008) .【考点】D2:规律型:点的坐标.【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=,OA 3=()2,…,OA 2017=()2016,再利用A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2017在y 轴的正半轴上,即可确定点A 2017的坐标.【解答】解:∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2=,OA 3=()2,…,OA 2017=()2016,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴, 2017÷8=252…1, ∴点A 2017在第一象限,∵OA 2017=()2016,∴点A 2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).三、解答题(共63分)20.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.21.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算;P7:作图﹣轴对称变换.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.22.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP =4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式;HA:抛物线与x轴的交点.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P (x ,y )(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.【解答】解:(1)由点A (﹣1,0)和点B (3,0)得,解得:,∴抛物线的解析式为y=﹣x 2+2x+3;(2)令x=0,则y=3, ∴C (0,3),∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴D (1,4);(3)设P (x ,y )(x >0,y >0),S △COE =×1×3=,S △ABP =×4y=2y ,∵S △ABP =4S △COE ,∴2y=4×, ∴y=3,∴﹣x 2+2x+3=3,解得:x 1=0(不合题意,舍去),x 2=2, ∴P (2,3).23.如图,在△ABC 中,AD ⊥BC 于D ,BD=AD ,DG=DC ,E ,F 分别是BG ,AC 的中点.(1)求证:DE=DF ,DE ⊥DF ;(2)连接EF ,若AC=10,求EF 的长.【考点】KD :全等三角形的判定与性质;KQ :勾股定理.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠AD C=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.24.为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a= 70 ,b= 0.40 ;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第 3 组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;W4:中位数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.25.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a= 10 ,b= 15 ,m= 200 ;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【考点】FH:一次函数的应用.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x 1==17.5,x 2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD 过点B 时,小军的速度为1500÷15=100(米/分钟);当线段OD 过点C 时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v <时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).26.如图,在平面直角坐标系中,把矩形OABC 沿对角线AC 所在直线折叠,点B 落在点D 处,DC 与y 轴相交于点E ,矩形OABC 的边OC ,OA 的长是关于x 的一元二次方程x 2﹣12x+32=0的两个根,且OA >OC . (1)求线段OA ,OC 的长;(2)求证:△ADE ≌△COE ,并求出线段OE 的长; (3)直接写出点D 的坐标;(4)若F 是直线AC 上一个动点,在坐标平面内是否存在点P ,使以点E ,C ,P ,F 为顶点的四边形是菱形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)解方程即可得到结论;(2)由四边形ABCO是矩形,得到AB=OC,∠ABC=∠AOC=90°,根据折叠的性质得到AD=AB,∠ADE=∠ABC=90°,根据全等三角形的判定得到△ADE≌△COE;根据勾股定理得到OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,根据相似三角形的性质得到CM=,DM=,于是得到结论.(4)过P1作P1H⊥AO于H,根据菱形的性质得到P1E=CE=5,P1E∥AC,设P1H=k,HE=2k,根据勾股定理得到P1E=k=5,于是得到P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,得到P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,得到EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P 4作P4N⊥OE于N,根据勾股定理即可得到结论.【解答】解:(1)解方程x2﹣12x+32=0得,x1=8,x2=4,∵OA>OC,∴OA=8,OC=4;(2)∵四边形ABCO是矩形,∴AB=OC,∠ABC=∠AOC=90°,∵把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,∴AD=AB,∠ADE=∠ABC=90°,∴AD=OC,∠ADE=∠COE,在△ADE与△COE中,,∴△ADE≌△COE;∵CE2=OE2+OC2,即(8﹣OE)2=OE2+42,∴OE=3;(3)过D作DM⊥x轴于M,则OE∥DM,∴△OCE∽△MCD,∴,∴CM=,DM=,∴OM=,∴D(﹣,);(4)存在;∵OE=3,OC=4,∴CE=5,过P1作P1H⊥AO于H,∵四边形P1ECF1是菱形,∴P1E=CE=5,P1E∥AC,∴∠P1EH=∠OAC,∴==,∴设P1H=k,HE=2k,∴P1E=k=5,∴P1H=,HE=2,∴OH=2+3,∴P1(﹣,2+3),同理P3(,3﹣2),当A与F重合时,四边形F2ECP2是菱形,∴EF2∥CP2,EF2,=CP2=5,∴P2(4,5);当CE是菱形EP4CF4的对角线时,四边形EP4CF4是菱形,∴EP4=5,EP4∥AC,如图2,过P4作P4G⊥x轴于G,过P4作P4N⊥OE于N,则P 4N=OG ,P 4G=ON , EP 4∥AC ,∴=,设P 4N=x ,EN=2x ,∴P 4E=CP 4=x ,∴P 4G=ON=3﹣2x ,CG=4﹣x ,∴(3﹣2x )2+(4﹣x )2=(x )2,∴x=,∴3﹣2x=,∴P 4(,),综上所述:存在以点E ,C ,P ,F 为顶点的四边形是菱形,P (﹣,2+3),(,3﹣2),(4,5),(,).2017年7月12日。

黑龙江省齐齐哈尔市中考数学试题

黑龙江省齐齐哈尔市中考数学试题

2018年黑龙江省齐齐哈尔市中考数学试卷一、单项选择题:每小题3分,共30分1.(3分)(2018•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根2.(3分)(2018•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2018•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差4.(3分)(2018•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2018;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.5.(3分)(2018•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)(2018•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.7.(3分)(2018•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,38.(3分)(2018•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或59.(3分)(2018•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个10.(3分)(2018•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:每小题3分,共27分11.(3分)(2018•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.12.(3分)(2018•齐齐哈尔)在函数y=中,自变量x的取值范围是.13.(3分)(2018•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).14.(3分)(2018•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.15.(3分)(2018•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.16.(3分)(2018•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.17.(3分)(2018•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.(3分)(2018•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为.19.(3分)(2018•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.三、解答题:共63分20.(7分)(2018•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.21.(8分)(2018•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.(8分)(2018•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)(2018•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.(10分)(2018•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.25.(10分)(2018•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.26.(12分)(2018•齐齐哈尔)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2018年黑龙江省齐齐哈尔市中考数学试卷参考答案一、单项选择题:每小题3分,共30分1.B;2.D;3.B;4.B;5.A;6.C;7.C;8.C;9.A;10.B;二、填空题:每小题3分,共27分11.6.9×10-7;12.x≥-,且x≠2;13.AC⊥BD或∠AOB=90°或AB=BC;14.4;15.45;16.6;17.20和20;18.-1;19.(-,);三、解答题:共63分20.;21.;22.;23.;24.抽样;50;25.70;95;60;26.;。

【精校】2018年黑龙江省齐齐哈尔市中考真题数学

【精校】2018年黑龙江省齐齐哈尔市中考真题数学

2018年黑龙江省齐齐哈尔市中考真题数学一、选择题(共10小题,每小题3分,满分30分)1.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个解析:根据轴对称图形与中心对称图形的概念判断即可.第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形.答案:C2.下列计算正确的是( )A.a2·a3=a6B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab3解析:直接利用同底数幂的乘除运算法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.A、a2·a3=a5,故此选项错误;B、(a2)2=a4,正确;C、a8÷a4=a4,故此选项错误;D、(ab)3=a3b3,故此选项错误.答案:B3.“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为( )A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×109解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.把82万亿用科学记数法表示为8.2×1013.答案:A4.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC 的度数为( )A.10°B.15°C.18°D.30°解析:直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.答案:B5.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是( )A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃解析:根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确.答案:D6.我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的( ) A.众数C.中位数D.方差解析:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.答案:A7.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是( )A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数解析:分别判断每个选项即可得.A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误.答案:D8.某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有( )A.1种B.2种C.3种D.4种解析:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则5654-=y x.当y=4时,x=9;当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.答案:B9.下列成语中,表示不可能事件的是( )A.缘木求鱼B.杀鸡取卵D.日月经天,江河行地解析:直接利用不可能事件以及必然事件的定义分析得出答案.A、缘木求鱼,是不可能事件,符合题意;B、杀鸡取卵,是必然事件,不合题意;C、探囊取物,是必然事件,不合题意;D、日月经天,江河行地,是必然事件,不合题意.答案:A10.抛物线C1:y1=mx2-4mx+2n-1与平行于x轴的直线交于A、B两点,且A点坐标为(-1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,-1);③m>25;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是225≤a<2;⑤不等式mx2-4mx+2n>0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有( )A.2个B.3个C.4个D.5个解析:抛物线对称轴为直线4222-=-=-=b mxa m,故①正确;当x=0时,y=2n-1,故②错误;把A点坐标(-1,2)代入抛物线解析式得:2=m+4m+2n-1,整理得:2n=3-5m,代入y1=mx2-4mx+2n-1,整理的:y1=mx2-4mx+2-5m,由已知,抛物线与x轴有两个交点,则:b2-4ac=(-4m)2-4m(2-5m)>0,整理得:36m2-8m>0,m(9m-2)>0,∵m>0,9m-2>0,即m>29,故③错误;由抛物线的对称性,点B坐标为(5,2),当y 2=ax 2的图象分别过点A 、B 时,其与线段分别有且只有一个公共点, 此时,a 的值分别为a=2、a=225, a 的取值范围是225≤a <2,故④正确; 不等式mx 2-4mx+2n >0的解可以看做是抛物线y 1=mx 2-4mx+2n-1位于直线y=-1上方的部分,此时x 的取值范围包含在使y 1=mx 2-4mx+2n-1函数值范围之内,故⑤正确. 故正确的有3个. 答案:B二、填空题(共7小题,每小题3分,满分21分)11.已知反比例函数2-=ky x的图象在第一、三象限内,则k 的值可以是 .(写出满足条件的一个k 的值即可) 解析:由题意得,反比例函数2-=ky x的图象在第一、三象限内, 则2-k >0,故k <2,满足条件的k 可以为1. 答案:1(答案不唯一)12.已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为 .解析:设圆锥的母性长为l ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长, 根据扇形面积公式可知22040012ππ=g g g l ,解得l=20,即这个圆锥的母线长为20. 答案:2013.三棱柱的三视图如图所示,已知△EFG 中,EF=8cm ,EG=12cm ,∠EFG=45°.则AB 的长为 cm.解析:根据三视图的对应情况可得出,△EFG 中FG 上的高即为AB 的长,进而求出即可. 过点E 作EQ ⊥FG 于点Q ,由题意可得出:EQ=AB , ∵EF=8cm ,∠EFG=45°,∴28==⨯=EQ AB答案:14.若关于x 的方程2416431+=+-+-m x m x x 无解,则m 的值为 . 解析:去分母得:x+4+m(x-4)=m+3, 可得:(m+1)x=5m-1,当m+1=0时,一元一次方程无解, 此时m=-1, 当m+1≠0时,则5141-==±+m x m , 解得:m=5或13-,综上所述:m=-1或5或13-. 答案:-1或5或13-15.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的 倍.解析:设103路公交车行驶速度为x 米/分钟,爸爸行走速度为y 米/分钟,两辆103路公交车间的间距为s 米, 根据题意得:7755-=⎧⎨+=⎩x y sx y s,解得:x=6y ,故103路公交车行驶速度是爸爸行走速度6倍. 答案:616.四边形ABCD 中,BD 是对角线,∠ABC=90°,tan ∠ABD=34,AB=20,BC=10,AD=13,则线段CD= .解析:作AH ⊥BD 于H ,CG ⊥BD 于G ,∵tan ∠ABD=34, ∴34=AH BH , 设AH=3x ,则BH=4x ,由勾股定理得,(3x)2+(4x)2=202, 解得,x=4,则AH=12,BH=16,在Rt △AHD 中,5==HD ,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°, ∴∠ABD=∠CBH , ∴34=GB GC ,又BC=10, ∴BG=6,CG=8, ∴DG=BD-BG=15,∴17=CD . 答案:1717.在平面直角坐标系中,点1)在射线OM 上,点3)在射线ON 上,以AB 为直角边作Rt △ABA 1,以BA1为直角边作第二个Rt △BA 1B 1,以A 1B 1为直角边作第三个Rt △A 1B 1A 2,…,依次规律,得到Rt △B 2017A 2018B 2018,则点B 2018的纵坐标为 .解析:由已知可知:点A 、A 1、A 2、A 3……A 2018各点在正比例函数的图象上,点B 、B 1、B 2、B 3……B 2018各点在正比例函数的图象上,① 由已知,Rt △A 1B 1A 2,…,到Rt △B 2017A 2018B 2018都有一个锐角为30°,∴当A(B)时,由①AB=2,则BA 1,则点A 1=,B 1点纵坐标为9=32;当A 1(B 1)点横坐标为由①A 1B 1=6,则B 1A 2则点A 2横坐标为=,B 2点纵坐标为27=33;当A2(B2)点横坐标为9时,由①A 2B 2=18,则B 2A 3=18,则点A 3横坐标为+=B 3点纵坐标为81=34;依次类推,点B 2018的纵坐标为32019.答案:32019三、解答题(共7小题,满分69分)18.计算.(1)计算:21||22cos603π-+-⎛⎫⎪⎝⎭︒--.解析:(1)直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值以及绝对值的性质分别化简得出答案. 答案:(1)原式=4+1-2×12-(π-3)=5-1-π+3=7-π.(2)分解因式:6(a-b)2+3(a-b)解析:(2)直接提取公因式3(a-b),进而分解因式得出答案.答案:(2)6(a-b)2+3(a-b) =3(a-b)[2(a-b)+1] =3(a-b)(2a-2b+1).19.解方程:2(x-3)=3x(x-3).解析:移项后提取公因式x-3后利用因式分解法求得一元二次方程的解即可. 答案:2(x-3)=3x(x-3), 移项得:2(x-3)-3x(x-3)=0, 整理得:(x-3)(2-3x)=0, x-3=0或2-3x=0,解得:x1=3或x2=23.20.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线.解析:(1)求出∠ADB的度数,求出∠ABD+∠DBC=90°,根据切线判定推出即可.答案:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线.(2)若BF=BC=2,求图中阴影部分的面积.解析:(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.答案:(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴11390330∠=∠=∠=∠=⨯︒=︒CBD OEB OBE ADB , ∴∠C=60°,∴==AB∴⊙O∴13326ππ=-=⨯-=-V 阴影扇形DOB DO S S B S .21.初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3.请你结合统计图解答下列问题:(1)全班学生共有 人.解析:(1)由第二组频数及其频率可得总人数. 6÷0.12=50(人),答:全班学生共有50人. 答案:(1)50(2)补全统计图.解析:(2)先由二、三组的频率和求得对应频数和,从而求得第三组频数,再由第三,四,五组的频数比求得后三组的频数,继而根据频数和为总数求得最后一组频数,从而补全统计图.答案:(2)第二、三组频数之和为50×0.48=24, 则第三组频数为24-6=18,∵自左至右第三,四,五组的频数比为9:8:3, ∴第四组频数为16、第五组频数为6, 则第六组频数为50-(1+6+18+16+6)=3. 补全图形如下:(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?解析:(3)用总人数乘以样本中后三组人数和所占比例即可得.答案:(3)全年级700人中成绩达到优秀的大约有700×166350++=350(人)答:全年级700人中成绩达到优秀的大约有350人.(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?解析:(4)根据概率公式计算即可得.答案:(4)小强同学能被选中领奖的概率是22 639=+.22.某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为 km ,大客车途中停留了 min ,a= .解析:(1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a 的值.由图形可得:学校到景点的路程为40km ,大客车途中停留了5min , 小轿车的速度:4016020=-(千米/分),a=(35-20)×1=15. 答案:(1)40;5;15(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?解析:(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后,大客车行驶的路程,从而可得结论. 答案:(2)由(1)得:a=15, 得大客车的速度:153012=(千米/分), 小轿车赶上来之后,大客车又行驶了:()1012560357127-⨯⨯=(千米), 12550401577--=(千米), 答:在小轿车司机驶过景点入口时,大客车离景点入口还有507千米.(3)小轿车司机到达景点入口时发现本路段限速80km/h ,请你帮助小轿车司机计算折返时是否超速?解析:(3)先计算直线AF 的解析式为:S=t-20,计算小轿车驶过景点入口6km 时的时间为66分,再计算大客车到达终点的时间:1240153570107-=+=⨯t ,根据路程与时间的关系可得小轿车行驶6千米的速度与80作比较可得结论. 答案:(3)∵A(20,0),F(60,40), 设直线AF 的解析式为:S=kt+b , 则2006040+=⎧⎨+=⎩k b k b ,解得:120=⎧⎨=-⎩k b ,∴直线AF 的解析式为:S=t-20, 当S=46时,46=t-20, t=66,小轿车赶上来之后,大客车又行驶的时间:12401535107-=⨯(min),小轿车司机折返时的速度:6÷(35+35-66)=32(千米/分)32千米/分=90千米/时>80千米/时,∴小轿车折返时已经超速.(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.解析:(4)根据时间=路程÷速度,求出大客车一直以出发时的速度行驶,中途不再停车,到达景点的时间,然后减去小轿车到达景点的时间即可.大客车的时间:40÷12=80(min),小轿车折返后到达景点入口,需等待的时间:80-70=10(min),答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.答案:(4)1023.综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B′C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为 .②将△AEC剪下后展开,得到的图形是 .解析:(1)①根据内错角相等两直线平行即可判断.②根据菱形的判定方法即可解决问题.答案:(1)①BD′∥AC.②将△AEC剪下后展开,得到的图形是菱形;故答案为:①BD′∥AC;②菱形.(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由.解析:(2)只要证明AE=EC,即可证明结论②成立;只要证明∠ADB′=∠DAC,即可推出B′D∥AC.答案:(2)①选择②证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB,∴∠DAC=∠ACB′,∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形四边是菱形.②选择①证明如下,∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB′C,∵B′C=BC,∴B′C=AD,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD∴∠ADB′=∠DAC,∴B′D∥AC.(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为 .解析:(3)分两种情形分别讨论即可解决问题.答案:(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;∵∠AB′D+∠ADB′=90°,∴y-30°+y=90°,1时,满足条件,此时可以证明四边形ACDB′是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1:1.拓展应用(4)在图2中,若∠B=30°,,当△AB′D恰好为直角三角形时,BC的长度为 .解析:(4)先证得四边形ACB′D是等腰梯形,分四种情形分别讨论求解即可解决问题.答案:(4)∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB ′C=∠CDA=30°, ∵△AB ′D 是直角三角形,当∠B ′AD=90°,AB >BC 时,如图3中,设∠ADB ′=∠CB ′D=y , ∴∠AB ′D=y-30°, 解得y=60°,∴∠AB ′D=y-30°=30°,∵AB ′∴43==AD , ∴BC=4;当∠ADB ′=90°,AB >BC 时,如图4,∵AD=BC ,BC=B ′C , ∴AD=B ′C , ∵AC ∥B ′D ,∴四边形ACB ′D 是等腰梯形, ∵∠ADB ′=90°,∴四边形ACB ′D 是矩形, ∴∠ACB ′=90°, ∴∠ACB=90°,∵∠B=30°,,∴6===BC AB ; 当∠B ′AD=90°,AB <BC 时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∵∠B=30°,AB′∴∠AB′C=30°,∴AE=4,BE′=2AE=8,∴AE=EC=4,∴CB′=12,当∠AB′D=90°时,如图6,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,,∴BC=AB÷=8.2综上所述,已知当BC的长为4或6或8或12时,△AB′D是直角三角形.24.综合与探究如图1所示,直线y=x+c 与x 轴交于点A(-4,0),与y 轴交于点C ,抛物线y=-x 2+bx+c 经过点A ,C.(1)求抛物线的解析式.解析:(1)把已知点坐标代入解析式. 答案:(1)将A(-4,0)代入y=x+c , ∴c=4,将A(-4,0)和c=4代入y=-x 2+bx+c , ∴b=-3,∴抛物线解析式为y=-x 2-3x+4.(2)点E 在抛物线的对称轴上,求CE+OE 的最小值.解析:(2)取点C 关于抛物线的对称轴直线l 的对称点C ′,由两点之间线段最短,最小值可得.答案:(2)做点C 关于抛物线的对称轴直线l 的对称点C ′,连OC ′,交直线l 于点E. 连CE ,此时CE+OE 的值最小. ∵抛物线对称轴位置线x=32-, ∴CC ′=3,由勾股定理OC ′=5, ∴CE+OE 的最小值为5.(3)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P 、N.①若以C ,P ,N 为顶点的三角形与△APM 相似,则△CPN 的面积为 .②若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.注:二次函数y=ax 2+bx+c(a ≠0)的顶点坐标为(2-ba,244-ac b a )解析:(3)①由已知,注意相似三角形的分类讨论.②设出M坐标,求点P坐标.注意菱形是由等腰三角形以底边所在直线为对称轴对称得到的.本题即为研究△CPN为等腰三角形的情况.答案:(3)①当△CNP∽△AMP时,∠CNP=90°,则NC关于抛物线对称轴对称,∴NC=NP=3,∴1922==VgCPNS NC NP;当△CNP∽△MAP时,由已知△NCP为等腰直角三角形,∠NCP=90°过点C作CE⊥MN于点E,设点M坐标为(a,0),∴EP=EC=-a,则N为(a,-a2-3a+4),MP=-a2-3a+4-(-2a)=-a2-a+4,∴P(a,-a2-a+4),代入y=x+4,解得a=-2,则NP=-2a=4,CE=-a=2,∴124==VgCPNS NP CE.故答案为:92或4.②存在.设M 坐标为(a ,0),则N 为(a ,-a 2-3a+4),则P 点坐标为(a ,2342--+a a ),把点P 坐标代入y=x+4, 解得a 1=-4(舍去),a 2=-1,则M(-1,0),N(-1,6),P(-1,3), 当PF=FM 时,点D 在MP 垂直平分线上,则D(12,32);当PM=PF 时,由菱形性质点D 坐标为(12-+,2)或(12--,2-); 当MP=MF 时,M 、D 关于直线y=-x+4对称,点D 坐标为(-4,3).综上所述,在坐标平面内存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形,点D 的坐标是(12,32)或(12-+,2)或(12--,2-)或(-4,3).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2018年齐齐哈尔市中考数学试卷及答案

2018年齐齐哈尔市中考数学试卷及答案
(1)试问甲乙两个工程队每天分别修路多少米?
(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?
(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队各做多少天?最低费用为多少?
11.某种病毒似于球体,它的半径约为0.00 000 000 495,作科学记数法表示为.
12.小明“六一”去公园玩投掷飞镖的游戏,投中图中阴影部分有奖品(飞镖被平均分成8分).小明能获得奖品的概率是.
13.函数 中,自变量 的取值范围是.
14.圆锥的母线长为6㎝,底面周长为5 ㎝.则圆锥的侧面积为.
B.无限小数是无理数
C.阴天会下雨是必然事件
D.在平南直角坐标系中,如果位似是以原点为位似中心,相似比为k,
那么位似图形对应点的坐标的比等于K或-k。
9.数形结合是数学常用的思想方法,试运用这一思想方法确定 与 的交点的横坐标 的取值范围是()
A.0< <1B.1< <2C.2< <3D.-1< <0
20.如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接.称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.
若已知具有同形结构的正n边形的每个风角度数为 ,满足:360=k (k为正整数),多这形外角和为360°,则k关于边数n的函数是(写出n的取值范围即可).
三、解答题(满 分60分)
21.(本小题满分5分)
先化简,再求值: ,其中 、 满足式子
22.(本小题满分6分)
如图所示,在⊿OAB中,点B的坐标是(0,4),点A的坐标是(3,1).
(1)画出⊿OAB向下平移4个单位长度、再向左平移2个单位长度后的⊿O1A1B1.

2018年黑龙江省齐齐哈尔市中考数学试卷及答案(真题卷)

2018年黑龙江省齐齐哈尔市中考数学试卷及答案(真题卷)

2018年黑龙江省齐齐哈尔市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3.00分)下列计算正确的是()A.a2•a3=a6 B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab33.(3.00分)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×1094.(3.00分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°5.(3.00分)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃6.(3.00分)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差7.(3.00分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.(3.00分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种 B.2种 C.3种 D.4种9.(3.00分)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地10.(3.00分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B 两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n >0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个 B.3个 C.4个 D.5个二、填空题(共7小题,每小题3分,满分21分)11.(3.00分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)12.(3.00分)已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为.13.(3.00分)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.14.(3.00分)若关于x的方程+=无解,则m的值为.15.(3.00分)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.16.(3.00分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=.17.(3.00分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.三、解答题(共7小题,满分69分)18.(10.00分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)19.(5.00分)解方程:2(x﹣3)=3x(x﹣3).20.(8.00分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.21.(10.00分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?22.(10.00分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.23.(12.00分)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.24.(14.00分)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)2018年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.2.(3.00分)下列计算正确的是()A.a2•a3=a6 B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab3【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)2=a4,正确;C、a8÷a4=a4,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.3.(3.00分)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×109【解答】解:把82万亿用科学记数法表示为8.2×1013.故选:A.4.(3.00分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【解答】解:由题意可得:∠EDF=60°,∠ABC=45°,∵AB∥CF,∴∠ABD=∠EDF=60°,∴∠DBC=60°﹣45°=15°.故选:B.5.(3.00分)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.6.(3.00分)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差【解答】解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.7.(3.00分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.8.(3.00分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种 B.2种 C.3种 D.4种【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.9.(3.00分)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【解答】解:A、缘木求鱼,是不可能事件,符合题意;B、杀鸡取卵,是必然事件,不合题意;C、探囊取物,是必然事件,不合题意;D、日月经天,江河行地,是必然事件,不合题意;故选:A.10.(3.00分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B 两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n >0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:抛物线对称轴为直线x=﹣故①正确;当x=0时,y=2n﹣1故②错误;把A点坐标(﹣1,2)代入抛物线解析式得:2=m+4m+2n﹣1整理得:2n=3﹣5m带入y1=mx2﹣4mx+2n﹣1整理的:y1=mx2﹣4mx+2﹣5m由已知,抛物线与x轴有两个交点则:b2﹣4ac=(﹣4m)2﹣4m(2﹣5m)>0整理得:36m2﹣8m>0m(9m﹣2)>0∵m>09m﹣2>0即m>故③错误;由抛物线的对称性,点B坐标为(5,2)当y2=ax2的图象分别过点A、B时,其与线段分别有且只有一个公共点此时,a的值分别为a=2、a=a的取值范围是≤a<2;故④正确;不等式mx2﹣4mx+2n>0的解可以看做是,抛物线y1=mx2﹣4mx+2n﹣1位于直线y=﹣1上方的部分,其此时x的取值范围包含在使y1=mx2﹣4mx+2n﹣1函数值范围之内故⑤正确;故选:B.二、填空题(共7小题,每小题3分,满分21分)11.(3.00分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是1.(写出满足条件的一个k的值即可)【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.12.(3.00分)已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为20.【解答】解:设圆锥的母性长为l,根据题意得•2π•20•l=400π解得l=20,即这个圆锥的母线长为20.故答案为20.13.(3.00分)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.14.(3.00分)若关于x的方程+=无解,则m的值为﹣1或5或﹣.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.15.(3.00分)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的6倍.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:,解得:x=6y.故答案为:6.16.(3.00分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=17.【解答】解:作AH⊥BD于H,CG⊥BD于G,∵tan∠ABD=,∴=,设AH=3x,则BH=4x,由勾股定理得,(3x)2+(4x)2=202,解得,x=4,则AH=12,BH=16,在Rt△AHD中,HD==5,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°,∴∠ABD=∠CBH,∴=,又BC=10,∴BG=6,CG=8,∴DG=BD﹣BG=15,∴CD==17,故答案为:17.17.(3.00分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为32019.【解答】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:32019三、解答题(共7小题,满分69分)18.(10.00分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)【解答】解:(1)原式=4+1﹣2×﹣(π﹣3)=5﹣1﹣π+3=7﹣π;(2)6(a﹣b)2+3(a﹣b)=3(a﹣b)[2(a﹣b)+1]=3(a﹣b)(2a﹣2b+1).19.(5.00分)解方程:2(x﹣3)=3x(x﹣3).【解答】解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.20.(8.00分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=..21.(10.00分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?【解答】解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.22.(10.00分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为40km,大客车途中停留了5min,a=15;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.【解答】本题满分10分:解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.23.(12.00分)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为平行;②将△AEC剪下后展开,得到的图形是菱形;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为1:1或:1;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为4或6或8或12.【解答】解:(1)①BD′∥AC.②将△AEC剪下后展开,得到的图形是菱形;故答案为BD′∥AC,菱形;(2)①选择②证明如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB,∴∠DAC=∠ACB′,∴AE=CE,∴△AEC是等腰三角形;∴将△AEC剪下后展开,得到的图形四边相等,∴将△AEC剪下后展开,得到的图形四边是菱形.②选择①证明如下,∵四边形ABCD是平行四边形,∴AD=BC,∵将△ABC沿AC翻折至△AB′C,∵B′C=BC,∴B′C=AD,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD∴∠ADB′=∠DAC,∴B′D∥AC.(3)①当矩形的长宽相等时,满足条件,此时矩形纸片的长宽之比为1:1;∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,②当矩形的长宽之比为:1时,满足条件,此时可以证明四边形ACDB′是等腰梯形,是轴对称图形;综上所述,满足条件的矩形纸片的长宽之比为1:1或:1;(4)∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,如图3中,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=4,∴AD=×4=4,∴BC=4,当∠ADB′=90°,AB>BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=4,∴BC=AB=×4=6;当∠B′AD=90°,AB<BC时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∵∠B=30°,AB′=4,∴∠AB′C=30°,∴AE=4,BE′=2AE=8,∴AE=EC=4,∴CB′=12,当∠AB′D=90°时,如图6,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=4,∴BC=AB÷=8;∴已知当BC的长为4或6或8或12时,△AB′D是直角三角形.故答案为:平行,菱形,1:1或:1,4或6或8或12;24.(14.00分)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为或4;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【解答】解:(1)将A(﹣4,0)代入y=x+c∴c=4将A(﹣4,0)和c=4代入y=﹣x2+bx+c∴b=﹣3∴抛物线解析式为y=﹣x2﹣3x+4(2)做点C关于抛物线的对称轴直线l的对称点C′,连OC′,交直线l于点E.连CE,此时CE+OE的值最小.∵抛物线对称轴位置线x=﹣∴CC′=3由勾股定理OC′=5∴CE+OE的最小值为5(3)①当△CNP∽△AMP时,∠CNP=90°,则NC关于抛物线对称轴对称∴NC=NP=3∴△CPN的面积为当△CNP∽△MAP时由已知△NCP为等腰直角三角形,∠NCP=90°过点C作CE⊥MN于点E,设点M坐标为(a,0)∴EP=EC=﹣a,则N为(a,﹣a2﹣3a+4),MP=﹣a2﹣3a+4﹣(﹣2a)=﹣a2﹣a+4∴P(a,﹣a2﹣a+4)代入y=x+4解得a=﹣2∴△CPN的面积为4故答案为:或4②存在设M坐标为(a,0)则N为(a,﹣a2﹣3a+4)则P点坐标为(a,)把点P坐标代入y=﹣x+4解得a1=﹣4(舍去),a2=﹣1当PF=FM时,点D在MN垂直平分线上,则D()当PM=PF时,由菱形性质点D坐标为(﹣1+,)(﹣1﹣,﹣)当MP=MF时,M、D关于直线y=﹣x+4对称,点D坐标为(﹣4,3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年黑龙江省齐齐哈尔市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3.00分)下列计算正确的是()A.a2•a3=a6 B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab33.(3.00分)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×1094.(3.00分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°5.(3.00分)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃6.(3.00分)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差7.(3.00分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数8.(3.00分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种 B.2种 C.3种 D.4种9.(3.00分)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地10.(3.00分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B 两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n >0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个 B.3个 C.4个 D.5个二、填空题(共7小题,每小题3分,满分21分)11.(3.00分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)12.(3.00分)系统找不到该试题13.(3.00分)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.14.(3.00分)若关于x的方程+=无解,则m的值为.15.(3.00分)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的倍.16.(3.00分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=.17.(3.00分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.三、解答题(共7小题,满分69分)18.(10.00分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)19.(5.00分)解方程:2(x﹣3)=3x(x﹣3).20.(8.00分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.21.(10.00分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?22.(10.00分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为km,大客车途中停留了min,a=;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待分钟,大客车才能到达景点入口.23.(12.00分)综合与实践折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.实践操作如图1,将矩形纸片ABCD沿对角线AC翻折,使点B′落在矩形ABCD所在平面内,B'C和AD相交于点E,连接B′D.解决向题(1)在图1中,①B′D和AC的位置关系为;②将△AEC剪下后展开,得到的图形是;(2)若图1中的矩形变为平行四边形时(AB≠BC),如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为;拓展应用(4)在图2中,若∠B=30°,AB=4,当△AB′D恰好为直角三角形时,BC的长度为.24.(14.00分)综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)2018年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3.00分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3.00分)下列计算正确的是()A.a2•a3=a6 B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab3【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)2=a4,正确;C、a8÷a4=a4,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算、幂的乘方运算,正确掌握运算法则是解题关键.3.(3.00分)“厉害了,我的国!”2018年1月18日,国家统计局对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶,把82万亿用科学记数法表示为()A.8.2×1013B.8.2×1012C.8.2×1011D.8.2×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:把82万亿用科学记数法表示为8.2×1013.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.【点评】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.5.(3.00分)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.6.(3.00分)我们家乡的黑土地全国特有,肥沃的土壤,绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎,小明在平价米店记录了一周中不同包装(10kg,20kg,50kg)的大米的销售量(单位:袋)如下:10kg装100袋;20kg装220袋;50kg装80袋,如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这些数据(袋数)中的()A.众数B.平均数C.中位数D.方差【分析】众数是一组数据中出现次数最多的数,可能不止一个,对这个米店老板来说,他最关注的是数据的众数.【解答】解:对这个米店老板来说,他最应该关注的是这些数据(袋数)中的哪一包装卖得最多,即是这组数据的众数.故选:A.【点评】考查了众数、平均数、中位数和方差意义,比较简单,属于基础题.7.(3.00分)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.8.(3.00分)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种 B.2种 C.3种 D.4种【分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.共有2种方案.故选:B.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.9.(3.00分)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【分析】直接利用不可能事件以及必然事件的定义分析得出答案.【解答】解:A、缘木求鱼,是不可能事件,符合题意;B、杀鸡取卵,是必然事件,不合题意;C、探囊取物,是必然事件,不合题意;D、日月经天,江河行地,是必然事件,不合题意;故选:A.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.10.(3.00分)抛物线C1:y1=mx2﹣4mx+2n﹣1与平行于x轴的直线交于A、B 两点,且A点坐标为(﹣1,2),请结合图象分析以下结论:①对称轴为直线x=2;②抛物线与y轴交点坐标为(0,﹣1);③m>;④若抛物线C2:y2=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是≤a<2;⑤不等式mx2﹣4mx+2n >0的解作为函数C1的自变量的取值时,对应的函数值均为正数,其中正确结论的个数有()A.2个 B.3个 C.4个 D.5个【分析】①利用抛物线对称轴方程可判定;②与y轴相交设x=0,问题可解;③当抛物线过A(﹣1,2)时,带入可以的到2n=3﹣5m,函数关系式中只含有参数m,由抛物线与x轴有两个公共点,则由一元二次方程根的判别式可求;④求出线段AB端点坐标,画图象研究临界点问题可解;⑤把不等式问题转化为函数图象问题,答案易得.【解答】解:抛物线对称轴为直线x=﹣故①正确;当x=0时,y=2n﹣1故②错误;把A点坐标(﹣1,2)代入抛物线解析式得:2=m+4m+2n﹣1整理得:2n=3﹣5m带入y1=mx2﹣4mx+2n﹣1整理的:y1=mx2﹣4mx+2﹣5m由已知,抛物线与x轴有两个交点则:b2﹣4ac=(﹣4m)2﹣4m(2﹣5m)>0整理得:36m2﹣8m>0m(9m﹣2)>0∵m>09m﹣2>0即m>故③错误;由抛物线的对称性,点B坐标为(5,2)当y2=ax2的图象分别过点A、B时,其与线段分别有且只有一个公共点此时,a的值分别为a=2、a=a的取值范围是≤a<2;故④正确;不等式mx2﹣4mx+2n>0的解可以看做是,抛物线y1=mx2﹣4mx+2n﹣1位于直线y=﹣1上方的部分,其此时x的取值范围包含在使y1=mx2﹣4mx+2n﹣1函数值范围之内故⑤正确;故选:B.【点评】本题为二次函数综合性问题,考查了二次函数对称轴、与坐标轴交点、对称性、抛物线与x轴交点个数判定、与抛物线有关的临界点问题以及从函数的观点研究不等式.二、填空题(共7小题,每小题3分,满分21分)11.(3.00分)已知反比例函数y=的图象在第一、三象限内,则k的值可以是1.(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.【点评】本题主要考查反比例函数的性质,当k>0时,双曲线的两个分支在一,三象限,y随x的增大而减小;当k<0时,双曲线的两个分支在二,四象限,y 随x的增大而增大.12.(3.00分)系统找不到该试题13.(3.00分)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.14.(3.00分)若关于x的方程+=无解,则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.15.(3.00分)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的6倍.【分析】设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据“每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车”,即可得出关于x、y的二元一次方程组,消去s即可得出x=6y,此题得解.【解答】解:设103路公交车行驶速度为x米/分钟,爸爸行走速度为y米/分钟,两辆103路公交车间的间距为s米,根据题意得:,解得:x=6y.故答案为:6.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.(3.00分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD=17.【分析】作AH⊥BD于H,CG⊥BD于G,根据正切的定义分别求出AH、BH,根据勾股定理求出HD,得到BD,根据勾股定理计算即可.【解答】解:作AH⊥BD于H,CG⊥BD于G,∵tan∠ABD=,∴=,设AH=3x,则BH=4x,由勾股定理得,(3x)2+(4x)2=202,解得,x=4,则AH=12,BH=16,在Rt△AHD中,HD==5,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°,∴∠ABD=∠CBH,∴=,又BC=10,∴BG=6,CG=8,∴DG=BD﹣BG=15,∴CD==17,故答案为:17.【点评】本题考查的是勾股定理、锐角三角函数的定义,掌握解直角三角形的一般步骤、理解锐角三角函数的定义是解题的关键.17.(3.00分)在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为32019.【分析】根据题意,分别找到AB、A1B1、A2B2……及BA1、B1A2、B2A3……线段长度递增规律即可【解答】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:32019【点评】本题是平面直角坐标系规律探究题,考查了含有特殊角的直角三角形各边数量关系,解答时注意数形结合.三、解答题(共7小题,满分69分)18.(10.00分)(1)计算:()﹣2+(﹣)0﹣2cos60°﹣|3﹣π|(2)分解因式:6(a﹣b)2+3(a﹣b)【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值以及绝对值的性质分别化简得出答案;(2)直接提取公因式3(a﹣b),进而分解因式得出答案.【解答】解:(1)原式=4+1﹣2×﹣(π﹣3)=5﹣1﹣π+3=7﹣π;(2)6(a﹣b)2+3(a﹣b)=3(a﹣b)[2(a﹣b)+1]=3(a﹣b)(2a﹣2b+1).【点评】此题主要考查了实数运算以及提取公因式分解因式,正确提取公因式是解题关键.19.(5.00分)解方程:2(x﹣3)=3x(x﹣3).【分析】移项后提取公因式x﹣3后利用因式分解法求得一元二次方程的解即可.【解答】解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.【点评】本题考查了因式分解法解一元二次方程,解题的关键是先移项,然后提取公因式,避免两边同除以x﹣3,这样会漏根.20.(8.00分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.【分析】(1)求出∠ADB的度数,求出∠ABD+∠DBC=90°,根据切线判定推出即可;(2)连接OD,分别求出三角形DOB面积和扇形DOB面积,即可求出答案.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)连接OD,∵BF=BC=2,且∠ADB=90°,∴∠CBD=∠FBD,∵OE∥BD,∴∠FBD=∠OEB,∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠OEB=∠OBE=∠ADB=90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∴阴影部分的面积=扇形DOB的面积﹣三角形DOB的面积=..【点评】本题考查了切线的判定,扇形面积,直角三角形的性质和判定的应用,关键是求出∠ABD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.21.(10.00分)初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有50人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?【分析】(1)由第二组频数及其频率可得总人数;(2)先由二、三组的频率和求得对应频数和,从而求得第三组频数,再由第三,四,五组的频数比求得后三组的频数,继而根据频数和为总数求得最后一组频数,从而补全统计图;(3)用总人数乘以样本中后三组人数和所占比例即可得;(4)根据概率公式计算即可得.【解答】解:(1)全班学生人数为6÷0.12=50人,故答案为:50;(2)第二、三组频数之和为50×0.48=24,则第三组频数为24﹣6=18,∵自左至右第三,四,五组的频数比为9:8:3,∴第四组频数为16、第五组频数为6,则第六组频数为50﹣(1+6+18+16+6)=3,补全图形如下:(3)全年级700人中成绩达到优秀的大约有700×=350人;(4)小强同学能被选中领奖的概率是=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(10.00分)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程S(单位:km)和行驶时间t(单位:min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为40km,大客车途中停留了5min,a=15;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速80km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.【分析】(1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后,大客车行驶的路程,从而可得结论;(3)先计算直线AF的解析式为:S=t﹣20,计算小轿车驶过景点入口6km时的时间为66分,再计算大客车到达终点的时间:t=+35=70,根据路程与时间的关系可得小轿车行驶6千米的速度与80作比较可得结论.【解答】本题满分10分:解:(1)由图形可得:学校到景点的路程为40km,大客车途中停留了5min,小轿车的速度:=1(千米/分),a=(35﹣20)×1=15,(3分)故答案为:40,5,15;(2)由(1)得:a=15,得大客车的速度:=(千米/分),(4分)小轿车赶上来之后,大客车又行驶了:(60﹣35)×=(千米),40﹣﹣15=(千米),(6分)答:在小轿车司机驶过景点入口时,大客车离景点入口还有千米;(3)∵A(20,0),F(60,40),设直线AF的解析式为:S=kt+b,则,解得:,∴直线AF的解析式为:S=t﹣20,(7分)当S=46时,46=t﹣20,t=66,小轿车赶上来之后,大客车又行驶的时间:=35,小轿车司机折返时的速度:6÷(35+35﹣66)=(千米/分)=90千米/时>80千米/时,(8分)∴小轿车折返时已经超速;(4)大客车的时间:=80min,80﹣70=10min,答:小轿车折返后到达景点入口,需等待10分钟,大客车才能到达景点入口.(10分)故答案为:10.。

相关文档
最新文档