UC3842斩控式单相交流调压电路

合集下载

基于UC3842的单端反激式开关稳压电源的设计毕业设计论文之欧阳物创编

基于UC3842的单端反激式开关稳压电源的设计毕业设计论文之欧阳物创编

1 引言电源,即提供电能的设备,主要分三类:一次电源(将其它能量转换为电能),二次电源和蓄电池。

其中,二次电源指的是把输入电源(由电网供电)转换为电压、电流、频率、波形及在稳定性、可靠性(含电磁兼容,绝缘散热,不间断电源,智能控制)等方面合适要求的电能供给负载。

高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。

开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不成比较的优点。

UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。

所谓电流型脉宽调制器是按反响电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放年夜器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变更而变更。

由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。

2 开关电源概述2.1 开关电源的分类开关型稳压电源的电路结构一般分类如下:(1)按驱动方法分,有自激式和他激式。

(2)按DC/DC变换器的工作方法分:①单规矩激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。

(3)按电路组成分,有谐振型和非谐振型。

(4)按控制方法分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式;③PWM与PFM混合式。

2.2 开关电源的控制原理开关电源是指电路中的电力电子器件工作在开关状态的稳压电源,是一种高频电源变换电路,采取直交直变换,能够高效率地产生一路或多路可调整的高品质的直流电压。

开关电源采取功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。

开关电源的基本构成如图2.1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,另外还有起动、过流与过压呵护、噪声滤波等电路。

斩控式单相交流调压电路

斩控式单相交流调压电路

目录----------------------------------------------------------------------------第1章概述 (2)1.1 交流调压在生活生产中的应 (2)1.2 关于单相调压器 (2)1.3 关于本课题 (3)第2章系统总方案的设计 (4)2.1 基本工作原理 (4)2.2总体方案的确定 (5)第3章主电路的总体设计 (6)3.1 设计总体思路 (6)3.2 主电路的设计 (6)3.3 主电路的保护电路设计 (7)3.4 主电路元件的选型 (9)第4章控制及驱动电路设计 (10)4.1驱动电路设计 (10)第5章保护电路及设计 (11)5.1 过零检测及续流触发电路 (11)5.2控制电路的保护设计 (12)第6章主控制芯片的详细说明 (13)6.1主控制芯片的选择及介绍 (13)6.2 SG3525引脚功能及特点简介 (13)6.3 芯片的工作原理 (15)第7章总结与体会 (17)附录A 参考文献 (18)电气信息学院课程设计评分表 (19)总电路图 (20)第1章概述1.1 交流调压在生活生产中的应用交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在电力系统中,这种电路还常用于对无功功率的连续调节。

此外,在高电压小电流或低电压大电流直流电源中,也常用交流高压电路调节变压器一次电压。

因此交流调压电路广泛存在于农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

1.2 关于单相调压器对于单相交流电源,调压和稳压是最为普遍的要求。

目前能够实现这一要求的调压器有下面三种:磁饱和式调压器该调压器通过控制主电路中电感的饱和程度,以改变电抗值以及其上的电压,实现对输出电压的调节。

这种调压器具有一定的动态性能,但输出电压的调节范围小,体积和重量较大。

机械式调压器机械式调压器由电动机带动碳刷实现输出电压的调节。

斩控式单相交流调压电路

斩控式单相交流调压电路

设计内容与设计要求一.设计内容:1.电路功能:1)用斩控方式实现交流调压,功率因数高,谐波小,输出波形好。

2)电路由主电路与控制电路组成,主电路主要环节:主电力电子开关与续流管。

控制电路主要环节:脉宽调制PWM电路、电压电流检测单元、驱动电路、检测与故障保护电路。

3)主电路电力电子开关器件采用GTR、IGBT或MOSFET。

4)系统具有完善的保护2. 系统总体方案确定3. 主电路设计与分析1)确定主电路方案2)主电路元器件的计算及选型3)主电路保护环节设计4. 控制电路设计与分析1)检测电路设计2)功能单元电路设计3)触发电路设计4)控制电路参数确定二.设计要求:1.用SG3525产生脉冲。

2.设计思路清晰,给出整体设计框图;3.单元电路设计,给出具体设计思路和电路;4.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

5.绘制总电路图6.写出设计报告;主要设计条件1.设计依据主要参数1)输入输出电压:单相(AC)220(1+15%)、0~150V(AC)2)最大输出电流:5A3)功率因数:≥0.72. 可提供实验与仿真条件说明书格式1.课程设计封面;2.任务书;3.说明书目录;4.设计总体思路,基本原理和框图(总电路图);5.单元电路设计(各单元电路图);6.故障分析与电路改进、实验及仿真等。

7.总结与体会;8.附录(完整的总电路图);9.参考文献;10、课程设计成绩评分表进度安排第一周星期一:课题内容介绍和查找资料;星期二:总体电路方案确定星期三:主电路设计星期四:控制电路设计星期五:控制电路设计;第二周星期一: 控制电路设计星期二:电路原理及波形分析、实验调试及仿真等星期四~五:写设计报告,打印相关图纸;星期五下午:答辩及资料整理目录第1章概述 (1)1.1 单相交流调压........................ 错误!未定义书签。

1.2 交流调压在生活生产中的应用.......... 错误!未定义书签。

电力电子课程设计示例UC3842斩控式单相交流调压电路

电力电子课程设计示例UC3842斩控式单相交流调压电路

目录第1章概述 (2)第2章总体方案及基本原理 (3)2.1 基本原理 (3)2.2总体方案 (3)第3章主电路的设计 (5)3.1 主电路的总体设计 (5)3.2 主电路参数计算和元器件的选择 (6)第4章控制及驱动电路设计 (9)4.1主控制芯片的详细说明 (9)4.2 驱动电路设计 (11)第5章保护电路及设计 (13)5.1主回路输出端过电流保护 (13)5.2 IGBT的保护设计 (13)5.3 结果分析 (15)第6章设计总结与体会 (16)附录A 总电路图 (17)附录B 参考文献 (18)第1章概述自20世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。

随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR.GTO,功率MOSFET等自关断全控型第二代电力电子器件。

而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展。

而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。

斩控式调压电路是通过调节开关器件开关相位的控制而改变输出电压的有效值。

它的特点是电源电流中不含低次谐波,只含和开关周期有关的高次谐波。

这些高次谐波用很小的滤波器即可滤除,这时电路功率因数接近于1。

第2章总体方案及基本原理2.1 基本原理斩控式交流调压电路与直流斩波电路原理类似,只是直流斩波电路输入的是直流电压,而斩控式交流调压电路输入的是正弦交流电压。

单相斩控式交流调压电路设计

单相斩控式交流调压电路设计

单相斩控式交流调压电路设计单相斩控式交流调压电路是一种常见的电路设计,它可以将交流电源的电压进行调节,使其符合特定的要求。

本文将介绍单相斩控式交流调压电路的原理、设计和应用。

一、原理单相斩控式交流调压电路的原理是利用斩波器对交流电源进行控制,从而实现电压的调节。

斩波器是一种电子元件,它可以将交流电源的正半周或负半周进行截取,从而得到一个脉冲信号。

这个脉冲信号的宽度可以通过控制斩波器的导通时间来进行调节,从而实现对电压的控制。

在单相斩控式交流调压电路中,斩波器通常采用晶闸管或场效应管。

当斩波器导通时,交流电源的电流会通过斩波器流入负载,从而使负载得到电源的供电。

当斩波器截止时,电源的电流就会被截断,负载也就不再得到电源的供电。

通过不断地重复这个过程,就可以实现对电压的调节。

二、设计单相斩控式交流调压电路的设计需要考虑多个因素,包括电源电压、负载电流、斩波器的选择和控制电路的设计等。

下面将分别介绍这些因素的设计要点。

1. 电源电压电源电压是单相斩控式交流调压电路设计的重要参数,它决定了电路的输出电压范围和负载能力。

一般来说,电源电压越高,输出电压范围就越大,负载能力也就越强。

但是,电源电压过高也会增加电路的复杂度和成本,因此需要根据实际需求进行选择。

2. 负载电流负载电流是单相斩控式交流调压电路设计的另一个重要参数,它决定了电路的输出功率和稳定性。

一般来说,负载电流越大,输出功率就越高,但是电路的稳定性也会受到影响。

因此,在设计电路时需要根据负载的实际需求进行选择。

3. 斩波器的选择斩波器是单相斩控式交流调压电路中最关键的元件之一,它的选择直接影响到电路的性能和稳定性。

一般来说,晶闸管和场效应管是常用的斩波器,它们具有导通压降低、响应速度快等优点。

但是,晶闸管的控制电路比较复杂,而场效应管的价格较高,因此需要根据实际需求进行选择。

4. 控制电路的设计控制电路是单相斩控式交流调压电路中另一个重要的设计要素,它负责控制斩波器的导通和截止。

UC3842工作原理及应用

UC3842工作原理及应用
电阻替换。LED宣使用①5mm绿 色高亮度LED、RG选用亮暗阻差 异较大的光敏电阻、暗阻约
2MQ。MCR选用3A/600V双向可
控硅,可视负载大小而定。C.为
O.22Ⅳ400V绦纶电容。其它元件 规格图中均已标明。
鱼P 1
一 图2 一P2
UC3842工作原理及应用
作者: 作者单位: 刊名:
英文刊名: 年,卷(期):
图1 uc3842内部结构框图 引脚2为反馈端,将外接取样 电路送来的取样电压经该脚至内 部的误差放大器的反相输入端, 与内部基准电压误差放大器同相 输入端的基准电压进行比较,产 生误差电压。该误差电压控制脉 冲电压调制电路,从而使开关电 源的输出保持稳定。 引脚3为过流保护输入端,当 开关电源的输出过载或开关功率
·工作频率高(可达500kHz), 从而减低了开关变压器的体积、 重量,便于开关电源的小型化;
·启动电流小(≤1mA)。 ·输出的电流大(达到1A),可 直接驱动双极型或MOS开关功率 管,而无须增加激励放大器对电 流进行放大。 UC3842的内部结构框图见图 l所示,引脚排列如表1所示。
引脚1外接阻容网络,以补偿 误差放大器的频率特性。
输出Vl,
输入V
V一
管被击穿,检测电路输入的电流 超过最大允许电流,UC3842的内 部电路动作,停止输出脉冲从而
电的电源。 UC3842的工作原理如下: (1)电路上电时,外接的启动
2 O集成 万电方路数应 据用 卯p』孚2月
原理与应用
电路通过引脚7提供uC3842芯片 所需的启动电压。在启动电压的 作用下,芯片开始工作,脉冲宽度 调制电路产生脉冲信号经6脚输 出驱动外接的开关功率管工作。 开关功率管工作产生的交变信号 经取样电路转化为低压直流信号 反馈到第7引脚,维护系统的正常 工作;

UC3842内部结构和工作原理

UC3842内部结构和工作原理

UC384‎2内部结构‎和工作原理‎标签:UC384‎2电路结构原理2010-11-10 15:07下图为UC‎3842 内部框图和‎引脚图,UC384‎2采用固定工‎作频率脉冲‎宽度可控调‎制方式,共有8 个引脚,各脚功能如‎下:①脚是误差放‎大器的输出‎端,外接阻容元‎件用于改善‎误差放大器‎的增益和频‎率特性;②脚是反馈电‎压输入端,此脚电压与‎误差放大器‎同相端的2‎.5V 基准电压进‎行比较,产生误差电‎压,从而控制脉‎冲宽度;③脚为电流检‎测输入端,当检测电压‎超过1V时‎缩小脉冲宽‎度使电源处‎于间歇工作‎状态;④脚为定时端‎,内部振荡器‎的工作频率‎由外接的阻‎容时间常数‎决定,f=1.8/(RT ×CT);⑤脚为公共地‎端;⑥脚为推挽输‎出端,内部为图腾‎柱式,上升、下降时间仅‎为50ns‎驱动能力为‎±1A ;⑦脚是直流电‎源供电端,具有欠、过压锁定功‎能,芯片功耗为‎15mW;⑧脚为5V 基准电压输‎出端,有50mA‎的负载能力‎。

UC384‎2 内部原理框‎图UC384‎2是一种性‎能优异、应用广泛、结构较简单‎的PWM开‎关电源集成‎控制器,由于它只有‎一个输出端‎,所以主要用‎于音端控制‎的开关电源‎。

UC384‎2 7脚为电压‎输入端,其启动电压‎范围为16‎-34V。

在电源启动‎时,VCC﹤16V,输入电压施‎密物比较器‎输出为0,此时无基准‎电压产生,电路不工作‎;当Vcc﹥16V时输‎入电压施密‎特比较器送‎出高电平到‎5V蕨稳压‎器,产生5V基‎准电压,此电压一方‎面供销内部‎电路工作,另一方面通‎过⑧脚向外部提‎供参考电压‎。

一旦施密特‎比较器翻转‎为高电平(芯片开始工‎作以后),Vcc可以‎在10V-34V范围‎内变化而不‎影响电路的‎工作状态。

当Vcc低‎于10V时‎,施密特比较‎器又翻转为‎低电平,电路停止工‎作。

当基准稳压‎源有5V基‎准电压输出‎时,基准电压检‎测逻辑比较‎器即达出高‎电平信号到‎输出电路。

UC3842 中文资料 电路汇总

UC3842 中文资料 电路汇总

1 UC3842 内部工作原理简介图1 示出了UC3842 内部框图与引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚就是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益与频率特性;②脚就是反馈电压输入端,此脚电压与误差放大器同相端的2、5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端, 当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1、8/(RT ×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚就是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

图1 UC3842 内部原理框图2 UC3842 组成的开关电源电路图2 就是由UC3842 构成的开关电源电路,220V 市电由C1、L1滤除电磁干扰,负温度系数的热敏电阻Rt1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律就是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

④脚与⑧脚外接的R6、C8决定了振荡频率,其振荡频率的最大值可达500KHz。

R5、C 6用于改善增益与频率特性。

⑥脚输出的方波信号经R7、R8分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。

电阻R10 用于电流检测,经R9、C9滤滤后送入UC3842 的③脚形成电流反馈环、所以由UC3842 构成的电源就是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。

UC3842UC3843工作原理参数资料电路分析及维修方法v

UC3842UC3843工作原理参数资料电路分析及维修方法v

UC3842UC3843工作原理参数资料电路分析及维修方法v一、工作原理:1.输入电压稳压:2.参考电压:3.误差放大器:误差放大器与参考电压和反馈电压进行比较,产生控制信号,使输出电压保持在设定值。

4.电流模式控制:电流模式控制是UC3842/43的核心功能。

通过外接电流感测电阻将电压转换成电流,然后进行误差放大和反馈。

5.PWM控制:PWM控制器与误差放大器和电流模式控制器协同工作,根据误差放大器的控制信号和电流模式控制器的反馈信号,产生对开关管的PWM控制信号,控制开关管的通断。

6.开关管驱动:二、参数资料:1.输入电压范围:8V至20V2.输出功率范围:5W至150W3.输出电压范围:0.5V至5V(通常为12V、15V等)4.输出电流范围:0A至2A5.PWM频率范围:50kHz至500kHz6.工作温度范围:-40℃至125℃三、电路分析:1.输入电源电路:通过电阻分压电路将输入电压接入UC3842/43的供电管脚。

2.外部电感:用于限流。

3.故障保护电路:包括过电流保护、过载保护等功能。

4.参考电压调节电路:通过外接分压电阻网络调整参考电压,用于电流模式控制和误差放大器。

5.误差放大器:用于比较参考电压和反馈电压,产生控制信号,保持输出电压稳定。

6.电流模式控制:通过外接电流感测电阻将电压转换为电流,然后进行误差放大和反馈。

7.PWM控制:根据误差放大器的控制信号和电流模式控制器的反馈信号,生成对开关管驱动信号。

8.开关管驱动:将PWM信号驱动外部开关管,实现对输出电压的调节和稳压控制。

在维修UC3842和UC3843的电路时,一般需要先排除其他外部元件故障,然后再考虑芯片本身是否损坏。

维修UC3842和UC3843电路的常见方法如下:1.检查输入电压:确认输入电压是否正常,排除电源问题。

2.检查电感和变压器:检查电感和变压器的绕组是否损坏或短路。

3.检查反馈电路:检查反馈电路中的电阻、电容、二极管等元件是否正常,是否有短路或开路现象。

UC3842中文资料及应用电路图

UC3842中文资料及应用电路图

UC3842中文资料及应用电路图UC3842中文资料及应用电路图Unitrode公司的UC3842是一种高性能固定频率电流型控制器,包含误差放大器、PWM比较器、PWM锁存器、振荡器、内部基准电源和欠压锁定等单元,其结构图如图1所示。

各管脚功能简介如下。

1脚COMP是内部误差放大器的输出端,通常此脚与2脚之间接有反馈网络,以确定误差放大器的增益和频响。

2脚FEED BACK是反馈电压输入端,此脚与内部误差放大器同向输入端的基准电压(一般为+2.5V)进行比较,产生控制电压,控制脉冲的宽度。

3脚ISENSE是电流传感端。

在外围电路中,在功率开关管(如VMos管)的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压,此电压送入3脚,控制脉宽。

此外,当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1V时,UC3842就停止输出,有效地保护了功率开关管。

4脚RT/CT是定时端.锯齿波振荡器外接定时电容C和定时电阻R的公共端。

5脚GND是接地。

6脚OUT是输出端,此脚为图滕柱式输出,驱动能力是±lA。

这种图腾柱结构对被驱动的功率管的关断有利,因为当三极管VTl截止时,VT2导通,为功率管关断时提供了低阻抗的反向抽取电流回路,加速功率管的关断。

7脚Vcc是电源。

当供电电压低于+16V时,UC3824不工作,此时耗电在1mA以下。

输入电压可以通过一个大阻值电阻从高压降压获得。

芯片工作后,输入电压可在+10~+30V之间波动,低于+10V停止工作。

工作时耗电约为15mA,此电流可通过反馈电阻提供。

8脚VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。

UV3842的电压调整率可达0.01%,工作频率为500kHz,启动电流小于1mA,输入电压为10~30V,基准电压为4.9~5.1V,工作温度为0~70℃,输出电流为1A。

开关稳压电源由UC3842构成的开关电源电路如图6所示,T为高频变压器。

UC3842开关电源保护的几个技巧及电路图

UC3842开关电源保护的几个技巧及电路图

UC3842开关电源保护的几个技巧及电路图UC3842开关电源保护的几个技巧及电路图2017年04月01日用UC3842开关电源做的典型电路见图1。

过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。

当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。

这被称为“打嗝”式(hiccup)保护。

在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。

由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。

仔细调整这个电阻的数值,一般都可以达到满意的保护。

使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。

图2、3、4是常见的电路。

图2采取拉低第1脚的方法关闭电源。

图3采用断开振荡回路的方法。

图4采取抬高第2脚,进而使第1脚降低的方法。

在这3个电路里R3电阻即使不要,仍能很好保护。

注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。

在过载或短路保护时,它也起延时保护的左右。

在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦;2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。

斩控式单相交流调压电路

斩控式单相交流调压电路

斩控式单相交流调压电路Revised on November 25, 2020目录第1章概述.................................................单相交流调压..............................................交流调压在生活生产中的应用................................课题总体概述 (1)第2章设计总体思路 (2)基本工作原理 (2)总体方案确定 (3)第3章主电路设计与分析 (4)主要技术条件及要求 (4)主电路计算及元器件参数选型 (4)主电路结构设计 (5)主电路保护设计 (6)第4章单元控制电路设计 (7)主控制芯片的详细说明及介绍 (7)芯片的详细介绍 (7)芯片的工作原理 (8)驱动电路设计 (9)过零检测及续流触发电路 (10)控制保护电路设计 (11)第5章总结与体会 (12)第6章附录.................................................. 附录A 参考文件.. (14)第1章概述单相交流调压对单相交流电的进行调节的电路。

用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。

与调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

交流调压在生活生产中的应用交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在电力系统中,这种电路还常用于对无功功率的连续调节。

此外,在高电压小电流或低电压大电流直流电源中,也常用交流高压电路调节变压器一次电压。

因此交流调压电路广泛存在于农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

课题总体概述用斩控方式实现交流调压,功率因数高,谐波小,输出波形好。

电路由主电路与控制电路组成,主电路主要环节:主电力电子开关与续流管。

UC3842内部工作原理和应用电路分析

UC3842内部工作原理和应用电路分析

UC3842内部工作原理和应用电路分析UC3842内部工作原理和应用电路分析1、UC3842 内部工作原理简介T×CT);2 、UC3842 组成的1、L1 滤除电磁干扰,负温度系数的热敏t1 限流,再经VC 整流、C2 滤波,电阻R1、电位器RP1 降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

④脚和⑧脚外接的R6、C8 决定了振荡频率,其振荡频率的最大值可达500KHz。

R5、C6用于改善增益和频率特性。

⑥脚输出的方波信号经R7、R8 分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。

电阻R10 用于电流检测,经R9、C9 滤滤后送入UC3842 的③脚形成电流反馈环. 所以由UC3842 构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。

3 、电路的调试此电路的调试需要注意:一是调节电位器RP1使电路起振,起振电流在1mA左右;二是起振后变压器③④绕组提供的直流电压应能使电路正常工作,此电压的范围大约为11~17V 之间;三是根据输出电压的数值大小来改变R4,以确定其反馈量的大小;四是根据保护要求来确定检测电阻R10 的大小,通常R10 是2W、1Ω以下的电阻。

通常,PWM型开关电源把输出电压的采样作为PWM控制器的反馈电压,该反馈电压经PWM控制器内部的误差放大器后,调整开关信号的占空比以实现输出电压的稳定。

但不同的电压反馈电路,其输出电压的稳定精度是不同的。

1 概述2、UC3842常用的电压反馈电路3 、线性光耦改变误差放大器增益电压反馈电路及实验结果 4、结语在单端隔离式PWM型电源中,电流型脉宽调制器UC3842有着广阔的应用范围,本文在分析了三种常用的电压反馈电路的基础上,设计了一种新的采用线性光耦改变UC3842误差放大器增益的电压反馈电路。

UC3842的主要功能介绍

UC3842的主要功能介绍

UC3842的主要功能介绍
UC3842的主要功能介绍
UC3842的主要性能是:内有可调整的充放电振荡电路,可精确地控制占空比。

振荡器的工作频率由4脚外接的定时电容和电阻所确定;采用电流操作,并可在500KHZ下工作;内有5V精密基准电压,具有完备的欠压,过压及过流保护;启动电压阀值为16V,关闭阀值为10V,6V的启动与关闭差值可有效地防止电路在阀值电压附近工作时产生振荡。

利用输入端设置的34V稳压管有效防止高压造成的损坏;电流敏感和限制电路简单灵敏,可采用回路接电阻或电流互感器对电流取样送至3端,当3端电压低于1V时,脉宽调制器处于正常工作状态,当3端电压等于或高于1V时,电流敏感比较器输出高电平,将PWM锁存器复位,使输出关闭。

若故障消失,下一个时钟脉冲到来将PWM锁存器自动置喂。

PWM锁存器的作用是保证每一个震荡周期仅出现一个控制脉冲,有效地防止噪声干扰;输出级为图腾柱式,输出平均电流为200MA,最大值可达1A。

UC3842开关电源电路图

UC3842开关电源电路图

UC3842开关电源电路图第一篇:UC3842开关电源电路图1、UC3842的内部结构和特点UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。

UC3842为8脚双列直插式封装,其内部原理框图如图1所示。

主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。

端1为COMP 端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。

2、电路结构与工作原理图2所示为笔者在实际工作中使用的电路图。

输入电压为24V直流电。

三路直流输出,分别为+5V/4A,+12V/0.3A和-12V/0.3A。

所有的二极管都采用快速反应二极管,核心PWM器件采用UC3842。

开关管采用快速大功率场效应管。

2.1 启动过程首先由电源通过启动电阻R 1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。

高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。

根据同名端标识情况,此时变压器各路副边没有能量输出。

当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。

同时反馈线圈向UC3842供电。

UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V 和10V,如图3所示。

在开启之前,UC3842消耗的电流在1mA以内。

电源电压接通之后,当7端电压升至16V时UC3842开始工作,启动正常工作后,它的消耗电流约为15mA。

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

电流控制型脉宽调制器UC3842工 作原理及应用

电流控制型脉宽调制器UC3842工 作原理及应用

电流控制型脉宽调制器UC3842工作原理及应用UC3842是美国Unitrode公司(该公司现已被 TI公司收购)生产的一种高性能单端输出式电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF 和IGBT 等功率型半导体器件,具有管脚数量少、外围电路简单、安装调试简便、性能优良等诸多优点,广泛应用于计算机、显示器等系统电路中作开关电源驱动器件。

1 UC3842 内部工作原理简介图1 示出了UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的 2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R T×C T);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为 50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

图1 UC3842 内部原理框图2 UC3842 组成的开关电源电路图2 是由UC3842 构成的开关电源电路,220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻R t1限流,再经VC 整流、C2滤波,电阻R1、电位器RP1降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

UC3842工作原理

UC3842工作原理

UC3842工作原理UC3842工作原理1、工作原理UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

2、UC3842 组成的开关电源电路220V 市电由C1、L1 滤除电磁干扰,负温度系数的热敏电阻Rt1 限流,再经VC 整流、C2 滤波,电阻R1、电位器RP1 降压后加到UC3842 的供电端(⑦脚),为UC3842 提供启动电压,电路启动后变压器的付绕组③④的整流滤波电压一方面为UC3842 提供正常工作电压,另一方面经R3、R4 分压加到误差放大器的反相输入端②脚,为UC3842 提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。

④脚和⑧脚外接的R6、C8 决定了振荡频率,其振荡频率的最大值可达500KHz。

R5、C6用于改善增益和频率特性。

⑥脚输出的方波信号经R7、R8 分压后驱动MOSFEF 功率管,变压器原边绕组①②的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。

电阻R10 用于电流检测,经R9、C9 滤滤后送入UC3842 的③脚形成电流反馈环. 所以由UC3842 构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842 的③脚电压高于1V 时振荡器停振,保护功率管不至于过流而损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章概述----------------------------------------------------------------------------1.1 课题设计目的及意义-------------------------------------------------- 第2章设计总体思路-----------------------------------------------------------------2.1系统总体方案确定--------------------------------------------------------2.2 交流斩波调压的基本原理----------------------------------------------第3章主电路设计与分析-----------------------------------------------------------3.1主要技术条件及要求-----------------------------------------------------3.2 开关器件的选择----------------------------------------------------------3.3 主电路计算及元器件参数----------------------------------------------3.4 主电路结构设计---------------------------------------------------------3.5 主电路保护设计---------------------------------------------------------第4章单元控制电路设计-----------------------------------------------------------4.1主控制芯片的详细说明--------------------------------------------------4.1.1 芯片的选择----------------------------------------------------------4.1.2芯片的详细介绍-----------------------------------------------------4.1.3芯片的工作原理-----------------------------------------------------4.2 驱动电路设计--------------------------------------------------------------4.3 过零检测及续流触发电路-----------------------------------------------4.4控制保护电路设计--------------------------------------------------------4.5谐波分析--------------------------------------------------------------------第5章总结与体会------------------------------------------------------------------- 参考文献附录第1章概述1.1 课题设计目的及意义单相交流电源的应用是非常广泛的。

比如在农村、轻工业、家用电器等小功率传动领域以及电力机车供电系统。

对于单相交流电源,调压和稳压是最为普遍的要求。

目前能够实现这一要求的调压器有下面三种:1)磁饱和式调压器该调压器通过控制主电路中电感的饱和程度,以改变电抗值以及其上的电压,实现对输出电压的调节。

这种调压器具有一定的动态性能,但输出电压的调节范围小,体积和重量较大。

2)机械式调压器机械式调压器由电动机带动碳刷实现输出电压的调节。

这种调压器输出波形较好,但体积、重量大,动态性能差。

3)电子式调压器这种调压器采用电力电子器件实现。

目前有晶闸管凋压器和逆变式调压器两种。

晶闸管调压器采用的是相控方式,因此其输出波形差;逆变式调压器采用的是斩波控制方式,其输出波形和动态响应较好。

在工业生产及日用电气设备中,有不少交流供电的设备采用控制交流电压来调节设备的工作状态,如加热炉的温度、电源亮度、小型交流电机的转速等。

这样就需要设计一种交流调压电路来控制,其基本原理是把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流电力。

在每一个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。

用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。

采用晶闸管作为开关元件的典型单相交流调压电路如图1所示。

常用通断控制或相位控制方法来调节输出电压。

交流调压电路也广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。

在供用电系统中,这种电路还常用于对无功功率的连续调节。

此外,在高压小电流或低压大电流中,也常采用交流调压电路调节变压器一次电压。

如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,同时,低电压大电流直流电源需要很多晶闸管并联。

这都是十分不合理的。

采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。

这样的电路体积小、成本低、易于设计制造。

交流调压是指把一种交流电变成另一种同频率,不同电压交流电的变换。

按所变换的相数不同交流调压电路可分为单相交流调压电路和三相交流调压电路。

前者是后者的基础。

与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

第2章设计总体思路2.1 系统总体方案确定交流调压的控制方式有三种:1磁饱和式调压器;2机械式调压器;3电子式调压器。

整周波控制调压——适用于负载热时间常数较大的电热控制系统。

电子式调压器这种调压器采用电力电子器件实现。

目前有晶闸管凋压器和逆变式调压器两种。

晶闸管调压器采用的是相控方式,因此其输出波形差;逆变式调压器采用的是斩波控制方式,其输出波形和动态响应较好。

晶闸管导通时间与关断时间之比,使交流开关在某几个周波连续导通,某几个周波连续关断,如此反复循环地运行,其输出电压的波形如图2所示。

改变导通的周波数和控制周期的周波数之比即可改变输出电压。

为了提高输出电压的分辨率,必须增加控制周期的周波数。

为了减少对周围通信设备的干扰,晶闸管在电源电压过零时开始导通。

在负载容量很大时,开关的通断将引起对电网的冲击,产生由控制周期决定的分数次谐波,这些分数次谐波引起电网电压闪变。

这是其缺陷。

相位控制调压——利用控制触发滞后角α的方法,控制输出电压。

晶闸管承受正向电压开始到触发点之间的电角度称为触发滞后角α。

在有效移相范围内改变触发滞后角,即能改变输出电压。

有效移相范围随负载功率因数不同而不同,电阻性负载最大,纯感性负载最小。

图3是阻性负载时相控方式的交流调压电路的输出电压波形。

相控交流调压电路输出电压包含较多的谐波分量,当负载是电动机时,会使电动机产生脉动转矩和附加谐波损耗。

另外它还会引起电源电压畸变。

为减少对电源和负载的谐波影响,可在电源侧和负载侧分别加滤波网络。

斩波控制调压——使开关在一个电源周期中多次通断,将输入电压切成几个小段,用改变小段的宽度或开关通断的周期来调节输出电压。

斩控调压电路输出电压的质量较高,对电源的影响也较小。

图4是斩波控制的交流调压电路的输出电压波形。

在斩波控制的交流调压电路中,为了在感性负载下提供续流通路,除了串联的双向开关S1外,还须与负载并联一只双向开关S2。

当开关 S1导通,S 2关断时,输出电压等于输入电压;开关S1关断,S2导通时,输出电压为零。

控制开关导通时间与关断时间之比即能控制交流调压器的输出电压。

开关 S1、S2动作的频率称斩波频率。

斩波频率越高,输出电压中的谐波电压频率越高,滤波较容易。

当斩波频率不是输入电源频率的整数倍时,输出电压中会产生分数次谐波。

当斩波频率较低时,分数次谐波较大,对负载产生恶劣的影响。

将斩波信号与电源电压锁相,可消除分数次谐波。

斩波控制的交流调压电路的功率开关元件必须采用功率晶体管或其他自关断元件,所以成本较高。

斩波控制方式时,晶闸管要带有强迫关断电路或采用IGBT、MOSFIT 等可自关断器件,在每个电压周波中,开关元件多次通断,使电压斩波成多个脉冲,改变导通比即可实现调压。

本次课程设计采用斩波控式制单相交流调压。

斩控式交流调压电路的原理图如图5所示,一般采用全控型器件作为开关器件。

其基本原理和直流斩波电路有类似之处,只是直流斩波电路的输入是直流电压,而斩控式交流调压电路的输入是正弦交流电压。

在交流电源u1的正半周,用V1进行斩波控制,用V3给负载电流提供续流通道;在u1的负半周,用V2进行斩波控制,用V4 给负载电流提供续流通道。

设载波器件(V1或V2)导通时间为t on,开关周期为T,则导通比a=t on/T。

和直流斩波电路一样,也可以通过改变a来调节输出电压。

图5给出了电阻性负载时负载电压u0和电源电流i1(也就是负载电流)的波形。

可以看出,电源电流的基波分量是和电源电压同相位的,即位移因数为1。

另外,通过傅里叶分析可知,电源电流中不含低次谐波,只含和开关周期T有关的高次谐波。

这些高次谐波用很小的滤波器即可滤除。

这时电路的功率因数接近1。

本次课程设计所用的斩控式单相交流调压电路的结构框图如图6所示,首先是交流输入电压为220V,经滤波后用全控型开关器件进行斩波,输出电压为0~160 V,然后在其输出取样电流,进行过压检测保护。

时钟震荡器及脉宽PWM调制均由芯片形成控制部分。

图6 电路的结构框图2.2 交流斩波调压的基本原理交流斩波调压的原理波形如图7所示。

由图可知,它是用一组频率恒定、占空比可调的脉冲,对正弦波电压进行调制后,得到边缘为正弦波、,其基本谐波频率为土50Hz。

占空比可调的电压波形。

该电压的调制频率f改变占空比,即可改变输出电压。

利用具有自关断能力的电力半导体器件就可方便地构成交流斩波调压电路。

图7 交流斩波调压的原理波形图第3章主电路设计与分析3.1主要技术条件及要求要求用斩波控制的方式实现单相交流调压,功率因数好,谐波小,输出的波形要好。

输入电压是交流220V,输出电压要求是0~160 V,最大输出电流为200A,功率因数大于或等于0.7。

能同时实现电压电流的检测及过压过流等一些故障的保护。

相关文档
最新文档